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ABSTRACT
Motivation: The expression of a gene can be selectively
inhibited by antisense oligonucleotides (AOs) targeting
the mRNA. However, if the target site in the mRNA is
picked randomly, typically 20% or less of the AOs are
effective inhibitors in vivo. The sequence properties that
make an AO effective are not well understood, thus many
AOs need to be tested to find good inhibitors, which is
time consuming and costly. So far computational models
have been based exclusively on RNA structure prediction
or motif searches while ignoring information from other
aspects of AO design into the model.
Results: We present a computational model for AO
prediction based on a neural network approach using a
broad range of input parameters. Collecting sequence
and efficacy data from AO scanning experiments in the
literature generated a database of 490 AO molecules.
Using a set of derived parameters based on AO sequence
properties we trained a neural network model. The best
model, an ensemble of 10 networks, gave an overall
correlation coefficient of 0.30 (p = 10−8). This model can
predict effective AOs (>50% inhibition of gene expression)
with a success rate of 92%. Using these thresholds the
model predicts on average 12 effective AOs per 1000 base
pairs, making it a stringent yet practical method for AO
prediction.
Availability: A prediction server is available at http://www.
cgb.ki.se/AOpredict
Contact: alistair.chalk@cgb.ki.se

INTRODUCTION
Antisense oligonucleotides (AOs) contain 10–30 nu-
cleotides complementary to a specific sub-sequence of
an mRNA target, which are designed to bind to targets
by standard Watson–Crick base pairing rules. The bound
duplex is a substrate for RNase-H which cleaves the
RNA while leaving the AO intact. The AO inhibits gene
expression in a specific and reversible manner, a process
termed ‘Gene knock-down’. For a comprehensive review
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of the topic see (Crooke, 2000).
There are many laboratory-based strategies for selecting

AOs. One of the most successful is the ‘gene-walk’
approach, in which 15 or more AOs are evaluated for
a gene in order to find a sufficiently effective AO. A
faster method selects mRNA regions that are accessible
to RNase-H cleavage and therefore more likely to be an
effective site for AOs (Hoet al., 1998). Milner et al.
(1997) use an array of 1–17mer oligodeoxynucleotides
to measure heteroduplex formation potential. In general
the experimental approaches are time consuming and
expensive.

AO design is not as simple as synthesizing an AO that is
complementary to the mRNA. Factors such as likelihood
to form hairpin or dimer structures and the accessibility
of the region of mRNA targeted are important factors in
AO efficacy. AOs are generally selected to avoid these
problems, however even for careful designs the success
rate is low, typically 20% or less of AOs are effective
(Myers and Dean, 2000).

There are many examples in the literature of exper-
imental groups attempting to correlate AO sequence
properties with efficacy. A correlation between binding
energy (AO-RNA) and efficacy has been observed (Ho
et al., 1996, 1998). Particular target secondary structures
have been shown to correlate with efficacy (Vickerset al.,
2000; Bacon and Wickstrom, 1991; Laptevet al., 1994).
However the correlations are not consistently detected
across studies. This variation can be due to many factors
including biases in the selection of the AOs, varying
experimental conditions, or, in cases where computational
RNA folding prediction was used, limitations in the
structure prediction methods.

The properties thought most likely to affect AO efficacy
can be divided into classes: (a) binding energy parameters
consisting of RNA–AO binding energy, measures of
accessibility of the RNA to the AO and AO–AO binding
energies (dimerization and hairpin energy); (b) sequence
motifs (these could affect the AO or RNA structure,
RNase-H recognition, half-life); and (c) ‘Other’—cellular
uptake, protein interactions, etc.
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AO selection can be based on either experimental or
theoretical approaches (for a review, see Sczakiel, 2000).
Computational approaches to AO design have so far
focused on prediction of the structure of the target mRNA
and from this deriving the accessibility of target regions
(e.g. Sczakielet al., 1993; Mathewset al., 1999; Patzelet
al., 1999; Waltonet al., 1999; Amarzguiouiet al., 2000;
Song et al., 2000; Scherret al., 2000; Sczakiel, 2000;
Toschi, 2000; Ding and Lawrence, 2001). Perhaps the
most successful method is that of Ding and Lawrence
(2001), using a statistical sampling of secondary structures
to predict accessible regions to find effective AOs for rab-
bit β-globin. In general, methods have not been evaluated
on a broad range of gene targets. Another method is to
look for motifs that occur more often in effective AOs. In a
survey of 42 AOs with high efficacy from selected studies,
20 contain the TCCC motif. 10 sequence motifs have been
identified with a correlation to AO efficacy by Matveeva
et al. (2000). While no proof of mechanism has been re-
ported, possible explanations include cellular uptake, pref-
erential binding to RNase-H, stability of the DNA:RNA
duplex and effect of motifs on AO/target structure.

