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Protein families typically embody a range of related functions and may thus be decomposed into subfamilies with, for
example, distinct substrate specificities. Detection of functionally divergent subfamilies is possible by methods for rec-
ognizing branches of adaptive evolution in a gene tree. As the number of genome sequences is growing rapidly, it is highly
desirable to automatically detect subfamily function divergence.

To this end, we here introduce a method for large-scale prediction of function divergence within protein families. It is
called the alpha shift measure (ASM) as it is based on detecting a shift in the shape parameter (alpha [a]) of the substitution
rate gamma distribution. Four different methods for estimating awere investigated.We benchmarked the accuracy of ASM
using function annotation from Enzyme Commission numbers within Pfam protein families divided into subfamilies by the
automatic tree-based method BETE.

In a test using 563 subfamily pairs in 162 families, ASM outperformed functional site-based methods using rate or
conservation shifting (rate shift measure [RSM] and conservation shift measure [CSM]). The best results were obtained
using the ‘‘GZ-Gamma’’ method for estimating a. By combining ASM with RSM and CSM using linear discriminant
analysis, the prediction accuracy was further improved.

Introduction

One of the great challenges in the postgenomic era is
to understand the evolution of functional properties among
members of the same protein family. New functions can be
created either by domain rearrangements or by substituting
functionally important residues. Without detailed knowl-
edge of the protein structure and the functional role of
each site, it is difficult to distinguish neutral substitutions
from ones that modify the function substantially. Yet, pre-
dicting a shift in function from sequence data alone would
be very useful for large-scale protein annotation. With the
wealth of sequence data available today, many protein
families are large enough for a statistical analysis of sub-
stitution patterns indicative of function shift.

The traditional approach to detect function shift, or
adaptive evolution, in sequences is to use the ratio of non-
synonymous to synonymous substitutions (Ka/Ks, also
called dN/dS) (Yang 1998) given a protein-coding DNA
sequence alignment. However, this approach is limited
for very closely related species as silent sites quickly lose
signal as they become saturated with substitutions over
long evolutionary timescales (Smith JM and Smith NH
1996; Yang and Nielsen 2000).

This problem can be ameliorated by using protein
multiple sequence alignments to detect substitution rate
variations (Lichtarge et al. 1996; Armon et al. 2001; Blouin
et al. 2003; Landau et al. 2005). This has been approached
using a probabilistic frameworks on inferred phylogenetic
trees (Hannenhalli and Russell 2000; Knudsen andMiyamoto
2001; Truong and Ikura 2002; Gribaldo et al. 2003; Knudsen
et al. 2003; Kalinina et al. 2004; Soyer and Goldstein 2004).
In a recent analysis of protein enzyme families (Abhiman
andSonnhammer2005b),2suchmethodswerebenchmarked

in a large-scale test and were shown to be useful not only
to infer sites responsible for functional specificity but also
for predicting function shift between subfamilies in a pro-
tein family.

Functional constraints also affect the rate of amino acid
substitutions inproteinsequences. It canbehypothesized that
a particular function is associatedwith a certain characteristic
distributionofsubstitution ratesand thata functionshift indu-
ces a change in thisdistribution.Substitution rates areusually
modeled by a gamma distribution (Uzzell and Corbin 1971;
Golding 1983; Holmquist et al. 1983; Tamura andNei 1993;
Yang 1993; Gu et al. 1995) that is characterized by a shape
parameter alpha (a). This parameter can be estimated from
a given sequence alignment with several different methods
that can be broadly classified as parsimony-based and max-
imum likelihood (ML)–based methods. The parsimony-
based methods (Uzzell and Corbin 1971; Holmquist et al.
1983; Tamura and Nei 1993; Sullivan et al. 1995; Tourasse
andGouy1997)using the frameworkofFitch (1971) are sim-
ple and fast but tend tooverestimatea. Theminimumnumber
of changes at each site estimated by parsimony will follow
aPoissondistribution if thesubstitutionrate isconstantacross
sites or a negative binomial distribution if the rates across
sites are gamma distributed. The method of Moments tends
to underestimate both the mean and variance of number of
changes at each site and in turn overestimate a. The method
of Sullivan et al. (1995) uses numerical maximization of
a log-likelihood function to estimate a and has also been
shown to overestimate a. Both of these methods do not ac-
count for unequal branch lengths in the tree.

