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ABSTRACT

Severa protein sequence analysis algorithms are based onproperties of amino add
composition and repetitiveness These include methods for prediction d secondary structure
elements, coil ed-coil s, transmembrane segments or signal peptides, and for assgnment of
low-complexity, non-globuar, or intrinsicdly unstructured regions. The quality of such
analyses can be grealy enhanced by graphicd software tods that present predicted sequence
fedures together in context, and al ow judgement to be focused simultaneously on several
different types of suppating information. For these purposes, we describe the SHNX
padkage, which al ows many different sets of segmental or continuous-curve sequencefeaure
data, generated by individual external programs, to be viewed in combination alongside a
sequence daot-plot or amultiple dignment of database matches. The implementationis
currently based onextensions to the graphicd viewers Dotter and Blixem, and scripts that
convert data from external programs to a smple generic data definition format called SFS.
We describe goplications in which da-plots and flanking database matches provide valuable
contextual information for analyses based oncompositional and repetiti ve sequencefedures.
The system isalso useful for comparing results from algorithms run with arange of
parameters to determine appropriate values for defaults or cutoffs for large-scale genomic
analyses.

INTRODUCTION

Any protein sequence, astypicaly inferred from a genomic or mRNA sequence, paentially
represents a rich mosaic of moleaular properties refleding structure, dynamics, interadions
androlesin cdlular machinery. Interpretation and annaation d such asequenceisa
complex conceptual task, which is usually achieved by a synthesis of agorithmic analysisand
expert judgement. Individual agorithmsvary in their ability to dagnase or classfy various
sequence features, and krowledgeable human interpretationis generally considered o te
esential. Even seemingly straightforward outputs, such as database sequence simil arity
seach results using conservative aitoffs, are frequently grealy enriched by human abiliti esto
perceve @ntext, asociations and urexpeded pitfalls. Inall cases, graphicd display can
dramaticdly improve envisioning and comprehension d the interrelated sets of data, and most
sequence analysis ftware packages include graphicd toals.

In addition to comparative analysis of conserved damains and sequence motifs by means of
database seaches, severa agorithms have been designed to predict certain protein features
primarily from attributes of compasition and repetitiveness Such features include secondary
structure dements, transmembrane segments, signal peptides, low-complexity regions, coil ed-
coil s, ather non-globuar domains, andintrinsicdly unstructured regions. These results are
typicdly interpreted, together with regions of sequence cnservation, to infer a provisional
map of the possble structural and functional regions of a protein. Thistask presents sveral
difficulties and requires critical evaluation d results from various compasitional, alignment,
and modeli ng algorithms.

To assst these tasks, adaptable software is needed that takes the results of different amino
add sequencefedure analysis programs and wses them as inpus into graphics programs

designed for integrated visuali zation. Also needed isthe aility to run each program with
different parameter sets and compare the results graphicdly. Weighing the significance of



different types and levels of evidence together usually leadsto a more accurate analysis than
runnng each prediction program separately with default parameters. In addition, integrated
anayses of thistype ae valuable in cdibrating parameters during development of
computational methods, for example to employ them in large-scale genomic analysis. Many
analysis programs are provided with very permissve default parameters to minimize false
negatives, whereas in genome-wide analysisit is often important to use non-default
conservative parameters to limit the number of false positives.

It isdesirable, therefore, to view the combined ouput from severa approades, algorithms,
and parameter sets, in many cases juxtaposed with database matches. Here, we describe a
flexible software system that meds these various needs, and ill ustrate some of its appli cations.
Sinceit isimpossble to define exad rules on haw to interpret such multi-facetted data, we
provide aset of typical examplesthat ill ustrate how logica reasoning based onthe combined
output of many different analyses can lead to a corred interpretation, a at least avoidance of
an incorred one.

Data types and formats

There aein principle two primary types of data for describing sequence features. segments
and curves. Segments are defined by one start and end sequence ®ordinate. Typically, the
seguence between these coordinates is assgned a certain property algorithmicdly, such asa
low complexity region. Curves (or “profiles’), in contrast, consist of an array of scores, each
score being assgned by an algorithm to asingle residue. We here use the term “curve”
because the term “profile” is mainly used in sequence analysisto denote amatrix of numbers
along the sequence. Segments frequently have ascore too, and may have as<ociations with
other pieces of data, particularly if they are “matching segments” that can be digned by

simil arity to ather sequences or sequence models. It is often advantageous to browse
matching segments from database searches at the level of aligned residues; a specia viewer
for this purpose is Blixem (Sonnremmer and Durbin 1991).

Data sets, of both segment and curve types, can be obtained either by parsing the output of
avail able sequence analysis programs or by independent cdculation from the sequence being
anayzed. Many prediction programs nat only produce aset of segments as output, but also
cdculate aprofil einternally, according to some mathematical function a empirical scde, as
part of the dgorithm. Thisisthe caein, for instance, the SEG complexity anaysis (Woaotton
and Federhen 1993 Woatton and Federhen 1996, most transmembrane segment prediction
programs and secondary-structure prediction methods. Generally, in these caes, the
underlying profile may be readily calculated by using the gpropriate function, independently
of the program. Some programs report both the segments and the underlying profile, for
instance COILS2 (Lupaset al. 1991), that predicts apha-helica coil ed-coil s.