The challenge is hence to discover general principles
that hold across all AO studies. One approach to discover
such principles is to explore a diverse range of sequence
properties and incorporate the factors that affect AO
efficacy into a computational model for AO design.
This requires both a database of tested AOs, such as
that produced by Giddingset al. (2000), and machine
learning methods of model building. The database should
be based on large AO screening experiments to ensure
comparability. The model must be able to handle the
inherent noise in the system, whilst being able to find the
complex relationship between the various AO properties
and the AO’s efficacy.

A popular machine learning approach that effectively
handles noise and complex relationships in a robust way
is the artificial neural network (NN). For an introduction
to neural networks see Baldi and Brunak (1998) and
Rumelhart et al. (1986). In this paper we present a
data compilation of AOs with experimentally determined
efficacy, and apply a neural network model to predict AO
efficacy.

METHOD
Database
A database was assembled from a selection of AO publi-
cations. Published data was incorporated for which: (a) at
least 6 AOs were tested under the same experimental
conditions, although more than one gene target were
allowed; (b) efficacy of the AOs were presented as a per-
centage of the control level of the target gene expression,
either as RNA or protein. No papers were reported

matching these criteria before 1990, as is consistent
with Giddingset al. (2000). Accompanying this data is
the full RNA sequence and accession number (where
available) together with positional coordinates of the
AOs and the position of the coding sequence. Publication
details, cell line used and the chemistry of the AOs
(unmodified, phosphorothioate, phosphoramidite) were
also recorded in the database. The database consists of
490 oligonucleotides from 20 studies testing AO efficacy
on 16 genes. The essential information in the database
is AO sequence and efficacy expressed as (100%–[% of
control expression])/100; efficacies range between 0 and
1, representing no inhibition and complete inhibition of
gene expression respectively. A summary of the contents
is shown in Table 1. For the cases where the same AO is
tested in two different laboratories, or twice by the same
laboratory the average efficacy is used.

Derived parameters as network input
A set of parameters was derived from the information
contained in the AO sequence collection, including values
for: (1) base composition (Number of A/C/G/T, %GC
content): (2) RNA–AO binding properties (binding en-
ergy, enthalpy, entropy): (3) RNA–AO terminal properties
(3’ binding energy, 5’ binding energy); (4) AO–AO
binding properties (Hairpin energy and quality, Dimer
energy); and (5) 9 of the 10 verified sequence motifs
correlated with efficacy from Matveevaet al. (2000).
Binding energy calculations were completed using ther-
modynamic parameters from Sugimotoet al. (1995). The
calculation of dimer energy was made using an ungapped
alignment with stacking energies taken from Sugimoto
et al. (1996) and a uniform penalty 0.5 for mismatches.
Hairpin energy was calculated using mfold (Walteret al.,
1994). Hairpin quality (the number of hydrogen bonds in
the stem of the stem–loop structure) is calculated using
the Stemloop module of the GCG Package (Devereux
et al., 1984). Parameters describing cellular uptake and
protein interactions were not included, as we have no
explicit way of modeling them.

