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ABSTRACT

Motivation: When predicting sequence features like trans-
membrane topology, signal peptides, coil-coil structures,
protein secondary structure or genes, extra support can be
gained from homologs.

Results: We present here a general hidden Markov model
(HMM) decoding algorithm that combines probabilities for
sequence features of homologs by considering the average
of the posterior label probability of each position in a global
sequence alignment. The algorithm is an extension of the
previously described ‘optimal accuracy’ decoder, allowing
homology information to be used. It was benchmarked using
an HMM for transmembrane topology and signal peptide
prediction, Phobius. We found that the performance was
substantially increased when incorporating information from
homologs.

Availability: A prediction server for transmembrane topology
and signal peptides that uses the algorithm is available at
http://phobius.cgb.ki.se/poly.html. An implementation of the
algorithm is available on request from the authors.

Contact: Erik.Sonnhammer@cgb.ki.se

1 INTRODUCTION

decoding algorithm that, rather than decoding a profile,
calculates the probabilities for sequence features from each
homolog individually before taking the alignment into
account.

1.1 Decoding a single sequence

An HMM can be used in two conceptually different ways: as
in the case of detecting sequence homology, where one asks
whether a query sequence fits a model, or as in the case of
the other applications mentioned above, where one is inter-
ested in determining an optimal path through a model. In the
former case, the score given by the forward algorithm, i.e.
the sum of probabilities of all paths through the model, is
considered the most accurate measure. In this study, we will
mainly discuss the latter case, where the path through the
model is of interest. For many such applications the Viterbi
algorithm, which finds the most probable path through the
model, is used. However, a drawback is that there might
be many similar paths through the model with probabilit-
ies that add up to a higher probability than the single most
probable path.

A way to recognize similar paths is to assign a common
label to the states that represent the same kind of sequence
feature (Krogh, 1994). For example when predicting protein

Hidden Markov models (HMMs) are successfully beingsecondary structure, states representihglical amino acids
used in many different areas within bioinformatics. Thecan be assigned one label, states that represent amino acids in
applications include transmembrane topology predictorgs-strands a second label and states representing amino acids
(Sonnhammeet al., 1998; Tusnady and Simon, 1998), signal in loops a third label. In this setting, one could focus on the
peptide predictors (Nielsen and Krogh, 1998), coil-coil pro-labeling a sequence is predicted to have, rather than the exact
tein predictors (Delorenzi and Speed, 2002), gene predictorstate path. We can determine the most probable labeling of
(Krogh et al., 1994b; Burge and Karlin, 1997), second- a sequence, i.e. the highest sum of probabilities of all paths
ary structure predictors (Bystrofft al., 2000), sequence having the same way to label a sequence, with the 1-best
alignment programs (Needleman and Wunsch, 1970) andlgorithm (Schwartz and Chow, 1990).

tools for sequence homology detection (Kragjlal., 1994a; Rather than looking for the overall and most likely labeling
Eddy, 1998). In many of the applications, it makes sens®f a sequence, one is often interested in maximizing the num-
to take the homologs to the query sequence into consideer of positions that are correctly predicted. The posterior
eration, since sequence features are likely to be sharddbel probability (PLP) is the probability of a label at a certain
between homologs. We present here a general HMMosition in the sequence, given the sequence and the model.
In other words, it is the normalized sum of probabilities of
all paths passing through the states with the label at a certain
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position of the sequence. To maximize the expected numguery sequence with an unsupervised Baum—Welch proced-
ber of correct labels corresponds to selecting the label witlure before making the final prediction with a Viterbi decoder.
highest PLP for each symbol in the sequence. This kind ofWhen homologs are given, the reestimation is done on both
prediction, however, is not guaranteed to be consistent witthe query sequence and the homologs, and subsequently, the
the HMM itself. For example, in the case of transmembranenew HMM is used for decoding the query sequence alone. In
topology prediction, results could be obtained where loopghis setting there is no need for alignments, but it suffers from
being predicted on the translocated side of the membrangme problem that the model may give inconsistent predictions
are followed by a loop on the side that is not translocatedor the homologous sequences, because predictions are done
without the presence of an interconnecting transmembran@dependently.
segment. Such a prediction violates the ‘grammar’ of the In this work we describe a way to incorporate homology
model. information by superimposing the PLPs for homologs into
Holmes and Durbin (1998) presented an algorithm for find-an average PLP matrix, which is used as input for the optimal
ing a path that optimizes the expected accuracy, which couldccuracy algorithm. The main advantage of our method is
with an extension of their definition, be viewed as the sum ofthat it applies the full probability model of the HMM to each
the PLPs of a labeling. They call this the optimal accuracyincluded sequence individually before the contributing signals
algorithm. Here we describe a similar algorithm, which findsare merged. Thus, it recognizes the inherent grammar and
the maximal expected accuracy labeling consistent with théength modeling of the HMM.
grammar of the HMM.

