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ABSTRACT

Several protein sequence analysis algorithms are based on properties of amino acid
composition and repetiti veness.  These include methods for prediction of secondary structure
elements, coiled-coils, transmembrane segments or signal peptides, and for assignment of
low-complexity, non-globular, or intrinsically unstructured regions.  The quali ty of such
analyses can be greatly enhanced by graphical software tools that present predicted sequence
features together in context, and allow judgement to be focused simultaneously on several
different types of supporting information. For these purposes, we describe the SFINX
package, which allows many different sets of segmental or continuous-curve sequence feature
data, generated by individual external programs, to be viewed in combination alongside a
sequence dot-plot or a multiple alignment of database matches. The implementation is
currently based on extensions to the graphical viewers Dotter and Blixem, and scripts that
convert data from external programs to a simple generic data definition format called SFS.
We describe applications in which dot-plots and flanking database matches provide valuable
contextual information for analyses based on compositional and repetiti ve sequence features.
The system is also useful for comparing results from algorithms run with a range of
parameters to determine appropriate values for defaults or cutoffs for large-scale genomic
analyses.

INTRODUCTION

Any protein sequence, as typically inferred from a genomic or mRNA sequence, potentially
represents a rich mosaic of molecular properties reflecting structure, dynamics, interactions
and roles in cellular machinery.  Interpretation and annotation of such a sequence is a
complex conceptual task, which is usually achieved by a synthesis of algorithmic analysis and
expert judgement.  Individual algorithms vary in their abili ty to diagnose or classify various
sequence features, and knowledgeable human interpretation is generally considered o be
essential.  Even seemingly straightforward outputs, such as database sequence similarity
search results using conservative cutoffs, are frequently greatly enriched by human abiliti es to
perceive context, associations and unexpected pitfalls.  In all cases, graphical display can
dramatically improve envisioning and comprehension of the interrelated sets of data, and most
sequence analysis software packages include graphical tools.

In addition to comparative analysis of conserved domains and sequence motifs by means of
database searches, several algorithms have been designed to predict certain protein features
primarily from attributes of composition and repetiti veness.  Such features include secondary
structure elements, transmembrane segments, signal peptides, low-complexity regions, coiled-
coils, other non-globular domains, and intrinsically unstructured regions. These results are
typically interpreted, together with regions of sequence conservation, to infer a provisional
map of the possible structural and functional regions of a protein. This task presents several
diff iculties and requires criti cal evaluation of results from various compositional, alignment,
and modeling algorithms.

To assist these tasks, adaptable software is needed that takes the results of different amino
acid sequence feature analysis programs and uses them as inputs into graphics programs
designed for integrated visualization.  Also needed is the abili ty to run each program with
different parameter sets and compare the results graphically. Weighing the significance of
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different types and levels of evidence together usually leads to a more accurate analysis than
running each prediction program separately with default parameters.  In addition, integrated
analyses of this type are valuable in calibrating parameters during development of
computational methods, for example to employ them in large-scale genomic analysis.  Many
analysis programs are provided with very permissive default parameters to minimize false
negatives, whereas in genome-wide analysis it is often important to use non-default
conservative parameters to limit the number of false positives.

It is desirable, therefore, to view the combined output from several approaches, algorithms,
and parameter sets, in many cases juxtaposed with database matches.  Here, we describe a
flexible software system that meets these various needs, and ill ustrate some of its applications.
Since it is impossible to define exact rules on how to interpret such multi -facetted data, we
provide a set of typical examples that ill ustrate how logical reasoning based on the combined
output of many different analyses can lead to a correct interpretation, or at least avoidance of
an incorrect one.

Data types and formats

There are in principle two primary types of data for describing sequence features: segments
and curves.  Segments are defined by one start and end sequence coordinate.  Typically, the
sequence between these coordinates is assigned a certain property algorithmically, such as a
low complexity region.   Curves (or “profiles”), in contrast, consist of an array of scores, each
score being assigned by an algorithm to a single residue.  We here use the term “curve”
because the term “profile” is mainly used in sequence analysis to denote a matrix of numbers
along the sequence. Segments frequently have a score too, and may have associations with
other pieces of data, particularly if they are “matching segments” that can be aligned by
similarity to other sequences or sequence models.  It is often advantageous to browse
matching segments from database searches at the level of aligned residues; a special viewer
for this purpose is Blixem (Sonnhammer and Durbin 1994).

Data sets, of both segment and curve types, can be obtained either by parsing the output of
available sequence analysis programs or by independent calculation from the sequence being
analyzed.  Many prediction programs not only produce a set of segments as output, but also
calculate a profile internally, according to some mathematical function or empirical scale, as
part of the algorithm.  This is the case in, for instance, the SEG complexity analysis (Wootton
and Federhen 1993; Wootton and Federhen 1996), most transmembrane segment prediction
programs and secondary-structure prediction methods.  Generally, in these cases, the
underlying profile may be readily calculated by using the appropriate function, independently
of the program.  Some programs report both the segments and the underlying profile, for
instance COILS2 (Lupas et al. 1991), that predicts alpha-helical coiled-coils.