Efficacy values were first rounded such that all efficacy
values are between [0,1], negative efficacy levels occur
when the target gene is up-regulated with respect to the
level of control. Any biological data set contains noise,
however careful the collection method. We strive to reduce
this noise by removing 93 data points with efficacy less
than 0.05. The reasoning is that there are many factors
that can cause an experiment or part of the experiment to
fail (giving efficacy<0.05), while there are few situations
that can cause high efficacy values to be so noisy. This
‘noise’ is illustrated by observing the correlation between
dH/length and efficacy, which is−0.11 using the full data
set and improves to−0.19 when removing AOs in the
range 0–0.05. It is also interesting to note that for binding
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Table 1. The antisense target genes in AOdb 1.0. Each antisense oligo is annotated with the antisense efficacy and its position in the target gene. The EMBL
accession number is given where known

Description / Swiss-prot/ TREMBL id EMBL accession No AOs Reference

AG2R RAT X62295 33 Hoet al. (1998)
β-globin/adenovirus introns – 11 Hodges and Crooke (1995)
CA11 HUMAN Z74615 21 Laptevet al. (1994)
DUS1 MOUSE X61940 11 Duffet al. (1995)
Hepatitis C virus sequences – 20 Hanecaket al. (1996)
I11R HUMAN M27492 36 Miragliaet al. (1996)
ICA1 HUMAN J03132 4 Bennettet al. (1994)
ICA1 HUMAN J03132 10 Chianget al. (1991)
ICA1 HUMAN J03132 40 Leeet al. (1995)
ICA1 HUMAN M31585 10 Stepkowskiet al. (1994)
KPCA HUMAN X52479 20 Deanet al. (1994)
KRAF HUMAN X03484 34 Moniaet al. (1996)
LEM2 HUMAN M30640 18 Bennettet al. (1994)
LEM2 HUMAN M30640 17 Leeet al. (1995)
MDR1 HUMAN M14758 22 Hoet al. (1996)
MRP1 HUMAN L05628 15 Stewartet al. (1996)
Q13896 M20789 6 Coligeet al. (1993)
MYC HUMAN V00568 13 Bacon and Wickstrom (1991)
TNFA HUMAN M10988 29 Mayneet al. (1999)
TNFA RAT D00475 42 Tuet al. (1998)
TNFB HUMAN M16441 14 Lefebvre d’Hellencourt (1996)
TPA MOUSE J03520 21 Stutzet al. (1997)
VCA1 HUMAN M60335 15 Bennettet al. (1994)
VCA1 HUMAN M60335 28 Leeet al. (1995)

energy (delta G) the correlation coefficient is zero for
the set of AOs with efficacy 0–0.5, while a correlation
coefficient of−0.17 is observed for the AOs with efficacy
in 0.5–1.0. This observation held for a large number of the
23 AO properties explored, with correlations increasing
with removal of low efficacy AOs.

Several strategies were employed to determine the
desirable input parameters for the network. First all
potential parameters were derived. Next two strategies
were used to create input parameter sets: (A) removal of
highly redundant parameters using the following method.
If the correlation between two parameters was above a
defined cutoff the parameter with the lowest correlation
coefficient with efficacy was removed. This procedure is
repeated until no two parameters are correlated above
the defined cutoff. Two sets (denoted b and c) were
generated using 0.8 and 0.65 as cutoff values; and
(B) correlated data set. Only parameters with a high
correlation with efficacy were used. Two sets (denoted d
and e) were generated using 0.1 and 0.15 as cutoffs for the
correlation coefficients (data not shown.). The parameter
combinations are presented in Table 2.

Neural Network
A schematic view of the neural network (NN) model for
predicting AOs is shown in Figure 1. The neural network

source code is based on C code written by Dr Mikael Bo-
den, with additions made by the authors for the simulation
requirements. For the current application, inline training
was employed using a standard sigmoid activation func-
tion with backpropagation. For all simulations the learning
rate was set to 0.2, with momentum= 0.5. The presenta-
tion order of the input vectors remained constant through-
out training. The continuous input nodes of the network
were normalized so that 95% of values for each node were
in the range[0, 1]. Motif presence/absence was encoded
in a binary fashion, 0 denotes no motif, while 1 denotes
one or more occurrences of the motif.

