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ABSTRACT

Automatic identification and anndation d protein damains is amajor chall enge for genome
sequencing projeds. Simple transfer of the annaation from the overall most similar protein with
aknown functionisrelatively reliable for prokaryotic proteins, bu often produces misleading
and incomplete results for multi-domain proteins, which are @mmonin higher organisms. An
aternative gproad isto classfy protein damains based onmatches to a precompil ed database
of protein damnain families. A number of such databases are reviewed here, including an updite
on the Pfam database. The diff erences a user can exped to experiencewhen using diff erent
databases for domain identification areill ustrated by examples of known multi-domain proteins.
The advantages and drawbadks of single-sequence versus multi ple-alignment methods are dso
discussed. The degreeof protein moduarity was surveyed in the genomes of Caenorhabditis
elegans, Saccharomyces cerevisiae, and Haemophilus influenzae by matching them to Pfam.
Whil e prokaryotic genomes typicdly have asmall fradion d multi-domain proteins, that rarely
contain more than threedomains, at least 10% of higher eukaryotic proteins have multiple
domains, many times with dazens of domains per protein chain.
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INTRODUCTION

A number of new sequence analysis chall enges have emerged in the genome @a. Predicting the
function d eat newly found potein has been amain focus of genome analysis (Scharf et al.,
1994 Bork et al., 1995 Casari et al., 1996 Koonin et al., 1996 Tatusov et al., 1999. The
analyses of the first complete genomes have mncentrated onimproving the percentage of
proteins for which any functional inference can be made, nomatter how small aportion d the
sequence ontainsthat information. Few attempts have been made to investigate the moduarity,
or the existence of multiple domains, in these proteins. Onereasonfor thisisthat all genomes
completed to date ae ather prokaryotic or single-cdl eukaryotic, which ony contain a small
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fradion d multi-domain proteins. Asthe genome of a higher eukaryote, the nematode
Caenorhabditis elegans, is neaing completion and the human genome projed is acceerating,
ignoring the issue of multi ple domains on the same protein chain is beacoming a more serious
problem. Proper domain anndationis vital for biologicd inferences based onsequence
similarity. The simple gproac of only carrying over functional annaation from the most
simil ar sequence may conced important sequence feaures and lead to incorred functional
interpretations.

To med the challenge of domain parsing on alarge scde, there is aneed for automated
approadies. One could imagine that this might be adieved by condensing the results from a
‘traditional’ database search against a single-sequence database automaticaly, emulating the
anayticd processa human expert would perform to infer domain boundries. However, this
processinvolves a substantial amourt of intuition and interadion, and is hard to generali ze for
diff erent types of protein families. For known damains, it is possble to exploit prior knowledge
abou the family in order to predict new members. A database of such damain families can thus
be used for parsing the domain architedure of newly found poteins. Although pasitive
identificationislimited to danains represented in the database, new domainsin flanking
segments also become eaier to parse and analyse. To be useful, such a database nealsto be &
comprehensive & possble. Aside from the better definition o the domain boundries, the
approadh of using adatabase of aligned protein damains has the alvantage of being potentially
more sensiti ve to weak simil ariti es, since well -conserved feaures can be given a higher weight.

This paper addresses the question d how useful protein family databases are for automated
protein danain identification, in the sense of what a sequence analyst can exped to gain from
seaching them, relative to traditional single-sequence database seaching. Five protein family
that are avail able for searching, Prosite, Blocks, Prints, Pfam and ProDom, are compared to
traditional Blast seaching. Withou prior knowledge, bath multiple dignment and pairwise
approadies shoud be used, sincethe database of single sequences will always be more
comprehensive. However, when no irwise matches are found, @ when they produce apartia
or complex picture of homologous domains, a significant improvement in the analysis may result
from using amulti ple dignment-based database.

To asesshow commonit isthat domain analysisisrequired, proteins from Swisrot and three
genomes were analyzed for the presence of multi ple domains by matching them to Pfam.

REVIEW OF PROTEIN FAMILY DATABASES

To construct a database of protein families, a number of basic steps are required. First, clusters
correspondng to families must be generated. Eadh cluster member shoud have adefined
starting and ending position in the full -length sequences to avoid including unrelated damains.
For ead cluster amultiple dignment is generated, which may be tested for quality and for
spedficity and sensitivity to find the known members, and dacumentation may be alded. After
theinitial credion, methods to keep the database up-to-date shoud be developed. Each of these
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steps represents hurdles that have to be resolved by a ammpromise between quality, efficiency
and comprehensiveness The main isauesfor eadt step are outlined below.