A number of established database and visualization systems exist that include built -in
functions for sequence segment display.  These include ChromoScope (Zhang et al. 1994),
bioWidgets (Searls 1995), APIC (Bisson and Garreau 1995), the BDGP java sequence viewer
(Rubin 1996), GAIA (Bailey et al. 1998), and ACEDB (Durbin and Thierry-Mieg 1999).
These are relatively large software suites that require a significant investment in knowledge to
become operational, usually due to the intricacies of specifying a practical data model.  For
instance, the data definition languages such as ACEDB and ASN.1 were designed to store
biological objects in a rigorous way.  Generating and parsing data in such formats involves
supporting a substantial framework of semantic rules.  For data consisting only of segments or
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curves, the complications of conforming to such a format are unwarranted, and a simple
tabular format is adequate.  Furthermore, many of the available visualization systems have
various limitations, depending on their history of development, which in many cases was
oriented towards displaying genetic or physical maps, and thus have no facili ty for curve data.
To our knowledge, only the commercial APIC system was designed to handle curve data in a
generic way.

In contrast to these large, comprehensive systems, our goal is to provide simple, yet powerful,
generic tools that allow any sequence crunching program to communicate its results to any
graphical viewer.  At the core is a simple data format for sequence feature series, which we
call SFS.  Sequence analysis programs typically produce data that is compatible with the
present SFS data model, but it is also extensible to incorporate features that may need special
treatment in the future.  SFS achieves a logical separation of prediction/calculation programs
and viewers, and thus removes the need for special visualization tools for each individual
program.  Viewers can then become more powerful and evolved tools, while the algorithmic
implementations can be developed without the extra burden of building visualization tools.
The overhead for both viewers and calculation programs to support the lightweight SFS
format is minimal.

The two core data types in the SFS format are segments and XY curves.  An XY curve is a
two-dimensional plot of a series of X and Y value pairs, where X is the sequence residue
coordinate. The information stored is very reduced, but is suff icient for generating a rich and
easily interpretable graphical representation.  In addition to the coordinates and score, each
data point is associated with information necessary to link data points from a common source
together and a color to distinguish it graphically.  Optional annotation is allowed.  However,
the precise shape or placement on the screen of an object can not be stored explicitly; this is a
property of each particular viewer, and only generic attributes can be specified in SFS.  This
follows the idea behind the HTML markup language. The SFS format is li kewise intended to
work with browsers via the World Wide Web, using SFS-viewing helper applications.

Recently, two systems for sequence feature markup have been described that are based on
XML, which is an extension of HTML: BIOML (Fenyo 1999) and BSML (Spitzner 1999).
XML is a structured format for data exchange that is becoming increasingly popular,
particularly for describing data objects of hierarchical nature.  However, because of the
flexibil ity of XML to describe in principle any data with any syntax and semantics, writing an
XML parser is far from trivial.  We do not consider typical sequence features complex enough
to motivate the complexity of generating and parsing XML. The main motivation for
inventing SFS was to keep the format so simple that it becomes almost trivial to generate and
parse the data, yet powerful enough to describe all typical types of features. In principle, an
XML block corresponds to a field in SFS, hence converting SFS to XML and vice versa is
straightforward.  Hierarchical levels are not usually used for describing sequence features, but
multiple attributes may be, e.g. the color and shape of a feature.  The tabular SFS solves this
by concatenating multiple attributes in a comma delimited list in a single field. Because XML
has gained popularity in the bioinformatics community, we provide a tool for conversion of
SFS to XML, and allow the results on the WWW server to be returned in XML.

A simple data format similar to SFS also exists in ACEDB for importing ‘user segments’ into
the sequence map display.  Another format used to exchange data between a number of gene
prediction groups is the GFF format for gene-finding features
(http://www.sanger.ac.uk/Software/GFF/), which is now also supported by ACEDB.  Both
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these formats support one single data type for sequence segments.  Since GFF is essentially a
simpler version of SFS, it is also supported directly by the viewers presented here.

We describe here two graphical viewers that support the SFS format and integrate segment
and curve features into their rather specialized graphical analysis: the Dotter dot-plot program
and the Blixem database-search results viewer.  Previous versions of both these programs had
some rudimentary displays of segmental features, but they have now been upgraded to
accommodate any number of SFS data series.

Dotter (Sonnhammer and Durbin 1995) is a full dot-plot calculation program which stores the
score of each cell i n a dot-matrix.  The stringency of the dot-plot analysis can be set
interactively, using Dotter’s dynamic “Greyramp” tool during viewing of the plot, without
having to recalculate the dot-matrix.  Displaying sequence features calculated by other
programs together with a self-dot-plot is particularly useful for analyzing internal repeats and
regions of compositional similarity.  Similarly, Dotter can be used to analyze whether features
of two different sequences make sense in the context of the similarity provided by a dot-plot.
The size of the “sliding window” used to generate the dot-plot is by default set to the expected
length of a high-scoring segment pair in Dotter, but can also be set manually to focus on
repeats of a certain periodicity. It is often useful to explore the dot-plot with different window
sizes.  Potentially, a window size of 1, showing all similarities at the single-residue level,
contains the maximum compositional information content, but this tends to obscure diagonals
corresponding to repeated motifs.