Approaches that use a combination of likelihood and
parsimony methods have also been proposed (Yang and
Kumar 1996; Gu and Zhang 1997; Zhang and Gu 1998)
to overcome some of the limitations. Yang and Kumar
(1996) use the number of differences instead of the number
of changes at each site to reduce the overestimation of
a. Unequal branch lengths in the tree are not supported,
but all branch lengths are set to the average length. The
method of Gu and Zhang (1997) estimates the number
of substitutions at each site using a likelihood approach
that fully takes branch lengths into account and corrects
for multiple substitutions. The parameter a is estimated
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using an ML approach, which uses the expected number
of substitutions inferred at each site. This method has
been shown to give lower estimates of a compared with
the above-mentioned methods but still gives higher esti-
mates than the ML method of Yang. The ML methods
(Yang 1994; Gu et al. 1995; Kelly and Rice 1996) using
the framework of Felsenstein (Felsenstein 1981) are unbi-
ased but take huge amount of computational time.

The a parameter is inversely related to the rate varia-
tion among sites. A small a indicates a high degree of rate
variation where most sites are highly conserved, whereas
a large a indicates a low degree of rate variation where most
sites evolve around the neutral rate (Yang 1996). In general,
the mean substitution rate of a protein is inversely correlated
to the rate variation (Zhang and Gu 1998), that is, slowly
evolving proteins aremore likely to have a high rate variation
amongsites.Thisproperty iscapturedwellbytheaparameter.

Estimating the a parameter for all branches in a gene
tree has been used to estimate the likelihood at each branch
that adaptive evolution has taken place (Siltberg and Lib-
erles 2002). It can also be used to estimate function shift
between 2 subfamilies. If the combined tree have a much
larger a value than the individual subfamilies, this indicates
a shift in function between them (Gu 1999; Gaucher et al.
2001; Gu 2001; Siltberg and Liberles 2002) (see fig. 1). The
rationale for this is that the lower a parameters of the sub-
families indicate that they have diversified to become more
specific than the ancestral family (e.g., substrate specificity
of enzymes). This can be considered a nonstationary cova-
rion process (i.e., variable positions under one clade are not
the same as those of another clade) (Galtier 2001; Pupko
and Galtier 2002) and is similar to the Type I and Type
II functional divergence (Gu 1999) at the subfamily level
instead of at individual alignment positions.

In the study presented here, we introduce and evaluate
a novel measure for the function divergence between
protein subfamilies, the alpha shift measure (ASM), which
is based on the substitution rate distribution shape param-
eter a. We demonstrate the ability of the ASM to correctly
predict cases of function divergence in a large-scale test of
discriminating between protein subfamilies with same
and different functions. Finally, we combine the ASM with

previously proposed functional site-based measures to
further increase the prediction accuracy.

Methods and Data
Protein Subfamilies with Same and Different Functions

Protein domain family multiple sequence alignments
were downloaded from the Pfam database version 12
(Bateman et al. 2004). The full sequence alignments of
the Pfam families were divided into subfamilies using
the software BETE version 1.1 (Sjolander 1998) that uses
relative entropy as a distance metric for phylogenetic tree
estimation and cuts the tree into subfamilies based on an
encoding cost function. Each subfamily pair was then
assigned to 1 of 2 possible function categories based
on the Enzyme Commission (EC) number annotation
(Bairoch 2000) of the constituent sequences: one category
containing subfamily pairs where all sequences in both
the subfamilies were annotated with the same EC number
(Same_EC) and a second category where the annotations
were the same within the subfamilies but different between
them (Diff_EC) (see fig. 2). The data set consisted of 563
subfamily pairs, with 129 pairs assigned to the Diff_EC
category (corresponding to 35 Pfam families) and 434 pairs
assigned to the Same_EC category (corresponding to 127
Pfam families). In total, 514 subfamilies from 162 protein
families were used. To exclude proteins with incomplete
annotation, we applied 2 additional conditions: all the pro-
teins in a subfamily should have EC number annotation
at all 4 levels and also have the same domain architecture.
The process of data generation has been described in more
detail elsewhere (Abhiman and Sonnhammer 2005b). The
data set here is smaller than in the previous study because
subfamily pairs that failed to be processed by at least one
of the a estimation methods were discarded. The subfamily
pairs were sorted based on the size of smaller subfamily
in each category and divided into 3 equal parts. The top
quantile (large subfamily pairs) was used to analyze the
effect of subfamily size on the predictive performance.