Clustering. In general, the quality of clusters creaed with manual inspedion d sequence
similarity and knovn functions far exceetls the quality of clusters generated fully automaticaly.
On the other hand, they canna compete in terms of comprehensivenessor speed o construction.
Also, since many hand-built families embody a particular perspedive of that family, it isvirtualy
impossbleto incorporate avail able hand-built familiesinto a self-consistent database. For
instance, ore family clustering may have been constructed in order to find as many distant
members as possble to a superfamily, while another clustering may be meant to dstinguish a
subfamily. Automated simil arity-based clustering approaches facetwo main concerns. If based
on an O(N?) algorithm, computationtime is likely to become aproblem. A more severe problem
isthat multi-domain proteins may incorredly join urrelated clusters. To solvethis, amethodto
infer domain boundriesis nealed, so that only the segment belonging to a particular family is
clustered with it. For both manual and automatic goproaches, the generation o nonoverlapping
clustersis, athouwgh na strictly necessary, afeaure that will make the eventual anaysisless
ambiguoLs.

Generation d Multi ple Alignments. Given afamily clustering, multiple dignments can be
generated with awide range of avail able methods. Thisisusualy relatively straightforward for
the ‘core domains' (i.e. the highly conserved, usualy central parts of the sequences) but isfar
from a solved problem when only a segment of some sequences can be digned with ead aher.
Particularly if some sequences contain extradomains, mogt, if nat al, alignment programs will
try to incorredly incorporate such danainsinstead of rejeding them, which generally leadsto
overadl distorted alignments. This makes full automation o whole-domain alignment
construction urreliable. One way of circumventing this problem isto orly look for highly
conserved short motifs, and leare out all unconserved regions.

Documenting and Maintaining the Clusters. To be useful for domain anndation, ead cluster
shoud be documented and linked to the literature. Thisis nealy a cmmpletely manual task, and
may be more of a battlened than the mmputational aspeds. Sincethe sequencesin the primary
databases are awntinuowsly updated (for instance when previous fragments are extended,
sequencing errors are deteded, a gene predictions refined), it isimportant to kegp a multiple
alignment database in synchrony with its member sequences. A database generated by afully
automatic dustering method faces two maintenance problemsif it requires a complete re-run o
the dustering for ead release. First, computation time may be abattlened. Secwnd,and more
serious, if the dusters change in content, appeaance or accesson nunber at ead release, they
cannd be used as a stable reference from other databases.

Seaching. To seach aprotein family database, the query has to be cmpared to a representation
of ead multiple dignment. This can be dore in several different ways. The simplest methodis
to ony extrad the most conserved columns from the dignment, and describe those @ aregular
expresson pettern in which orly certain residues are dlowed at certain pasitions. Searching by
regular expresson matching is very efficient. More information can hovever be extraded if eah
column is converted to avedor of 20 rows, with a score for ead aminoadd. This soreiseither
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aprobability, estimated from the observed frequenciesin the amlumn (Staden, 1989 Henikoff &
Henikoff, 1997), or the arerage score of the amino add in a substitution matrix against the
observed amino addsin the wlumn (Gribskov et al., 1987. A commontechniqueisto add
‘pseudocounts’ from substitution matrix scores to the observed frequencies to estimate
probabiliti es of amino adds that may not have been seen dueto small sample size. Gapsin the
alignment are ather avoided entirely, in which case the model is normally cdled aweight matrix,
or they can become properties of the resulting model, which isthen often caled a profile
(Gribskov et al., 1987. A moreformal way to describe pasition-spedfic probabiliti es for
insertions, deletions, and aminoaddsisused in ‘hidden Markov models’ (HMMs) (Krogh et al.,
1994 Eddy, 1999. Such models are often cdled HMM profiles. Depending onthe model,
different seach algorithms may be used. For weight matrices, simple scanning to find the best
match israpid and robust. For (HMM) profil es, dynamic programming methods are needed to
find the optimal aignment. Thisis computationally more complex and hence slower, but can
include gaps in the dignment.