Blixem (Sonnhammer and Durbin 1994) shows database matches generated in a BLAST
search in a slave-master alignment.  It is valuable to combine sequence features, which may,
for example, suggest domain boundaries or functional characteristics, together with the
database matches, thus achieving a more accurate interpretation.  Blixem has two panels; the
top panel shows a schematic overview of features and database matches along the entire query
sequence or in a zoomed in region.  A sliding box in the overview panel frames a region that
is displayed in the bottom panel, in which features and database matches are shown in colored
residue letters.  Blixem can also be used without showing BLAST matches, in which case it
simply acts as a general graphical data viewer for any sequence feature.

We focus here on applications of the SFS format for detailed analysis of compositional and
repetiti ve protein sequence features, and for parameter calibration, employing readily
available calculation and prediction programs.  For these particular programs, we provide
user-friendly scripts to run them, convert the output to SFS, calculate various profile curves,
and to view the combined output in Dotter and Blixem. The entire package of scripts,
parameter sets, and viewers is called SFINX. The scripts dotOmni and blxOmni run all
incorporated analyses and present the results in a viewer as a single action. Additional
analysis programs can be incorporated into the system with littl e effort.

RESULTS

In this section, we demonstrate particular applications of the SFINX package to analyses of
compositionally biased and repetiti ve regions, transmembrane segments, and alpha-helical
coiled-coils in amino acid sequences. The role of graphical visualization needs to be
understood in the context of the underlying theories, goals, and evaluation criteria of each of
these methods.
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Compositional complexity and repeat analysis
Many regions of contrasting compositional bias occur in both nucleotide and amino acid
sequences (Karlin and Brendel 1992; Salomon and Konopka 1992; Wootton 1994a; Wootton
and Federhen 1993). Investigation of local compositional complexity and periodicity is
informative at an early stage of the analysis of a new protein sequence, particularly when
results can be interpreted together with local matches from database searches (Altschul et al.
1994; Wootton and Federhen 1996).  In natural protein sequences, there is a strong tendency
for compact globular folded domains to have a high complexity of composition that resembles
a "random" distribution of amino acid frequencies (Wootton 1994a; Wootton 1994b).  In
contrast, compositionally biased regions of lower complexity correlate in most cases with
non-globular, extended or intrinsically unstructured regions (Dunker et al. 1998; Wootton
1994b; Wright and Dyson 1999). Numerous low complexity protein regions are involved in
crucial molecular functions and interactions, but, in general, they are relatively intractable to
structural investigation by crystallographic methods, in contrast to globular domains (Wootton
1994a). Increasingly, NMR methods are yielding information on the dynamics and
interactions of conformationally flexible low-complexity domains (Wright and Dyson 1999).

Compositional complexity analysis provides, therefore, a general method for investigating
architectural features of polypeptides, especially for making provisional assignments of some
domain boundaries in multi -domain proteins (Wootton and Federhen 1996). Simple
complexity measures and segmentation algorithms have been described previously (SEG,
PSEG for protein sequences, NSEG for nucleotide sequences (Wootton 1994a; Wootton and
Federhen 1993).  These identify optimal segments of low complexity, subject to parameters
("window length", "trigger complexity", and "extension complexity") that control the
stringency and granularity of the analysis. Relatively long windows, for example 45 residues,
are often appropriate when SEG is used in searches for long, potentially non-globular regions
of proteins (Wootton 1994b; Wootton and Federhen 1996).  However, a much more
comprehensive analysis is achieved by using a range of parameter values and by integrated
visualization of several measures of sequence complexity.  Complexity profiles, calculated at
different sliding window lengths, and self-similarity dot-plots also provide useful visual
checks on the actual data underlying the algorithmically assigned segments.

Low complexity segments may have approximate or exact sequence repeats or may lack
regular or recurrent patterns.  The attribute of regular periodicity can be analyzed
independently of overall compositional complexity, by calculating the sequence complexity
only for residues that are spaced at a defined interval from each other.  This is implemented in
the SFINX package using the PSEG program described previously (Wootton and Federhen
1996).

A complementary approach, named HISEG, is also implemented in the package.  This variant
of the SEG algorithm reports optimized sequence segments of high, rather than low,
complexity.  HISEG segments have the greatest local compositional complexity (or greatest
“ randomness” ) based on a uniform distribution, or any arbitrarily specified distribution, of
amino acid frequencies, subject to the same stringency and granularity parameters as SEG.  In
practice, HISEG is less precise than SEG for definition of the boundaries between adjacent
regions of contrasting complexity, because optimal matches to the target frequencies tend to
extend beyond high-complexity segments into more biased regions (Wootton and Federhen,
unpublished).  Consequently the segments predicted by HISEG often overlap those assigned
by SEG and the latter usually more accurately indicate the appropriate boundaries.
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Nevertheless, the complementary properties of HISEG and SEG are valuable when the results
of both methods are viewed together, because their predictions tend to correspond
approximately to, respectively, globular and non-globular domains, as ill ustrated below.

To accommodate the different types of compositional complexity we run SEG and display
entropy curves with 4 different window sizes: 12, 25, 45, and 75.  For each window size, SEG
is run with three empirically selected parameters for “stringent” , “medium”, and “ relaxed”
modes.  For stringent mode, we used trigger and extension cutoffs of (2.0, 2.3), (2.95, 3.25),
(3.3, 3.65) and (3.55, 3.75) for the different window sizes. For medium mode we used (2.2,
2.5), (3.0, 3.3), (3.4, 3.75), and (3.65 3.85), while for relaxed mode (2.35, 2.65), (3.15, 3.45),
(3.5, 3.8), (3.7, 3.95). PSEG is run with periodicities 2 through 12 with trigger and extension
complexity cutoffs set to 1.5.  These cutoffs were set empirically in order to mainly reveal
low complexity segments of significance.