Early stopping and cross validation
For our NN simulations we define three sets of AOs: a
training set, an early stopping set and a test set. The early
stopping set is used in order to decide when to stop the
training, and should not contain AOs similar to those in
the test set. After this point is reached the test set (as yet
unseen by the network) is used to test the accuracy of
the network. An example is shown in Figure 2. We tested
several different early stopping set sizes(20, 40, 60, 80—
data not shown), and selected 40 as the early stopping set
size.

When considering a multitude of cross-validation meth-
ods we asked ourselves the question: ‘How related is the
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Table 2. The reduced parameter input sets were based on selections from set a, which includes all input parameters

Input set
Non-redundant Efficacy-correlation

Parameter a b c d e Correlation

Contains AGAG x x x x x 0.18
Contains CAGT x x x x x −0.18
Contains CCCC x x x x −0.13
Contains GAGT x x x 0.09
Contains GGGA x x x x x 0.26
Contains GTGG x x x x x 0.17
Contains TGGC x x x x 0.05
Contains TTA x x x −0.02
Contains TTT x x x −0.10
Delta G/Oligo length x x x x −0.18
Delta H/Oligo length x x x x x −0.19
Delta S/Oligo length x x −0.14
Dimer energy x x x 0.00
GC content x x 0.11
Hairpin energy x x 0.09
Hairpin length x x −0.09
Hairpin quality x x x x −0.11
Number of A’s in AO x x −0.04
Number of C’s in AO x x x x x 0.23
Number of G’s in AO x x x x x −0.15
Number of T’s in AO x x x −0.06
3′ dG x x x x 0.14
5′ dG x x x 0.03

Two non-redundant sets were created as follows. Set b: potentially redundant parameters correlated to each other at> 0.8 were removed (the parameter with
the highest correlation to efficacy was kept.); and set c: as (b) using 0.65 as a cut-off. Two sets based on correlation between efficacy and individual
parameters were created. Set d: all parameters having individual correlation coefficients to efficacy� 0.1; and set e: as (d) having a correlation� 0.15.

{X1,X2,…,Xn}
{X1,X2,…,Xn}
{X1,X2,…,Xn}

…
…
…
…
…
…

{X1,X2,…,Xn}
{X1,X2,…,Xn}

X1 X2 Xn- n1 X...

RNA sequence

Hidden Layer

Input Layer

Output Layer (Effectiveness)AO sequences

Input vectors derived
 from AO sequence

Neural Network

Fig. 1. Schematic diagram of the method for training and prediction. All possible AOs are generated from the target gene. A vector of derived
parameters is then calculated for each AO. Each vector is used as input to the neural network, resulting in a predicted efficacy.n is defined as
the maximum number of input parameters for the network.

efficacy of AOs on a single gene?’ We collated all pos-
sible pairs of AOs on the same gene, and computed the
correlation between all pairs: pairs that were overlapping,

between 1 and 50 bp apart, and those greater than 50 bp
apart. All pairs in a distance category were combined from
different genes by normalizing the ranks of the efficacies
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Fig. 2. Error profile of a network training run. An example of NN
training shows that optimal performance for training, early stopping,
and test sets may not occur at the same epoch. The learning rate was
0.2 with a momentum of 0.5. The architecture of the network was
14-10-1. BE= Best observed error on the test set. OE= Observed
error on the test set when the early stopping set reaches its best
performance.

so that the scale was independent of the number of AOs.
The results for the normalized rank correlation in each cat-
egory are shown in Table 3. No correlation was found be-
tween AOs greater than 50 bp apart, hence we selected this
cut-off for further testing. This approach allows us to use
more of the data points in the training of the model than the
standard method of cross-validation, where all AOs from
the same gene are disallowed from the training and early
stopping sets. Our method is illustrated in Figure 3.

Wetrained each network until the error on the early stop-
ping set reached minimum. We then use this network to
predict the test example’s efficacy. Network performance
is measured as the Spearman rank correlation for the set of
all pairs of test examples (observed, predicted). In all cases
we averaged the results from 10 networks to improve the
robustness of the results.