Presented below are aseledion d avail able multiple dignment databases. They were chosen for
this gudy based onfree aail ability of the multi ple dignments or models, and amethodto seach
aquery protein sequence gainst them. In principle, any multiple di gnment searcch method can
be adapted to any multiple dignment database, bu in order to avoid re-cdibration orly the
methods provided with the database were used.

Prosite

The protein familiesin Prosite (Bairoch et al., 1997 have largely been manually compil ed from
theliterature. The aurrent release, 13.0,contains 889families. The enmphasis of Prositeison
functional motifs, such as binding sites or other short amino add petterns that share a @mmon
function,and hgh quelity documentation o ead family. Nealy all families are dharaderized by
short regular expresgontlike patterns of al owed residues at conserved pasitions, often
interleaved by non-conserved space columns. On average, the patterns contain ten conserved
pasitions. In many cases, thisis enough to separate the true members from the norrmembers, but
for families with lessconservation, the pattern approacd apparently proved insufficient and
whole-domain profileswere added. 16such profiles are included in Prosite 13.0,and ancther 8
are avail able from the Prosite WWW site. Prositeis available & http://expasy.hcuge.ch/sprot/-
prosite.ntml. Because of its comprehensivenessand excdlent family anndation, Prositeis
widely used as areferencefor multiple dignment family databases.

Blocks

Prosite does not provide any multi ple dignments, bu they can be wnstructed from the list of
membersin Swisgrot (Bairoch & Apweiler, 1997 that is attadhed to ead Prosite family. This
has been dore aitomaticdly to generate short ungapped ali gnments of conserved regions, which
arereleased in the Blocks database (Henikoff et al., 1997. A given family may give rise to any
number of blocks, which are asggned the original Prosite acceson number plus aletter A, B, ...
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for ead block in the group, adered from the N-terminus to the C-terminus. The blocksin
relesse 9.3 vary from 4 to 55residues in width, and have an average of 3-4 blocks per family, and
abou 20 member sequences per block. Blocksisavailable & http://www.blocks.fherc.org/.

Prints

The Prints database (Attwoodet al., 1997 is smilar to Blocksin that ead family contains a
number of short ungapped alignments of conserved regions. Like Prosite, Prints contains large
amounts of documentation for ead family, bu unlike Blocks, the families are constructed by
iteratively seaching the database and manually validating the dusters. Regarding the dignments
the main dfference mmpared to Blocks is that Prints generally uses more blocks for ead family,
and that Prints blocks are shorter and have more memberslisted. Prints families contain more
members partly because it uses OWL as primary database, which contains more sequences than
Swisgrot. Prints 16.0contains 750families, of which some 200are not represented in Blocks
(Henikoff et al., 1997. The Prints blocks are 5-33 residues wide, with an average of 5-6 blocks
per family, and abou 35 members per block. Printsisavailable &
http://www.biochem.ucl.acuk/bsm/dblrowser/PRINTS/PRINTS. html.

ProDom

The Prodam database (Sonnremmer & Kahn, 1994, is constructed by fully automatic

clustering and multi ple dignment generation. Locd pairwise sequence simil ariti es generated by
Blastp (Altschul et al., 1997) are processed by the program Domainer, which uses heuristics to
infer domain boundriesin order to separate out clusters that suppasedly correspondto damains.
In ealier versions of ProDom, Domainer used the original pairwise simil arity locaions to
quickly generate multiple dignments, bu in the latest release, 34.1,the member sequence
segments assgned to ead cluster were re-aligned using the program Multalin (Corpet, 1988. In
most cases, the ProDom alignments are shorter than true domains, and the di gnment quality is
significantly lower than what can be atieved by more manual approaches. Unfortunately, the
more membersin afamily, the lower the quality tendsto be. The reasonfor thisisthat Domainer
isinherently sensitive to incorred data from unmarked fragmentary proteins and incorred
matches reported by Blast. Families with many members thus run agreder risk of incorporating
such deleterious information. Searching ProDom is normally dore by Blast against consensus
sequences from ead cluster, or against all member sequences. Sincethe dusterstypicdly only
contain relatively simil ar sequences, and kecause the dignment quality is often poa, gred legs
in sensitivity canna be expeded from seaching against the multiple dignments. The dignments
with more than ore member are on average 122 residues wide, including gaps, and onaverage
there ae @ou 7 members per family. ProDom is avail able & http://protein.toulouse.inrafr/-
prodam.html.
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Pfam