Coiled-coil analysis
A particular form of repetiti ve protein sequence is the heptad repeat found in most alpha-
helical coiled-coil proteins.  These coils can consist of either two or three helices wound
around each other in an extended rod-like structure.  Lupas et al. (1991) developed a general
prediction method for predicting coiled-coil subsequences, based on the position-specific
biases within the heptads.  In the present implementation, COILS2, (Lupas 1996), predictions
can be run using two scoring matrices, “MTI” and “MTIDK”, which are based on different
sets of examples.  One may also vary the window length, and run it with or without position-
specific weighting.  It is generally inadequate to use only a single combination of these
parameters, because false-positive predictions tend to occur with some of them.  However, a
good judgement of the appropriate balance between sensitivity and specificity can be
achieved using 12 combinations of these options and comparing the results graphically, as
implemented in the SFINX package.  These 12 parameter combinations are obtained by using
each of the 4 possible combinations of matrix and weights, with the three window sizes 14,
21, and 28.

Combined complexity and coiled-coil analysis
Sequences encoding coiled coils always contain regions of low sequence complexity and
short repetitions. The common type of coiled coil with a heptad repeat, the target of COILS2,
is normally associated with low complexity segments reported by SEG with the above
parameters. In addition, most such sequences give a PSEG segment in period 7 only, but this
is not always the case because many different types of coiled coils exist. Of 272 sequences
from SWISS-PROT 39 (Bairoch and Apweiler 2000) with annotated coiled coils of length
100 or more, 57% (154) produced a PSEG period 7 segment. Globular proteins generally do
not produce such segments.  In PDB (Sussman et al. 1998), which consists of mainly globular
proteins, 1 % (128 of 8997) of the sequences produced a PSEG period 7 segment. It should be
noted that alternative types of coiled coils, e.g. the triplet type found in collagen, is not
detected by COILS2, but is readily detected by PSEG.

Figure 1 ill ustrates the value of combined interpretation using the complementary approaches
of complexity and coiled-coil predictions with different parameters.  In this example, the N-
terminal non-globular region of T. thermophilus seryl tRNA synthetase is known from a high-
resolution crystal structure determination to be mostly an extended, antiparallel, two-stranded
coiled-coil (PDB:1SRY).  The results with dotOmni (Figure 1a) show a strong agreement in
predicting the approximate position of this domain, among the different parameter sets for the
two algorithms.  SEG assigns the entire non-globular domain and COILS2 identifies the
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coiled-coil part that has heptad repeats. HISEG results are complementary to SEG and
correspond to the globular domain.  PSEG supports the presence of a heptad repeat by
reporting a segment of period 7 in the same region, but not in any other period. An additional
segment at residues 280-310 gives a positive signal with some of the parameter sets,
particularly with COILS2 at its shorter window length settings of 14 and 21 (Figure 1a).
However no PSEG segment is reported. The three-dimensional structure (Figure 1b) confirms
that this segment is not a coiled-coil: it i s actually a relatively amphiphili c surface alpha-helix
of the globular domain.   Figure 1c ill ustrates the greater structural mobili ty of the non-
globular domain, suggested by the experimentally determined crystallographic temperature
factors.  This N-terminal domain, and also neighboring loops in the globular domain, makes a
substantial conformational shift on binding tRNA (Biou et al. 1994).

In contrast with 1SRY, in xylose isomerase from Streptomyces rubiginosus (Figure 2), the C-
terminal domain is known from the crystal structure (PDB:1XIS) to be a non-globular
extension that wraps round another subunit of the tetramer, but this region does not contain
any coiled-coil conformation.  SEG identifies this structure as having relatively low
compositional complexity, shown as segments together with an alignment of database
matches (Figure 2a) and as highlighted region of the 1XIS structure (Figure 2b), whereas
COILS2 gives negative results.  This example ill ustrates the abili ty of SEG to identify a non-
globular region on the general basis of sequence complexity data.  In this case, there are no
regular repeats or sequence patterns that can be modeled on the basis of  a known structural
class such as coiled-coil .  Several other examples of relatively long, low complexity regions,
that are identified by SEG in protein sequences of known crystal structure, correspond to parts
of less well -determined electron density , or in many cases are “missing” from the
crystallographic data, suggesting structural flexibili ty (Wootton 1994a; Wootton
unpublished).

Combining coiled-coil and compositional complexity analysis can also be used to detect if
other types of low complexity regions cause false prediction of coiled-coils.  Figure 3 shows
the blxOmni results for the C. elegans protein C25A11.4A.  COILS2 gives a strong coiled-
coil signal with most parameters, and SEG indicates low complexity.  However, PSEG
produces repetiti ve low complexity segments in a wide variety of periods, which suggests that
the coiled-coil prediction was fooled by a strongly biased sequence composition. The residues
reported by PSEG, visible in the Blixem window in figure 3, indicate that the region is very
rich in glutamate and argninine.  This “oversensitivity” to regions with charged residues was
also noted by the authors of COILS2. This analysis further ill ustrates that COILS2 alone, in
the absence of complexity and periodicity analysis, would probably give a misleading concept
of the nature of this sequence.