Modification of Alignments and Generation
of Tree Topologies

As the methods we used for estimating the substitution
rate parameter a do not allow gaps in the protein sequence
alignments, we modified the alignments obtained from
Pfam. In a first step, we removed whole sequences if a

FIG. 1.—A schematic gene tree showing the division of a protein fam-
ily into subfamilies. For the ASM calculation, the parameter a was esti-
mated at the ancestral nodes for subfamily 1 (a1) and subfamily 2 (a2)
and at the node that joins them (a3). Function shift between the 2 subfa-
milies can be inferred if a3 is much larger than a1 and a2 (See also Siltberg
and Liberles 2002).

FIG. 2.—Schematic showing the assignment of subfamily pairs into
the classes ‘‘different function’’ (Diff_EC) or ‘‘same function’’ (Same_EC)
based on EC numbers.
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sequence contained more than 50% gaps. For the remain-
ing sequences, we removed all the columns of an align-
ment that contained any gaps. The tree topologies, that
were required by all 4 methods, were estimated with the
neighbor-joining method available in the ClustalW soft-
ware (Thompson et al. 1994). Nested and shuffled subtree
topologies were generated by custom written scripts to an-
alyze the effect of wrong tree topologies.

Estimation of a Parameter and ASM

For each protein subfamily pair, we estimated the
substitution rate parameter a for both subfamilies as well
as for the combined alignment of the 2 subfamilies, result-
ing in 3 individual substitution rate parameter values a1,
a2, and a3 (fig. 1). We employed 4 different methods to
estimate the substitution rate parameter a: the ML-based
method ‘‘GZ-Gamma’’ (G) (Gu and Zhang 1997) and 3
parsimony-based methods, namely the method of Mo-
ments (M) (Tamura and Nei 1993), the method of Sullivan
(S) (Sullivan et al. 1995), and the method by Yang (Y)
(Yang and Kumar 1996), all 3 implemented in the ‘‘pamp’’
program of the PAML 3.13 package (Yang 1997). The ASM
was then computed for each protein subfamily pair as:

ASM5 a3� a11 a2
2

� �

A number of other equations for expressing the re-
lation between a3 and {a1; a2} were also explored, for
example, taking the ratio instead of the difference. We
chose the equation above because it performed slightly
better than other variants and because a difference is ex-
pected to behave more stably than a ratio. In some cases
when the estimation of a failed for a certain method and
the ASM could not be calculated, we excluded the sub-
family pair from any further analysis. Typical reasons
for such failures were small or short subfamilies containing
less than 4 sequences or too few alignment positions to
make meaningful a estimates.

Rate Shift Measure and Conservation Shift Measure

Amino acid sites that are evolving with different evo-
lutionary rates in 2 subfamilies of the same protein family
can be described as rate shifting sites (RSS). We identified
the RSS for all protein families and their corresponding
subfamily pairs with the LRT software (Knudsen and
Miyamoto 2001). Sites showing different conservation pat-
terns between 2 subfamilies of the same protein family—
conserved within both subfamilies but with 2 different amino
acids—can be described as conservation shifting sites
(CSS). We identified these CSS in a way described else-
where (Abhiman and Sonnhammer 2005b). The rate shift
measure (RSM) and conservation shift measure (CSM)
were then determined by normalizing the RSS and CSS
to the alignment lengths.