1.2 Handling homologs 2 ALGORITHM

In many applications it is reasonable to assume that the prex1 Optimal accuracy decoding
diction accuracy is increased by taking the information fromin order to describe our amendment to the optimal accuracy
the homologs into account, since the homologs often have th&lgorithm, we start by describing the algorithm in detail. The
same features as the query sequence. algorithm comprises two steps: first, the PLPs of the query
Some of the previously published decoding algorithms thasequence is calculated and second, based upon the PLPs, the
take homologs into account do this by predicting featureoptimal accuracy path is determined.
for sequence profiles rather than individual sequences. The Consider an HMM withV + 1 states with names from O to
Viterbi or 1-best algorithm is used to calculate a path throughV, where the state O represents the start and end state of the
the model common to all sequences in the profile. An ‘emisHMM, i.e. the set of states s = {0,..., N}. The labelr of a
sion score’ of a state is calculated as a function of the vectostatei is given by the mapping (i) = A and the set of states
of individual amino acid emission probabilities and the vectorthat have label is calledo;, C o. Thereforej € o), <
of relative amino acid frequencies at the position of interestA (i) = A. Let the emission probabilities of the states be given
in the sequence profile. One method to calculate such a scoby e = (e;x), wheree;y = P(x; = k|n; = i), andx, and
would be to use the scalar product to combine the two vectors, are the stochastic variables representing the state and the
(Martelli et al., 2002; S6ding, 2005). An alternative method, emitted symbol at positionin the sequence. The transition
that keeps the score as a probability, is to use the product @robabilities are given bg = {g;j}, wherea; = P (41 =
the emission probabilities raised to the power of the corresj|z; = i). Usually, some of the transition probabilities are
ponding frequencies (Viklund and Elofsson, 2004; Edgar andet to zero in advance to avoid ‘illegal’ transitions. The non-
Sjoélander, 2004). zero transition probabilities define the underlying graph of the
A problem with these approaches, when dealing withmodel. This graph structure restricts the possible labelings of
sequence feature prediction, is that gaps are handled eitharsequence, which we refer to as the grammar.
as a symbol of its own or by assigning gap emission probab- For a query sequence= (x;) fortr = 1,...,T we want
ilities proportional to the emission probabilities of the otherto predict a sequence of labdls= (I;). For any predicted
symbols in the same alignment column. This is a disadvanttabeling, the expected number of correctly predicted labels
age since the model length may be confused by the fact thas the sum of the posterior probabilities for those labels. The
a sequence profile contains gaps and inserts. The fact thaim of the optimal accuracy decoding is to find the labeling
the length of an alignment usually grows with the nhumberthat maximizes this number. However, since the model has a
of included sequences has to be compensated for, usually tilt-in grammar (defined by the non-zero transition prob-
ignoring positions in the profile or columns in the alignmentabilities), it is not optimal to pick the highest probability
where the query sequence contains a gap. This implies th&bel at each position in the sequence but rather to choose the
the signal from the length model of the other sequences willabeling with the highest accuracy that is consistent with the
be partly ignored. grammar.
A different approach is taken by Tusnady and Simon Given the definitions above, we can now find a way to cal-
(1998), who reestimate the parameters in the HMM on theculate the PLPs aof. We begin by calculating the posterior
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state probability of stateat positions in the sequence: the expected accuracy of an alignment as the sum of the
Plm —ilx.ae posterior probabilities for all aligned positions.
(m = ilx,8,8) We define the transition possibilities= (d;)) as

_ P(T[[ =11X|a1e)