The main ideaof Pfam (Sonnhammer et al., 1997 was to construct a self-consistent,
comprehensive olledion d permanent, documented protein families with whole-domain
alignments. By ‘whole domain’ is meant the small est sequence segment that is able to fold and
function independently of other segments of the same protein chain. Operationaly the Pfam
domains may sometimes be slightly smaller due to poa conservation ouside the @re of the
domain. A lessonfrom ProDom isthat having poaly defined and vdatile dusters not only
reduces the usefulnessfor crossreferencing from other databases, but also prevents gradual
refinement of the dusters and alignments as more datais gathered. Central to Pfam’s
methoddogy is that ead family is described by two alignments. a‘seed’ alignment, which
contains a number of representative full -length sequences, and a‘f ull’ aignment containing all
known members. The reason for kegping a separate seed alignment isthat it is gnall enough to
be dhedked, manipulated, and updited with ease. Fragmentary or incorred sequences can thus be
avoided in the data used to represent the family. From the sead alignment an HMM is generated
which is used to gather all member sequences, and later onto probe Pfam with query sequences.
Both alignments have to passquality tests for corrednessand consistency with ather Pfam
families. If not all members are found, @ if either alignment isincorred, parts of the processare
re-iterated.

Most Pfam families have correspondng entries in Prosite. Of the 527 familiesin Pfam-A 2.0, 79
familiesdo nd have areferenceto Prosite. However, many of the families that do, do no
exadly correspondto the Prosite duster, since often the level of clustering is diff erent between
the two databases. Thisisa amnsequenceof the two dfferent methods used. A Prosite family
may contain a short conserved motif, which in Pfam is described by severa whole-domain
subfamilies, e.g. the P-loop containing families. Conwversely, separate Prosite dusters may be
joined in Pfam, because HMMs can represent weekly conserved damains better than petterns.

For Pfam-A release 2.0, 353 w families were alded relative to Pfam-A 1.0. 55 6 these were
taken from Pfam-B, which is a supgdementary database automaticdly generated by running
Domainer on sequences not in Pfam-A at eat release. The Pfam-B clusters can serve asinitial
seals for Pfam-A families, and ou goal isto try to incorporate dl large Pfam-B familiesinto
Pfam-A.

The documentation in Pfam is generally brief, and largely relies onlinksto Prosite and Prints
entries. To further improve the documentation, 69linksto WWW sites with protein family
information were added in Pfam-A 2.0. Pfam can thus also serve a a central repaository of
pointersto eledronicdly published protein family material, like Proweb (Henikoff et al., 19969.
The dignments are on average 275residues wide, including gaps. There ae on average @ou 75
members per family in the full alignments, and abou 22 in the seed aignments. Pfam is

avail able & http://www.sanger.acuk/Pfam and htp://genome.wustl.edw/Pfam.
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CASE STUDIES

A protein containing nine well-studied damains, phasphatidyli nositol-spedfic phosphdipase C-
Y, was chasen as atest case to ill ustrate how the results differ between databases. For easy
comparison, the output from ead database search was parsed into a standard format and drawn
asagraphicd schematic diagram, shownin Fig. 1. For reference the first schematic shows the
domains in the Swisgrot fedure table, which might be cnsidered the ‘true’ domain architedure.
It contains one C2 damain, ore EF-hand cdcium-binding domain, two PH domains, of which the
secondis Flit in segments, with two SH2 and ore SH3 damain inserted in between, and two
phosphdipase C-spedfic domainscdled X andY. The halves of the split PH domain are short
and nd easy to deted. Infad, to deted both of them in a Pfam seach, the score aitoff needed to
be lowered from 25to 7 hts. In this case, nospurious matches were reported in the Pfam seach
at this cutoff level, bu in general noise can be expeded upto ascore of 20-25 Lts. A bitisa
log, information content measure, meaning that a score of 25 hitsis expeded by chanceoncein
2% (3x10") ali gnments.

The Prosite patterns only deteded the EF hand danain. However, all other domainsin this case
are represented in the 24 recently added Prosite profil es and were deteded in a profil e seach.
Both the Pfam and Prosite searches produce domain matches closely correspondng to the @rred
architedure.