Evaluation of Predictions

In the presented study, we evaluated the ability of
ASM to predict the function divergence of protein sub-

families derived from the same protein family and com-
pared it with previously proposed methods, the RSM and
the CSM. For this, we calculated the ASM for each
subfamily pair and its corresponding combined alignment.
By taking the knowledge about the subfamily functions
into account, we subdivided the ASM values into 2 classes,
one with conserved and one with diverged function (as
described in detail above). For a given ASM threshold val-
ue, we then counted the number of protein subfamily pairs
that were predicted to fall into the category of the different
function (ASM . threshold) and at the same time were an-
notated through their EC numbers to fall into the different
function category (true positives). In the same way, we
counted the number of true negative protein subfamily pairs
(TN, same function according to ASM and EC numbers),
false positives (FP, same function according to ASM but
different function according to EC number), and false
negatives (FN, different function according to ASM but
same function according to EC number). We applied the
same procedure to RSM and CSM values and calculated
sensitivity and specificity values according to

Sensitivity5
TP

TP1 FN

Specificity5
TN

TN1 FP

Combination of Methods

We also tested whether the predictions obtained from
the ASM, RSM, and CSM can be enhanced by integrating
all these measures into one and compared the combined
measure with the individual ones. This combined measure
was obtained by a linear combination of the 3 measures,
where the influence of each measure was determined by
a linear discriminant analysis (LDA) approach. For this,
we calculated the specificities and sensitivities from the
individual and combined measures and evaluated their
accuracies with a cross-validation procedure: 1) the data
set containing all protein subfamily pairs was randomly
split up into 2 equally large parts (test and training sets);
2) the classification functions were determined for the
training set by LDA; and 3) sensitivities and specificities
were calculated for the test set. This whole procedure
was repeated a thousand times.

Results

We tested the ASM’s ability to predict a function
shift between 2 protein subfamilies by applying it to the
large-scale benchmark based on 162 protein families in
Pfam. Before describing this test, however, we first evaluate
and characterize the 4 methods for estimating a.

Global Comparison of Substitution Rate Distribution
Parameter Values

For all 514 subfamilies, we calculated the substitu-
tion rate distribution parameter a using the 4 methods
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GZ-Gamma (G), Yang (Y), Sullivan (S), andMoments (M).
By comparing the median a values obtained by the different
methods, we observed that Moments produced the highest
a values, followed by Sullivan, Yang, and GZ-Gamma
(fig. 3). We noted that Moments and Sullivan sometimes
produce very high a values.

Another way to compare the methods is to calculate
pairwise correlation coefficients of the computed a values
for all subfamilies (table 1). This revealed that Moments
and Sullivan produce very similar results (r 5 0.96),
whereas GZ-Gamma is very different from these 2 (r ;
0.3). The Yang method is in the middle between these
extremes, with r ; 0.6 to the other methods.

Evaluation of the ASM

With the data set of subfamily pairs with known func-
tion shifts and nonshifts, we could evaluate the performance
of the proposed ASM method. The first question was to
compare the different methods for calculating a. For
each subfamily pair in the test set, we calculated 4 ASM
values using the G, Y, S, and M methods.

The accuracy of each ASM variant was determined
as described in Methods and Data for a set of thresholds

to cover the entire sensitivity/specificity range and were
plotted as receiver operating characteristic (ROC) curves
(fig. 4A). This shows that all ASM variants are able to clas-
sify the protein subfamily pairs much better than random.
The ASM based on the GZ-Gamma method outperformed
the other methods over the whole sensitivity/specificity
range and thus appears generally the most accurate. In
other words, it seems that the low a estimates of the GZ-
Gamma produce the most accurate ASM classifier. This
observation, however, does not necessarily mean that the
underlying a values are more accurately measured by the
GZ-Gamma method.

Table 1
Pairwise Correlation of a Parameter Estimation by 4
Different Methods

Y S M

G 0.57 0.28 0.31
Y 0.64 0.63
S 0.96

NOTE.—For all 514 protein subfamilies in the test set, the substitution rate

distribution shape parameter a was estimated using the methods G, Y, S, and M.

Pearson’s correlation coefficient r is shown for each pairwise comparison.