P(x|a,e) 0, ifa;=0
_POn=ixi...u[a P = ix.. . xrla W01, ifay > o0. ")
B P(x|a,e)
_ Jidbig (1) Now we can use a Viterbi inspired recursion to calculate the
" P(x|a,e)’ optimal accuracyA;,, to a positions in the sequence for
Here the forward variabled; ;, is given by the recursion state/.
dio, t=0 o= 0, if j=0 ®)
fix =€ix 2 jco fia—1aji, t=1,...,T 2 W= oo, ifj#£0

8,‘0 Zjea fj,Tajo, t=T+1

and the backward variables,;, by ) .
Ajt = gAagG) + f;fl?;XA,',,_ldij, t=1,...,T+1. (9)

bi, = 40 t=T 3)  Inanalogy with the Viterbi algorithm we can use backpoint-
Zjea aijejxbjt+1, t=T-1,..,1 ers to track the path through ending inAg 7 rendering the
dio Zjeg aojejx,bj1, t=0. optimal accuracy labeling. Note that degeneracy in the best

path between states with the same label is of no consequence
for the resulting labeling.
N {O, ifi £ j A related algorithm to the optimal accuracy decoder, the

ij —

Here we have used the Kroneckef;sdefined as

‘posterior-Viterbi’ decoder and its application to prediction of

Loiti=j. topology ofg-barrel proteins is described in a recent paper by
We know that Fariselliet al. (2005). The main algorithmic difference in their
approach lies in that they optimize the product of the PLPs,
P(xja,€) = for+1=boo. 4 instead of the sum as we have done according to Equation (6).

We can now calculate the PLP for the lahalt positions as . .
2.2 Homolog handling extension

& =Pl =1x,a€) = Z P (m =ilX,a,€) How can we incorporate information from homologs to the
i€o, query sequence into the optimal accuracy algorithm? Our
fitbis solution is to calculate the PLPs for each sequence indi-
= Z fori1 () vidually, then take the average PLP for each label at each
i€op = position of the alignment, and thereafter optimize the expected

Given these PLPs, we now want to find an optimal pathaccuracy based on this average PLP.

through the model. However, we should do so under the con- Let us say that we have an alignment of the sequences
straint that the path should be a possible path through the?,...,x", where the mapping between positions in the ori-
model. Since we already applied the transition probabilitiegyinal sequence (the absolute positions), .., ", and the
when calculating the PLPs it makes no sense to apply thpositions in the alignment (the relative positions) are given

full Markov model once again, when searching the best pathby the functionsk (1), ..., k™ (+M). We have also assigned
Instead, we have to rely on the graph structure (or grammarjequence weightsy?l,...,w" to the sequences. Let our
of the HMM. query sequence be. We first calculate the PLPg”" of each

Our goal is to maximize the expected accuracy of a labelingequencg” by using Equation (5). We define the gapped PLP
of a sequence, i.e. the expected number of correctly predictefdr x™ with respect to the alignment as
labels, as

T+1 m gy, i3t T =k"()
= : 10
A() = E 8l (6) 8.t Vo, it diT =k, (10)
t=0

This is an extension of the definition for pairwise sequenceso if there is a gap in the sequence at positipthe gapped
alignments made by Holmes and Durbin (1998). They defind’LP is set to O for all labels at that position. The average PLP
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for the alignment can be calculated as Tablel. Correcttransmembrane topology predictions measured on sets with
(TM) and without (non-TM) transmembrane domains by different HMM

M m~m decoding algorithms with and without homologs numbered (1)—(8) according
Zm:l w gk,r

o to the text
g;’:,r = M o (11)
ZA Zm:l w g)\yl—
. No.  Algorithm Homologs TM (%) Non-TM (%)
We can reformulate Equation (9) as
R o N 1 1-best No 67.8* 97.0
Aji = 8a(yiy T MaxXAi-1dj (12) o Yes 66.1*  97.8"
3 Viterbi No 59.2* 95.7
. . - . . 4 Yes 57.9* 96.7
anq, asin thg single sequence case, it is possible to find t@e Parameter re-estimation N 68.2¢ 97 2
optimal labeling by the use of backpointers. 6 Yes 68.8* 97.8%*
7 Optimal accuracy No 67.1* 95.3*
8 Yes 74.7 97.1