Both the Blocks and Prints results identify the C2 damain, the X/Y domains, the SH2 and the
SH3 damains, abeit in alessclea fashion due to the short motifs. For instance, there ae4 or 5
motif-matches to bah the SH2 and SH3 damains, giving no obvousindicaionthat there ae two
SH2 and orly one SH3 damain. Although the PH and EF hand damains were not reported by
Blocks or Prints eaches, bah reported some spurious matches as sgnificant.

The ProDom output may look confusing at first glance becaise most matching domain families
have very simil ar descriptions. However, at closer inspedion the result corresponds reasonably
well to certain damains. For instance, the top two matches, families 1317and 1316correspond
to danains X and Y. Further down the list, the two matches to family 40 are the two SH2
domains and the match to family 10isthe SH3 damain. It can be seen that these families are
‘superfamilies’ because they have many more members than the other families (147and 307,
respedively). It ishowever not easy for auser to tracethe fad that these families correspondto
the well-known damains SH2 and SH3 as neither of them have the keywords SH2 or SH3 in the
description (which is generated by ranking keywords in the sequence aandation o the members).
A further complicationin this caseisthat alarge propation d the membersin family 10 do no
contain SH3 damains, bu were norethelessassgned to this cluster, apparently in many cases due
to low complexity matches. The main drawbadk of the ProDom analysisis thusthat it ladks
family-level annaation, and the user must make a onsiderable dfort to establi sh which danains
were acually found.

From the output of Blastp, orly representative matches are shown. Whileit doesnat give a
detail ed and easily interpretable picture of the domain organization, it does give duesto the fad
that domain shuffling is present. It isclea that several other phasphdipase C sequences
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ladk the SH2 and SH3 damains, bu contain the flanking domains, whil e other sequences only
match at the SH2 and/or SH3 damains. Asin the ProDom seach, the more subtle domain
members, like EF hand and PH, are not easily distinguishable however.

The conclusion for this exampleisthat the search results appea to fal i nto three ¢asses. The
profil e-based approaches give a tea, virtually complete picture, at least in this example. The
motif databases give arelatively concise picture, bu it islessclea where predsely the domains
are located; some domain matches are completely absent, and some spurious matches are
reported. The fully automaticdly clustered and the unclustered databases give hints to where
domains might be locaed, bu the picture is blurred and incomplete, and the results require
substantial manual analysisto producethe complete domain architedure.

Another example, protein kinase C from yeast, (Swisgprot KPC1_YEAST/P24583, prodwces a
similar picture (not shown). It containsa C2 damain, a Phorbad esters/ diagylglycerol binding
domain and a protein kinase domain. Pfam and Prosite profil e seaches produced matches that
correspondwell to the known damains, bu the Prosite profil e search failed to deted the C2
domain here. Pattern and motif searches give matchesto al but the C2 damain, and ore spurious
match ead, whil e Blastp against ProDom or single-sequence databases again producelesseasily
interpretable results.

HOW COMMON ARE MODULAR PROTEINS?

Moddar protein danains, which can be shuffled duing evolution, are foundin essentially all
organisms. They are often used in regulatory signaling systems (Bourret et al., 1989 Pao &
Saier, 1997 and transport acossmembranes (Reizer et al., 1996, andin higher eukaryotes also
to agred extent for extracdl ular structural proteins (Bork, 199). Apparently the evolution d
these systems has been promoted by the adility to quickly generate new combinations of already
functional buil ding blocks (Dodlittl e & Bork, 1993. It has been olserved that prokaryotes only
contain asmall fradion o multi-domain proteins, whereas in higher eukaryotes (which have
greder neeads for signal transduction, and for large structural proteins) they are more common-
place To give aill ustrative quantification d how common moduar proteins might be, protein
domains were extraded by seaching Pfam against Swisgrot 34 and threegenomes. The results
areshownin Tablelandin Fig. 2. The baderium H. influenzae has very few multi-domain
proteins, nomore than threedomains per chain, while yeast has alarger fradion, upto abou 10
domains per protein. The proteinsin the nematode C. elegans and in Swisgrot contain upto
abou 50 damains. However, most proteins with alarge number of domains contain arrays of the
same domain, and the maximum number of different domains on ore chain is nat significantly
higher in C. elegans than for yeast. Presently, the maximum number of domainsin ore protein
chainisabou 245. These aeimmunaoglobuin and fibronedin type lll domains, and ore protein
kinase domain, in the 26926amino adds long human muscle protein titin (Labeit & Kolmerer,
1995. Titin and aher extremely long protein sequences are not present in Swisgprot. Abou 8%
of the proteinsin the nematode C. elegans and in Swisgrot contain multi ple domains. Since
Pfam does nat yet contain all moduar domains, and may have fail ed to deted a number of them,
it does not seem unreasonabl e to suggest that at least 10% of all higher eukaryotic proteins may
consist of multiple domains.
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Tablel. Thefradion d proteins with multiple domains in Swisgrot and the genomes of the
nematode C. elegans , the yeast S. cerevisiae and the baderium H. influenzae. SeeFig. 2for the
distribution o proteins with a cetain number of domains. *The domain courts are gproximate
(and probably underestimated), sincethey were estimated from matches to Pfam.