RESULTS
We compiled a database of 490 AO molecules from 20
AO screening studies on 16 different genes, see Table 1.
The database, called AOdb, contains all the relevant data
on the AO sequences and their efficacy, as well as the

Table 3. Rank correlation between AOs in AOdb. (a) Where several studies
study the same gene the gene is counted as a single entity (default behavior).
(b) In cases where several groups study the same gene, each study is
calculated separately

All pairs of AOs Examples Correlation P-value

(a)
Overlapping 501 0.132 0.001
Within 50 bp 723 0.079 0.017
Greater than 50 bp apart 4685 0.025 0.018

(b)

Overlapping 405 0.164 0.001
Within 50 bp 592 0.114 0.003
Greater than 50 bp apart 3614 0.039 0.003

AO within 
50 bp 

Early Stopping  
Set 

Discard AO 

Training Set 

Test Set 

AOdb 

Yes 

No 

Fig. 3. Division of database into training, early stopping and test
sets. Creation of the sets is done in 3 steps. (a) One sequence is taken
out from the database as the test set. (b) The remaining AOs are
checked to see if they are within 50 bp of the test AO. (c) A portion
of the remaining AOs is randomly selected for the early stopping set
while all remaining AOs are used as the training set.

corresponding cDNA sequences. AOdb can be used as
a resource for testing models for AO prediction, and is
available on request.

We used those AOs in AOdb with position information
to train NN models for predicting AO efficacy. We
explored a multitude of architectures, using previously
described input parameter sets, and varied the number of
hidden units. The best architecture was observed using
input set (d), with 11 hidden units. The resulting Spearman
rank correlation (observed vs predicted) was 0.30 (p =
10−8).

How much confidence should one have in a given pre-
diction? The distribution of observed efficacies compared
to predicted efficacies (Figure 4) shows that AOs predicted
to have high efficacy are more reliable than low efficacy
predictions. We can quantitate the reliability by looking
at predictions above a defined thresholdX and observe
how many are correctly predicted to have an observed ef-
ficacy above a thresholdY . Using the 10-ensemble net-
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Table 4. Prediction results. Accuracy of predictions using several levels of
stringency and accuracy. Results for using a distance of 50 as a cut-off, input
set d, 11 hidden units

Observed cutoff
0.5 0.8

Prediction cutoff

0.5 40/46 (87%) 19/46 (41%)
0.6 24/26 (92%) 13/26 (50%)
0.7 11/12 (92%) 6/12 (50%)

works gives the following result: Of all AOs predicted
above 0.6, 92% were observed to have an efficacy above
0.5. Of these, 50% were highly effective (having an ob-
served efficacy above 0.8; see Table 4). This is consider-
ably higher than randomly picked AOs from AOdb, which
gives 52% above 0.5 efficacy and 17% above 0.8.

For comparison we tested a more standard method of
cross-validation, involving removing all AOs targeting the
same gene as the test AO from the training and early
stopping sets. The resulting performance was better when
looking at the rank correlation statistic (0.34) while AOs
predicted above 0.8 efficacy showed similar results, while
results for predicting AOs with efficacy above 0.5 were
diminished (data not shown).

How many effective AOs can one expect to predict in
a stretch of DNA? We applied the model to a set of 17
randomly chosen mRNA sequences, with a total length of
55 750 bp. No sequences showed homology to any genes
in AOdb using BLAST (Altschulet al., 1997) with an e-
value cutoff of 10.0. The 327 ensembles generated during
training processed the sequences. AOs of high efficacy
were predicted at the rate of 12 and 51 AOs per 1000 bp,
using a cutoff of 0.6 and 0.5 respectively. This suggests
that the method is useful for AO selection in practice.
Obviously, because the model is tuned to be stringent, it
does not find all effective AOs. In fact, the false negative
rate is high—on AOdb it is over 80%. As AOdb only
contains a sparse sampling of AOs from each gene, the
true false negative rate is unknown, but it is clearly very
high. This is however acceptable if the goal is to find a
practical number of effective AOs in a given gene while
avoiding false positives.