3 RESULTS

In Or(_jer to measure Only the performance of the deCOdmg\ prediction was counted as correct when all the transmembrane helices overlap the
algorithm, we chose to use a pretrained HMM, and not toannotated transmembrane helices of the protein over a stretch of at least five residues and
retrain the HMM during the comparison. We used a recenﬂyhe location of the loops were correct. For the proteins not containing transmembrane
. N .. . . helices a correct transmembrane topology prediction corresponds to a prediction that

p_UbIIShed HMM' Phobius (Kam al" 20(_)4)' WhICh_IS a Com_' does not contain any transmembrane helices.
bined transmembrane topology and signal peptide prediCtoFigures where the differences to the optimal accuracy decoding with homologs was
The combination of these featuresis Iogical as transmembraﬁ;'@nificant at 99% confidence level were marked with *if they were lower than optimal
. . . . ._accuracy decoding and with **if they were higher.
helices often get falsely predicted as signal peptides and vice
versa, since both features contain a long hydrophobic stretch.

We have made use of the different cross-validation modelgable 2. Errors in signal peptide prediction on sets with (SP) and without
and their corresponding test data from the Phobius 10-fol on-SP) signal peptide by different HMM decoding algorithms numbered

. . . 1)—(8) according to the text

cross validation to measure performance of different HMM

decoding algorithms. The default decoder of Phobius is the

1-best algorithm (without homologs). No. Algorithm Homologs SP (%) Non-SP (%)o®
We compared the 1-best algorithm without (1) and with (2)

homologs, a Viterbi decoder without (3) and with (4) homo-1  1-best No 348 3.30 0.901
logs, a decoder preceded by parameter reestimation baseddn . Yes 3557 067 0.677

. X Viterbi No 5.98* 2.77 0.887
the query sequence without (5) and with (6) homologs, an Yes 403%  0.60% 0.641
optimal accuracy decoding without (7) and with (8) homologs.s  parameter re-estimation No 356 3.22 0.902
The 1-best decoder and the Viterbi decoder with informatiors Yes 439 270 0.904
from homologs that we used are described by (Viklund and ~ Optimal accuracy No 273 525 0.872

Elofsson, 2004). The decoder preceded by parameter reestif- Yes 341 232 0.921

ation was inspired by Tusnady and Simon (1998), although, . . . .
. . K . e position of cleavage site was not taken in account.
we used the 1-best algorlthm instead of a Viterbi aIgomhmaThe Matthews correlation coefficient is defined as = (NpNm — NipNm)/

for the final prediction since it gave better performance (data/®i + Nip) Nip + Nin) (Nin + Nip) (Nin + Nin), WhereNy, 7)) denotes the number
not ShOWI’]) of {true,false {positive,negativesignal peptide predictions.

i - i Figures where the differences to the optimal accuracy decoding with homologs was
The measurements of the decoder’s ability to predict transsignificant at 99% confidence level were marked with *if they were higher than optimal

membrane topology is shown in Table 1 and signal peptidesccuracy decoding and a **if they were lower.
in Table 2.
We can conclude that optimal accuracy decoding makes
significantly better predictions than the other methods whetthe other methods, thus indicating that it is the most suit-
predicting transmembrane topology of the test set containable for the task. We can also see that the 1-best and Viterbi
ing transmembrane proteins. When considering the sequencdecoders are not helped by information from homologs.
with erroneous predictions by the optimal accuracy decoding Signal peptide cleavage site predictions made by the align-
with homologs, we noted that their alignments contain fewement based methods, i.e. optimal accuracy with homologs
sequences (on averages0) compared with those correctly (51% correct), 1-best with homologs (35% correct) and
predicted (on average80). However the parameter reestim- Viterbi with homologs (33% correct) show severely worse res-
ation algorithm seems to be the better choice for weeding ouilts than the other algorithms (all of which have just0%
soluble proteins. correct predictions). This is probably because it is harder to
When predicting signal peptides, the optimal accuracypin-point an exact location of a feature when the prediction is
decoder with homologs shows better Matthew correlation thabased on an average over an alignment.
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4 DISCUSSION rather than single amino acid features. In our benchmark, we