Transmembrane analysis
A special case of  biased sequence composition, are regions of the polypeptide that span a
membrane.  Because of the lipid environment, the protein is constrained to hydrophobic
residues, particularly for alpha-helices that are exposed on all sides to the lipids.
Transmembrane alpha helices that have hydrophili c interactions with other helices are
generally less hydrophobic.  Sophisticated transmembrane prediction programs improve
accuracy by exploiting the difference in charged residues between loops on the cytoplasmic
and non-cytoplasmic sides of the membrane (Claros and von Heijne 1994; Persson and Argos
1997; von Heijne and Gavel 1988).  The most striking difference is the preference for the
positively charged lysine and arginine on the cytoplasmic side.  Incorporating such signals
also allows the topology, i.e. the orientation relative to the cytoplasm, to be predicted.
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Transmembrane segment prediction is not only important from a structural point of view, but
also gives a strong indication of a protein’s localization. Transmembrane prediction programs
are prone to predict signal peptides as integral membrane segments.

Figure 4 shows the output of four transmembrane prediction programs of this type, TMHMM
(Sonnhammer et al. 1998), HMMTOP (Tusnady and Simon 1998), MEMSAT (Jones et al.
1994), and PHDHTM (Rost et al. 1996), together with hydrophobicity curves for a given
window length according to two scales (Black and Mould 1991; Kyte and Doolittl e 1982).
Also shown are signal peptide features from signalP (Nielsen et al. 1997), including the
segment between the N-terminus and the most likely cleavage site if one is found within the
first 50 residues. Positively charged residues (arginine and lysine) are marked as boxes to
show whether they cluster on the cytoplasmic side. The hydrophobicity scales are highly
correlated but can differ in some cases, e.g. the transmembrane segment around residue 300 in
the example in figure 4 is much better supported by the Kyte-Doolittl e curve than by the
Black-Mould curve. The Dotter view features a dot-plot display of the query sequence vs. a
randomly generated sequence of hydrophobic residues according to a distribution typical for
transmembrane segments.  This way, the Dotter Greyramp tool can be used to see the relative
strength of transmembrane propensity for different regions.

In the example, rat glycine receptor beta chain precursor (SWISS-PROT: P20781), all four
programs predict different topologies.  However, looking vertically at individual TM
segments, five of them are supported by three of the four methods, although by different sets
of methods.  The orientation N-in is also supported by three methods (assuming that the N-
terminal segment predicted by HMMTOP is a cleaved signal peptide).  TMHMM and
MEMSAT predict fewer segments than the consensus, while HMMTOP is the only method
that predicts the signal peptide as a transmembrane segment.  The SWISS-PROT annotation is
consistent with the TMHMM prediction, which lacks the segment around residue 90 that was
predicted by the three other programs.  Given the presence of a signal peptide, the SWISS-
PROT/TMHMM topology appears correct.  The segment around residue 90, predicted by the
three other programs, is not strongly supported by the hydrophobicity curves or the dot-plot,
and therefore probably represents a buried helix in a large extracellular domain.  Because the
N-terminal part of this globular domain contains clusters of positively charged residues,
prediction algorithms can easily be fooled to force this part over to the cytoplasmic side for a
better score. This example ill ustrates that taking the consensus prediction does not necessarily
produce the correct prediction, but assisted with underlying propensities and dot-plots, the
predictions can be validated and a correct result can be achieved.

Using the SFINX WWW server with Blixem and Dotter as helper applications
The analyses described here can be achieved without installi ng the assortment of back-end
analysis programs and the SFINX package locally.  It is sufficient to install the Dotter or
Blixem viewers as helper applications to a web browser and run all prediction programs on
the CGR web server at http://www.cgr.ki.se/SFINX .  The web page allows the sequence
complexity, structure, and transmembrane analyses to be turned on or off individually.  The
Blixem view can include BLAST results from a “netblast” search of the NR database at the
NCBI.  See instructions in the web page on how to set up Blixem and Dotter as helper
applications.
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METHODS

Programs and availability

The faciliti es described here are available in Blixem version 3.0 and Dotter version 3.0.  Both
these programs are written in C and use the ACEDB graphics library (Durbin and Thierry-
Mieg 1999).  Binaries are provided for X-windows on Unix workstations and Windows
95/98/NT.  To parse output from BLAST to view in Blixem, a filtering program MSPcrunch
is necessary. Dotter, is available at ftp://ftp.cgr.ki.se/pub/prog/dotter.  Blixem and MSPcrunch
are available at the same ftp servers, but in the directory MSPcrunch+Blixem instead of
dotter.  Documentation on how to run Dotter and Blixem with SFS data can be found at
http://www.cgr.ki.se/cgr/groups/sonnhammer/Dotter.html and Blixem.html.  Both allow the
user to control the display of the features with a “Feature Series Selection Tool” (Figure 1a) in
which each series can be individually turned on or off .  The capabili ty of selectively showing
the series is crucial since by default a large number of series are generated, of which normally
only a few are relevant at one time.

The connection to external programs was done by csh and gawk scripts (see Table 1) which
are available at ftp://ftp.cgr.ki.se/pub/prog/SFINX.

The SEG, PSEG, HISEG, and NSEG programs are freely available at
ftp://ncbi.nlm.nih.gov/pub/seg.  COILS2 was downloaded from
ftp://alf.biochem.mpg.de/Coils.