Nr. of Proteins Nr. of multi- Max Max different
proteins  matching Pfam domain* proteins domains* per  domains* per
protein protein
Swisgrot 34 59021 28169 (48%) 4838(8%) 60 6
60% of C. elegans 7263 1720 (24%) 558 (8%) 44 5
S cerevisiae 6719 1644 (24%) 360 (5%) 10 4
H. influenzae 1680 358 (21%) 30 (2%) 2 2

Nr. of proteins

Z 7

2

Swissprot 34
C. elegans

S. cerevisiae
H. influenzae

Nr. of domains per protein > 58

Fig. 2. The moduarity of proteinsin Swisgrot 34 and threegenomes, ill ustrated by a histogram
of matches to Pfam domain families. SeeTable 1 for what percentage in ead genome @nsists
of multi-domain proteins.
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METHODS AND MATERIALS

The following servers were used for the database seaches. Prosite: http://expasy.hcuge.ch/-
sprot/scnpsite.html for patterns and http://ulrec3.unl .ch/software/profil escan.html for profil es,
Blocks: http://www.blocks.fhere.org/blocks search.html, Prints: http://www.biochem.ucl.acuk/-
cgi-bin/scordis/fingerPRINT Scan/bin/FPSCAN_FORM?2.cgi, Prodam: http://-
protein.toulouse.inra.fr/prodam/blast_form.html, Pfam: http://www.sanger.ac.uk/Software/-
Pfam/HMM _seach.shtml.

MSRcrunch 2.1(Sonnfemmer & Durbin, 1994 was used to parse the output of Blastp
1.4,which was used to search the ProDom and Swisgprot databases. The schematic diagrams
were generated using the ‘Big Picture’ output functionin MSRcrunch. All matches shown in Fig.
1 were reported as sgnificant, except the two C-terminal PH domains in the Pfam seach.

The C. elegans protein sequences were compil ed in the database Wormpep, release 11, which
contains 7263 umque genes, approximately correspondng to 60% of al C. elegans proteins.
Wormpep is avail able d ftp://ftp.sanger.ac uk/pub/databases/'wormpep. The S. cerevisiae protein
sequences were extraded from Swisgrot and TREMBL (Bairoch & Apweiler, 1997, and the H.
influenzae protein sequences were provided by TIGR at http://www.tigr.org/.

DISCUSSON

The am of this paper wasto (1) examine the aiticd issues suirroundng automatic protein
domain parsing, and (2) to review existing approacdes based on potein damain family databases.
Sincethese databases were aeaed in dfferent ways for somewhat diff erent purposes, it is
inherently difficult to make afair comparison. Instead o attempting alarge-scde cmparison, a
few examples were looked into in detail, in order to provide some insight, hovever aneaotal,
into what sort of results a potential user can exped when using these databases for analyzing a
guery sequence. The main example was chosen because it was a thall enging case with many
well-charaderized danains, na becaise it was known to favor a particular method. It shoud be
stressed that for queries that only contain subtle, short similaritiesto known famili es, the motif
databases may be more sensiti ve than the whole-domain databases. If no match isfoundto
whole-domain databases, or if only apartial match isfound,it is therefore wise to seach a motif
database, such as Blocks or Prints, as the next step. For relatively clea domain hamologies,
however, the overall result isthat protein family databases can be very useful for asgsting the
domain identificaion, and that whole-domain approaches generally give a ¢eaer picture than
motif-based methods. All pre-clustering approaches off er some advantages over single-sequence
seaching.

The fad that upto 10% of al proteins appea to contain multi ple domains indicates that this
issue shoud be mnsidered an important asped of genome analysis, espedally as genome
projeds of higher eukaryotic organisms get underway.
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