We have described a new way to incorporate information fronfioticed a decrease in accuracy of predictions of the exact loc-
homologs when decoding HMMs. For the Phobius model, thétion of signal peptide cleavage sites when using homologs in
decoder increases the transmembrane topology prediction pdfte optimal accuracy decoder compared with those notinclud-
formance as well as the ability to predict signal peptides. It idnd them. This is easy to understand as the information of an
reasonable to expect performance increases in other applic*act position of a feature spanning a single amino acid will be
tion areas as well. A strength of the algorithm is that it enable§liluted through amultiple sequence alignment. Itcould as well
the signals from feature lengths of each individual homolod’e questioned if the exact location of a feature is conserved
to have an impact on the prediction. The method works welfhroughout evolution.
with HMMs trained for single sequence usage. A commonly stressed fact is that the training data of a
Our evaluation shows that even though the best decodefgachine learning method are of crucial importance. Without
are helped by information from homologs, not all show anwanting to diminish that fact, we would like to add that in
increase in performance. It makes a difference how homologH'€ case of HMMs it is of high importance to choose a good
are incorporated in the decoding process. Other approach@schitecture of the HMM, a good training methods and as we
for incorporating homologs in feature prediction with HMMs have shown here, a good methodology to decode sequences.
(Viklund and Elofsson, 2004), use homologs in their train-
ing progedurg gnd not just in the decoding. This is probably5 MATERIALS AND METHODS
the major origin of the performance increase they report.
It is likely that Phobius as well would gain substantially 5.1 Test sets
in performance from incorporating homologs in the trainingFor our measurements of prediction accuracy we used the four
procedure. datasets described in Kétlal. (2004). In brief, they consist of
Here we have tried to isolate the effect of choice of decodtwo sets of transmembrane proteins with known topology with
ing procedure by using the same HMM and test data for al(45 sequences) and without (247 sequences) signal peptides,
decoding methods. However, the choice of architecture andnd two sets of soluble proteins with (1275 sequences) and
parameter estimation procedure could have an effect on theithout (1087 sequences) signal peptides. We merged these
performance of the decoder. For instance, if the architecsets in two different ways for testing accuracy of transmem-
ture contains structures where many paths result in the sanieane topology prediction and signal peptides separately. We
labeling (as Phobius does) the Viterbi algorithm is less suitconsequently obtained four different test sets:
able. One could also argue that if the Viterbitraining procedure
had been used when estimating the parameters of Phobius wes 292 sequences from transmembrane proteins in a
would have obtained better results for the Viterbi decoder. ‘TM’ set.
However, if we were to retrain the model for each decoding , 2362 sequences from soluble proteins in a ‘non-TM’ set.
principle it would be even harder to tell if a difference in per-
formance stems from training or from the choice of decoding . _ T
algorithm. Other benchmarks (Viklund and Elofsson, 2004; * 1334 sequences without signal peptide in a ‘non-SP’ set.
Chenretal., 2002) have found anincrease in performance when o o ) o
using the parameter reestimation procedure with homologghe_ orl_g|nal division into different cross-validation sets was
as opposed to using it without homologs for the HMMTOP Maintained.
(Tusnady and Simon, 1998) architecture. We do not find .
such a difference for the Phobius architecture. This could bé‘z Hpmology sear ches and multiple sequence
because the Phobius model has more free parameters than the ~ @ignments
HMMTOP model. For each sequence in the test sets, we searched for homo-
Our method is dependent on a high quality global mul-logs in Uniprot/TrEMBL with blast, using af'-value cutoff
tiple sequence alignment. At first glance one might think thabf 10-°. To reduce the number of fragments as well, we
one would be better-off using a local alignment, instead of a@ncluded only hits covering at least 75% of the length of
global. After all, the features we are looking for are local inthe query sequence and 75% of the subject sequence. We
their nature. However, global alignment programs generallye-retrieved the full length sequences of the hits and there-
perform better than local methods, except in the presence d@lfter aligned them with a global multiple sequence alignment
large N-terminal/C-terminal extensions or large internal insermethod, Kalign (T. Lassman and E.L. Sonnhammer, Submit-
tions (Thompsoret al., 1999; Lassmann and Sonnhammer,ted for publication). Sequence weighting was done according
2002), which we hopefully remove with our requirements onto Henikoff and Durbin (1998). However, since the method
the lengths of blast hits. does not account for gaps, we made some changes: gaps were
The approach of using a multiple sequence alignment isgnored during the weight calculations, and the weights were
better for predicting features spanning over many amino aciddivided by the sequence length.

e 1320 sequences with signal peptides in a ‘'SP’ set.
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