See http://www.cbs.dtu.dk/services/TMHMM/ for acquiring TMHMM,
http://www.enzim.hu/hmmtop/ for HMMTOP, http://insulin.brunel.ac.uk/~jones/memsat.html
for MEMSAT, and ftp://cubic.bioc.columbia.edu/pub/rost/ for PHD.

A generic sequence feature series data format

The ‘SFS’ data format is a ‘meta-language’ between non-graphical computation programs and
graphical viewers that allows generic data exchange for visualization purposes.  To make it as
universal as possible, the format mainly supports only the core data.  Information such as
screen placement of the objects, fonts, order of the series, etc., were explicitl y avoided, since
such features are better controlled interactively in the graphical viewer.  The SFS
specification follows below.  By “data point” we mean the smallest unit of data, either a
segment or an XY-value pair in a curve.

1. Each data point is associated with a named series; one series can contain any number of
data points of any number of data types.

2. Each data point is stored on one line (<10000 characters).

3.  The fields in a line are separated by white-space characters, which are not allowed within
fields.

4. SFS data should be preceded by a header line with the words “# SFS format 1.0” for
backwards compatibili ty in the future.
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5. SFS data should be preceded by a data type specifier; currently one of:
# SFS type=SEG
# SFS type=XY <data…>
# SFS type=HSP
# SFS type=GSP
# SFS type=GFF
# SFS type=SEQ <data…>

The SEG type specifies that segment data follow; XY that curve (XY plot) data follow;
HSP ("High Scoring Pair", as in the BLAST programs) indicates that ungapped pairwise
matches follow; and GSP ("Gapped High Scoring Pair") that gapped matches follow.  GFF
is included for compatibili ty with the existing GFF format.  SEQ data is the amino acid or
nucleotide sequence from which the SFS data was generated: visualization tools often
require the original sequence.  For segment data (SEG, HSP, GSP, and GFF), properties
such as color and annotation is given per segment, while for data of XY type these are
given once for an entire curve.  All XY coordinates are considered to belong to one curve
until the next “# SFS type=” line.  However, one XY series can contain any number of
curves.

6. For data of type SEG (segment data), the format of each segment is:
<score> <seqname> <seriesname> <start> <end> <look> [annotation]

These fields are specified as:
<score> [int] The score of the segment1

<seqname> [string] The sequence that the feature belongs to2

<seriesname> [string] Name of series that this data belongs to
<look> [string, comma separated list in one word] The appearance, e.g. color3

<start> [int] Start coordinate of segment
<end> [int] End coordinate of segment.

[annotation] [strings] Optional description of the segment

7. For data of type XY (curves), the format of the type specifier is:
# SFS type=XY <seqname> <seriesname> <look> [annotation]

where the fields are the same as specified for the segment data under 6.
All li nes until the next “# SFS type=” line must contain XY data, of which the format is:

<x> <y>
Specified as:

<x>  [int] Residue number in sequence
<y>  [int] Y-value at residue x1

8. For data of type HSP:
<score> <qname> <qframe> <qstart> <qend> <sname> <sframe> <sstart> <ssend>
<sequence>

These fields are specified as:
<score> [int, 0-100] The score of the segment
<qname> [string] Name of the query sequence
<qframe> [string] Frame of the query segment, “+1” , “+2” , “+3” , “ -1” , “ -2” , “ -3”
<qstart> [int] Start coordinate of query segment
<qend> [int] End coordinate of query segment
<sname> [string] Name of subject sequence
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<sframe> [string] Frame of subject segment
<sstart> [int] Start coordinate of subject segment
<ssend> [int] Start coordinate of subject segment
<sequence> [string] Sequence of matching subject segment

The annotation of each sequence may be given on the next line, preceded by “# DESC “ .

9. For data of type GSP:
<score> <qname> <qframe> <qstart> <qend> <sname> <sframe> <sstart> <ssend>
<sequence>

where the fields are the same as specified for the segment data under 8.
All li nes until the next “# SFS type=” line contain the gapped pairwise alignment, in the
form of pairwise starting points and lengths of each ungapped segment (block).  It is
assumed that regions between ungapped blocks contain an insertion in one sequence only,
while the other sequence has a zero distance between two adjacent blocks.  The format to
specify each ungapped block is:

<qstart> <sstart> <len>
Specified as:

<qstart>  [int] Starting point in query sequence.
<sstart>  [int] Starting point in matching database sequence (subject).
<len> [int] Length of the ungapped block (number of residues).

10. For data of type GFF:
 <seqname> <seriesname> <look> <start> <end> <score> <strand> <transframe>

[annotation]
 where the fields are the same as specified for the segment data under 6, except:
 <strand> [char] For DNA, the strand ‘+’ , ‘- ’ , or ‘.’ .
 <transframe> [int] For coding DNA, the frame of the codons. ‘0’ , ‘1’ , ‘2’ , or ‘.’ .
 See (http://www.sanger.ac.uk/Software/GFF) for details on the GFF format.
 
11. For data of type SEQ, the format of the type specifier is:

# SFS type=SEQ <sequence> <seqname> [annotation]
where the fields are the same as specified for XY data under 7, except:

<sequence> @[int] Ordinal number of provided sequence preceded by ‘@’ : “@1”,
“@2”, etc..  This is necessary when multiple sequences are included,
for instance for Dotter.