FIG. 3.—The distribution of a parameter values estimated for all pro-
tein families by 4 methods (G, GZ-Gamma; Y, Yang; S, Sullivan; and M,
Moments). The upper and lower borders of a box correspond to the first and
third quartile, respectively. The middle bar shows the median. The upper
bar is placed at third quartile1 1.53 (box height) or the maximum value,
whereas the lower bar is placed at first quartile � 1.5 3 (box height) or
the minimum value. Data points outside the upper or lower bar are shown
explicitly as circles.

FIG. 4.—Performance comparison of function shift predictors using
the large test set based on EC number annotation in Pfam families.
ROC curves show the ability of the ASM to discriminate between positive
(Diff_EC) and negative (Same_EC) cases of function divergence. (A) Per-
formance of the 4 ASM variants. ASM_G, ASM using a estimated by the
GZ-Gamma method; ASM_Y, by Yang; S, by Sullivan; ASM_M, by Mo-
ments. (B) Performance comparison of the best ASMmethod (ASM_G) to
the functional site-based methods RSM and CSM. The dashed diagonal
line indicates the performance of a random classifier.
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Comparison of ASM to RSM and CSM

Next, we compared the best ASM variant (ASM_G)
with previously presented function shift predictors—the
RSM and the CSM (Abhiman and Sonnhammer 2005b).
These methods are based on the fraction of sites that appear
to have shifted function. The comparison was done using
the same ROC curves as above. As seen in figure 4B,
at low false positive rate (high specificity), the RSM is
considerably more sensitive than the CSM and parallels
the ASM. However, above a false positive rate of 0.2,
ASM clearly outperforms RSM, which above 0.4 performs
roughly equally with CSM.

Influence of Subfamily Size and Subtree Topology

In order to determine the importance of protein sub-
family size for prediction accuracy, we grouped the sub-
family pairs into 3 equally sized quantiles according to
the number of sequences the smaller subfamily contained
(large, medium, and small). We then evaluated the ASM
together with the RSM and CSM on only the group with
the largest protein subfamily pairs (fig. 5). We observed
increased prediction accuracy by all classifiers compared
with the results obtained for all protein subfamily pairs,
underscoring the importance of using many sequences for
these types of analyses. We noted, however, that RSM

FIG. 5.—Analysis of the effect of subfamily size on performance. ROC curves show that performance is improved for the larger subfamily pairs
(LSF) compared with all subfamily pairs (ALL). LSF correspond to the top third based on the number of members in the smaller subfamily. (A) RSM,
(B) CSM, (C) ASM_G, (D) ASM_Y, (E) ASM_S, and (F) ASM_M. The dashed diagonal line indicates the performance of a random classifier.
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performance was almost as good for all subfamilies as for
large ones only.

We have also analyzed the influence that the topology
of the subtrees have on the prediction accuracy. On a
randomly chosen subset of the data (1/3 of the data set),
we estimated the a parameters and in turn the ASMmeasure
by using shuffled tree topology instead of the true tree
topology. We observed that the predictive performance of
ASM was unchanged over wide range of specificity and
sensitivity values (Supplementary Figure 1, Supplementary
Material online).

Predictions by Combining ASM, RSM, and CSM

The ASM, RSM, and CSM are using different signals
for function shift prediction and may therefore complement
each other. A simple way to exploit this to improve accu-
racy is to combine them using LDA. All methods individ-
ually and combined were evaluated in terms of sensitivity
and specificity in cross-validation tests (fig. 6) on the com-
plete data set.

Of the 3 individual measures, the ASM gave the
highest sensitivity values (fig. 6A), whereas the CSM gave
the lowest. The LDA combination of all 3 methods increased
the median sensitivity by almost 4 percentage points com-
pared with ASM. Looking at specificity (fig. 6B) gives a
somewhat different picture. Here the RSM is best, even
slightly more specific than the LDA combination of the
3 methods. LDA is thus mainly of use for increasing sen-
sitivity, that is, the accuracy of correctly detecting shifted
function.

Discussion

This paper presents a novel approach, the ASM, to
predict the shift of protein function between protein sub-
families. Previously, we had explored other approaches
based on sequence conservation signals derived from pro-
tein multiple sequence alignments. We here proposed and
evaluated a complimentary approach based on detecting
changes in the distribution of amino acid substitution rates
that may accompany a function shift. We showed that the
ASM outperforms the previously proposed predictors, RSM
and CSM.