DISCUSSION
While the proposed mechanisms by which AOs inhibit
gene expression are relatively simple, the efficacy of a
given AO is determined by many complex factors of
which we have limited understanding. Antisense studies
have produced small correlations between one parameter
(e.g. RNA structure, motif content, binding energy)
and efficacy. However these correlations are sometimes

conflicting and vary between studies. Our method of
model generation relies on a broad data set from many
studies and target genes to generate a robust system for
predicting effective AOs for any given gene.

We removed AOs within 50 bp when training, based
on observation that such pairs have some correlation
between their efficacies. Yet there are many examples of
overlapping AOs that have strikingly different efficacies.
An answer to this question and greater understanding
of the AO prediction problem requires both a data set
containing many series of overlapping AOs and methods
for extracting explicitly structural information from the
target region. RNA structural information is implicit in
our model, using motif content and energy parameters.
Subsequent studies of RNA folding combined with more
detailed data sets of overlapping AOs have the potential to
greatly increase our understanding of AO design.

The input parameters used in the model contains
many of the motifs found by Matveeva and colleagues
(Matveevaet al., 2000), which is expected due to the
similarity of the data sets used. Perhaps surprising is the
lack of correlation between dimer energy and efficacy.
An explanation for this could be a bias in AOdb—one
would expect the majority of AOs in AOdb to be designed
to avoid high dimer energies. Hairpin energy had the
lowest correlation of any parameter used in the model,
again this lower correlation could relate to a pre-screening
process used by experimentalists when designing AOs.
The highest correlations found were generally energy
(directly as binding energy, indirectly as %GC content)
or motif based. Energy terms can be expected to be good
indicators as binding is a critical part of this antisense
process, and indeed a number of studies in the area focus
on the thermodynamics of the process. The reasons for
motif content being a good predictor are unknown, but
several hypotheses exist (seeIntroduction).

Because of the complexity and multitude of factors
affecting AO efficacy, we were unable to reach a higher
correlation coefficient between predicted and observed
efficacy than 0.30 for all data points. However, most of
this variability is found for AOs with predicted efficacies
in the range 0–0.5, while AOs in the upper range show less
variation (see Figure 3). Therefore the suitable application
of this model is the prediction of highly effective AOs. The
model can predict effective AOs (>50% inhibition of gene
expression) with a success rate of 87% at 51 predicted high
efficacy AOs per 1000 bp. A higher success rate can be
obtained at the cost of a lower prediction rate.

When comparing predicted efficacy values to exper-
imental studies there are several issues that should be
noted. Firstly the model does not predict all AOs of
high efficacy, but a subset of them. This is an issue of
sensitivity versus accuracy. We consider that as long as
a sufficient number of high efficacy AOs are predicted
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Fig. 4. The distribution of the observed efficacy for each sub-section of predictions is shown. The box represents the upper and lower quartiles
with the median enclosed; the lines represent the minimum and maximum observed efficacy. The numbers on top indicate the number of AOs
predicted in each range. This result is for an ensemble model incorporating 10 networks with the [14-11-1] architecture.

per gene then we should be as selective as possible. It is
however difficult to validate this using published studies.
We will often identify AOs that have not been tested,
while known AOs of high efficacy will not necessarily be
picked up by our model. The ideal scenario for testing the
method would be to validate the predicted AOsin vivo
and/orin vitro.

The model often produces a curve with adjacent AOs
having correlated predictions, i.e. it tends to predict
regions of similar efficacy. This correlation is mainly
caused by regions of similar composition and by motifs
being shared by overlapping AOs.

Our model can be used in combination with other
methods to strengthen our predictions. A specificity screen
to check for perfect or near-perfect matches to other target
genes helps us avoid non-specific AOs. A more explicit
incorporation of (predicted) accessible sites in the target
RNA should improve accuracy if they are sufficiently
reliable. A web server interface to the model is available
at http://www.cgb.ki.se/AOpredict.
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