All li nes until the next “# SFS type=” line contain the entire query sequence.  No
formatting characters should be used in the sequence.

Footnotes (including implementation-specific details in Blixem and Dotter):

1. For simplicity, the score is required to fall between 0 and 100; the raw score must thus be
rescaled.  In many cases, it is wise to rescale the score so that the ‘ twili ght zone’ scores
fall i n the 0-100 range, while all clearly significant scores are converted to 100.  This is
advantageous for visualization purposes, as it focuses the analyst’s attention to features
that require criti cal evalutation.  The actual score of clearly significant features is
normally not important.

2. Blixem and Dotter can for simplicity use special shorthand codes for the field <seqname>.
“@1” means the horizontal sequence, and “@2” the vertical sequence.
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3. The <look> field contains information of the appearance of a particular feature, e.g. its
color, shape, line thickness, etc.  Multiple attributes are allowed to be specified as comma
separated lists, in which the attributes are concatenated to one word with a single comma
character as separator (no space before or after the comma).  The exact wording and
meaning of the look attributes need to be specified in the definition as “magic tags” .  In
SFS 1.0, SEG data are restricted to colors, and XY data to color and a drawing mode
(“ interpolated” or “partial” ).  By default, XY curves are linearly interpolated in regions
where no data was given, but if “partial” is used in the look field, the curve is only drawn
in the specified regions.  Interpolation greatly simpli fies the specification of straight lines
which are commonly used for indicating thresholds etc.  The colors in Dotter and Blixem
are limited to the color names used by ACEDB, which allows 32 common colors (see
http://www.cgr.ki.se/cgr/groups/sonnhammer/Dotter.html).  Aside from
parital/interpolated, no shape attributes are specified in SFS 1.0.  Alternative shapes might
be useful, particularly for DNA sequence features such as introns and splice sites, but on
the other hand these can easily be accommodated as XY curves.

4. For backwards compatibili ty, Blixem also still supports the old SEQBL format (<score>
<qframe> <qstart> <qend> <sstart> <ssend> <sname> <sequence>), which is a simpler
version of the generic HSP data type specification.

5. GSP data is currently not supported in MSPcrunch and Blixem.  However, MSPcrunch
can turn gapped HSPs from gap-BLAST into pseudo-ungapped HSPs, in which deletions
in the subject sequence are shown as gaps while insertions are collapsed.  These can be
displayed in Blixem with almost no loss of information.

An example containing some segments and a curve to mark up a 200 residue long sequence is
shown below.  A threshold line is specified in the last three lines.

# SFS format 1.0
# SFS type=SEG
100 @1 TM 1 38 yellow TM prediction: brown=TM, yellow=cytoplasmic
100 @1 TM 39 61 brown
100 @1 TM 62 73 white
100 @1 TM 74 99 brown
100 @1 TM 100 112 yellow
100 @1 TM 113 133 brown
100 @1 TM 134 152 white
# SFS type=XY @1 myhydrophob green My hydrophobicity
1 10
36 10
41 90
59 90
64 10
71 10
76 90
97 90
102 10
110 10
115 90
131 90
136 10
152 10
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# SFS type=XY @1 myhydrophob black
1 50
200 50

DISCUSSION

The main conclusion from this work is that the picture of sequence features becomes clearer
as more types of analyses and more parameter combinations are explored. Many analysis
methods have been developed using proteins of ‘ typical’ amino acid composition and may
produce highly misleading results when applied to protein sequences of ‘ atypical’
composition, i.e. strongly biased towards a few amino acids. Therefore it is valuable to also
look at sequence composition directly, to be able to judge whether a feature prediction may
have been influenced by biases in sequence composition. Many programs for predicting
coiled coil and transmembrane are prone to produce mispredictions on sequences of biased
composition. We provide a set of general rules for assigning structural class based on
compositional features in table 2; it is however important to keep in mind that all of the
features are only indicative and not conclusive.  They need to be judged in the context of local
sequence composition biases and repeats in order to avoid false predictions.  This context is
provided by the graphical SFINX package described here.

The viewers in the SFINX package employ the SFS data exchange format for importing
predictions and data from a variety of sequence analysis programs. The SFS data format is
meant to be a generic vehicle for exchanging sequence features including curves, functioning
as a meta-language between computing programs and graphical viewers. We believe that such
a system will accelerate the development of future computation programs, because providing
such programs with an interface for the simple SFS format is clearly easier than developing a
entirely new viewer.  It may also stimulate development of more sophisticated and interactive
results viewers. We hope that an SFS viewer will soon be available in Java; in the mean time,
Dotter and Blixem can be used as WWW helper applications under UNIX X-windows and
Windows 95/98/NT.

The SFS format currently fulfill s the requirements of the most fundamental generic tasks.
There are a number of more specialized tasks that would profit from a special data type,
which we have not supported here.  One example is symbols for gene finding, where splice
sites and introns usually have a different layout than the common boxes.  This could in
principle be indicated with <look> attributes specifying shapes, e.g. intron, splice5, or arrow.
However, to keep the SFS format as generic and as simple as possible, and as most shapes can
be well represented by XY curves, we have refrained from defining these looks here. In most
cases it is however suff icient to mark up features with a particular meaning using special color
codes.