For the calculation of the ASM presented in this study,
we employed 4 different methods to estimate the substitu-
tion rate parameter a. Our results on the a values estimated
from these methods confirmed previous comparisons of
a estimation methods (Gu and Zhang 1997), that is, that
the parsimony-based methods (Moments, Sullivan, and
Yang) tend to give higher a estimates than the ML-based
methods (GZ-Gamma and ML-Yang [Yang 1996]). Simu-
lation studies have shown (Gu and Zhang 1997) that ML-
Yang gives slightly better estimates than the GZ-Gamma
method but at the same time performed hundred times
worse in terms of runtime. Due to the large number of align-
ments used in our study and the practical limitation of the
ML-Yang method, we were not able to include this method
in our analysis.

The ASM is related to the RSM in the sense that
both measures are based on the substitution rates obtained

from protein alignments. However, both measures cover
different aspects of the 2 alignments under consideration.
The RSM identifies sites between 2 subfamilies that evolve
with different rates and calculates the rate shift based only
on these sites. The ASM, in contrast, incorporates the whole
subfamily by calculating substitution rates for all the sites
of the alignment. In addition, the ASM also includes the
ancestral family that both subfamilies arose from.

When comparing the ASM to the previously proposed
CSM and RSM, the ASM outperforms the other 2 measures
in its ability to predict function shift. We showed that com-
bining the ASM with the RSM and CSM leads to improved
prediction accuracy. It is important to keep in mind, how-
ever, that in contrast to the CSM and RSM approaches, it
is not possible with the ASM to actually pinpoint the
residues responsible for the shift of function. Another

FIG. 6.—Cross-validation analysis of the prediction accuracies for
CSM, RSM, and ASM (GZ-Gamma) and the LDA combination of them
(C1 R1A). (A) Sensitivity. (B) Specificity. The upper and lower borders
of a box correspond to the first and thirrd quartile, respectively. The middle
bar shows the median. The upper bar is placed at the third quartile1 1.53
(box height) or the maximum value, whereas the lower bar is placed at first
quartile � 1.5 3 (box height) or the minimum value. Data points outside
the upper or lower bar are shown explicitly as circles.
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limitation is that for certain cases, it is not possible to use the
ASM because there is not enough data to estimate a, yet it
may still be possible to use the CSM and RSM. Hence, the
combination of all 3 measures gives the most complete and
accurate picture of the protein family under consideration.

We employed EC numbers to assign known func-
tion annotations to the test set protein families used in
our analysis. Even though EC numbers are recognized as
high-quality function classifiers, one should be aware that
there are some disadvantages (Babbitt 2003). Enzymes with
the same EC number occasionally have different functions,
and enzymes with different EC numbers are sometimes
highly similar in sequence and in the reactions they catalyze
(Nahum and Riley 2001; Tian and Skolnick 2003). This
dependency on EC numbers probably affected our results
negatively, although we estimate the false negative rate
(Same_EC cases that really are Diff_EC) to be at most
a few percent. This would mean that an improved accuracy
could be achieved by our measures if trained on more
pure data sets. Another potential caveat is that we only train
our method on enzymes, yet only around 20% of the
proteins in a genome are enzymes. However, we believe
that our method will be general enough for most globular
proteins as the structural constraints are similar for all such
proteins. One could argue that proteins with protein–protein
binding moieties (Sjolander 1998) have characteristics
quite similar to enzymes.

Even though many methods are currently available
for predicting functional divergence between nucleotide
or protein sequences, they have been applied only to small
number of families with closely related sequences. Large-
scale comparative analysis of these methods is necessary
to investigate their applicability for genome annotation
efforts. To enable the application of the new ASM method
and its combination with the RSM and the CSM for the
biological community, we are aiming towards integrating
it into the publicly available FunShift database (Abhiman
and Sonnhammer 2005a). This way a more refined function
annotation for many protein families can be achieved,
which will be welcomed in the light of novel sequences
coming from new genome projects.

Supplementary Material

Supplementary Figure 1 is available at Molecular
Biology and Evolution online (http://www.mbe.
oxfordjournals.org/).
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