One consequence of the SFINX package’s design is that the scripts are pre-configured with
certain parameter choices.  These are thus not interactively settable, but we believe that our
selection of parameters in the release and on the web server will serve casual users well .
More advanced users will need to download the scripts and analysis programs, and can then
easily modify the parameters to their own choice.
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TABLES

Table 1.  List of the scripts in the package presented here that are coupled to Dotter and
Blixem analysis.  Note that all Blixem displays can be combined with output from BLAST.
All Dotter scripts except blxTM produce a self-dot-plot; blxTM makes a dot-plot of the query
sequence and a randomly generated hydrophobic sequence.

Front-end
scripts

Runs programs Helper scripts

Sequence complexity analysis by SEG with
multiple parameter sets

blxseg
dotseg

seg
pseg
hiseg

SFSseg
seg2SFS
pseg2SFS
SFSentropy

Secondary structure and accessibility prediction
by PHD and coiled coil prediction by COILS2
with multiple parameter sets

blxStruct
dotStruct

phd sec
phd acc
coils2

SFSstruct
phdsec2SFS
phdacc2SFS
coils2SFS
coils2script

Transmembrane prediction by TMHMM,
HMMTOP, MEMSAT, and PHDHTM;
hydrophobicity plots

blxTM
dotTM

tmhmm
hmmtop
memsat
phd htm
signalp

SFSTM
TMHMM2SFS
HMMTOP2SFS
memsat2SFS
phdhtm2SFS
signalp2SFS
signalp2seq
hydroph

Integrated complexity, coiled-coil, and
transmembrane analyses

BlxOmni
DotOmni

All of the above All of the above

Table 2. Guidelines for interpreting sequence composition derived features to assign the
structural class of a protein. The interpretation is significantly enhanced if these features are
analyzed graphically in the context of dot-plots and matching sequences with the SFINX
package.
Structural class       Positive indications       Negative indications
Non-globular, type
coiled coil

- Coiled-coil support with
many parameter sets.

- SEG low complexity.
- PSEG low complexity of

period 7.

- Not supported by many
coiled-coil parameter sets.

- HISEG high complexity.
- PSEG low complexity of other

periods than 7.

Non-globular, other
types

- SEG low complexity.
- PSEG low complexity of

various periodicities.

- HISEG high complexity.

Transmembrane - TM prediction supported by
many methods.

- Supported by hydrophobicity
propensities.

- SEG or PSEG low
complexity.

- Overlap with signal peptide
prediction.
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FIGURES

Figure 1.  Combined coiled-coil and sequence complexity analysis applied to seryl tRNA
synthetase (PDB:1SRY).  A. The graphical output in Dotter produced by the dotOmni script.
Relevant feature series from PSEG, SEG and COILS2 were selected. The dot-plot was
calculated with a window size of 42.  B.  Actual structure of one monomer in 1SRY. The
segments found by SEG low complexity analysis and COILS2 are marked dark in the
structure.  The extended N-terminal region, which is found with all parameter settings, is a
typical coiled-coil .  However, the short segment detected around residue 300 is not a coiled-
coil , but merely an amphipathic surface helix. Indications that this was a false positive
prediction include the facts that no PSEG low complexity segment of period 7 was found in
this region, and that only some COILS2 parameter settings predict it.  Such short spurious
predictions are rather common, hence only looking at one of the coiled-coil predictions might
give a misleading result.  C. The 1SRY structure colored according to the crystallographic
temperature factors.  High temperature (flexible) residues are dark while rigid residues are
light.  The flexible region corresponds to the N-terminal segment predicted as coiled-coil .

Figure 2.  Analysis if non-globular segments that are not coiled-coils, applied to xylose
isomerase (PDB:1XIS).  A. Blixem display of results produced by the blxseg script (selected
feature series shown) together with database matches reported by BLAST. The C-terminal
region is found to have low sequence complexity, suggesting that it has an irregular, non-
globular structure. This region is only present in some homologs.  B. Actual structure of one
monomer in 1XIS. The low complexity segment found by SEG is marked dark and
corresponds to an extended, non-globular tail with a partly irregular structure. Because this
extended segment is not of the coiled-coiled type, COILS2 does not detect it.

Figure 3.  Coiled-coil or not? SFINX analysis of C. elegans protein C25A11.4A. The
blxOmni output shows that the region predicted by COILS2 to contain a coiled coil , also
features very low sequence complexity in various periodicities, as reported by PSEG. The
coiled-coil prediction is unlikely to be correct because the region is much more biased
towards charged residues than a typical coiled-coil , and there is no preference for low
sequence complexity in period 7.  A more likely scenario is that this is a charged cluster with
a flexible or irregular folding pattern.

Figure 4.  Combined transmembrane topology analysis, applied to a glycine receptor
(SWISS-PROT:GRB_RAT).  The dotTM output shows a dot-plot of the query sequence
versus a randomly generated sequence of hydrophobic residues, along with the results from
signalP and four TM prediction methods (written below the prediction), followed by
positively charged residues and hydrophobicity curves from two different scales. The
topology predictions are marked according to: dark=in the membrane; shaded=cytoplasmic
loop; white=non-cytoplasmic loop. All four predictions are different - which one is correct?
The dotplot and hydrophobicity curves indicate that the TMHMM prediction is most likely
the correct one.
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