A number of established database and visuali zation systems exist that include built-in
functions for sequence segment display. These include ChromoScope (Zhang et al. 1994,
bioWidgets (Seals 1995, APIC (Bison and Garreau 1995, the BDGP java sequence viewer
(Rubin 1996, GAIA (Bailey et al. 1999, and ACEDB (Durbin and Thierry-Mieg 199).
These aerelatively large software suites that require asignificant investment in knowledge to
become operational, usually due to the intricades of speafying apradical datamodel. For
instance, the data definiti on languages such as ACEDB and ASN.1 were designed to store
biologicad objectsin arigorousway. Generating and parsing data in such formats involves
suppating asubstantial framework of semantic rules. For data ansisting only of segments or



curves, the complicaions of conforming to such aformat are unwarranted, and asimple
tabular format is adequate. Furthermore, many of the avail able visuali zation systems have
various limitations, depending ontheir history of development, which in many cases was
oriented towards displaying genetic or physical maps, and thus have no fadli ty for curve data.
To ou knowledge, only the mmmercial APIC system was designed to handle awrve datain a
generic way.

In contrast to these large, comprehensive systems, our goal isto provide simple, yet powerful,
generic tod s that all ow any sequence aunching program to communicate its results to any
graphicd viewer. At the coreisasimple dataformat for sequencefeature series, which we
cdl SFS. Sequence analysis programs typically produce data that is compatible with the
present SFS data model, bu it is also extensible to incorporate feaures that may need spedal
treament in the future. SFS achievesalogicd separation d predictior/cdculation programs
and viewers, and thus removes the need for special visualizationtoadls for ead individual
program. Viewers can then become more powerful and evolved todls, whil e the dgorithmic
implementations can be developed withou the extra burden of buil ding visuali zation todls.
The overheal for bath viewers and calculation programs to suppat the lightweight SFS
format is minimal.

The two core datatypesin the SFS format are segments and XY curves. An XY curveisa
two-dimensional plot of aseriesof X andY value pairs, where X is the sequenceresidue
coordinate. The information stored is very reduced, bu is sufficient for generating arich and
easily interpretable graphical representation. In addition to the mordinates and score, each
data point is asociated with information necessary to link data points from a cmmon source
together and a wlor to dstinguish it graphically. Optional annaationis allowed. However,
the predse shape or placanent on the screen of an oljed can na be stored explicitly; thisisa
property of each particular viewer, and oy generic atributes can be spedfied in SFS. This
foll ows the ideabehind the HTML markup language. The SFS format is likewise intended to
work with browsers viathe World Wide Web, using SFS-viewing hel per appli cations.

Recantly, two systems for sequencefeaure markup have been described that are based on
XML, which isan extension d HTML: BIOML (Fenyo 1999 and BSML (Spitzner 1999.
XML isastructured format for data exchange that is becoming increasingly popuar,
particularly for describing data objeds of hierarchicd nature. However, because of the
flexibility of XML to describein principle ay datawith any syntax and semantics, writing an
XML parser isfar from trivial. We do nd consider typicd sequence features complex enough
to motivate the complexity of generating and parsing XML. The main motivation for
inventing SFS was to keep the format so simple that it becomes amost trivial to generate and
parse the data, yet powerful enough to describe dl typical types of feaures. In principle, an
XML block correspondsto afield in SFS, hence @nverting SFSto XML and viceversais
straightforward. Hierarchical levels are not usually used for describing sequence features, but
multiple dtributes may be, e.g. the mlor and shape of afeaure. Thetabular SFS solves this
by concaenating multiple dtributesin a ommadelimited list in asingle field. Because XML
has gained popuarity in the bioinformatics community, we provide atod for conversion d
SFSto XML, and al ow the results onthe WWW server to bereturned in XML.

A simple data format similar to SFS aso existsin ACEDB for importing ‘ user segments’ into
the sequence map display. Anather format used to exchange data between a number of gene
prediction goupsis the GFF format for gene-finding fegures
(http://www.sanger.ac.uk/Software/GFF/), which is now also suppated by ACEDB. Both



these formats suppat one single data type for sequence segments. Since GFF isesentialy a
simpler version d SFS, it isaso suppated dredly by the viewers presented here.

We describe here two graphicd viewersthat suppat the SFS format and integrate segment
and curve features into their rather specialized graphicd analysis. the Dotter dot-plot program
and the Blixem database-search results viewer. Previous versions of both these programs had
some rudimentary displays of segmental features, but they have now been upgraded to
acommodate ary number of SFS data series.

Dotter (Sonnrammer and Durbin 1995 isafull dot-plot cdculation program which stores the
score of ead cdl inadot-matrix. The stringency of the dot-plot analysis can be set
interadively, using Dotter’ s dynamic “Greyramp” tod during viewing of the plot, withou
having to recdculate the dot-matrix. Displaying sequence features cdculated by other
programs together with a self-dot-plot is particularly useful for analyzing internal repeas and
regions of compasitional similarity. Similarly, Dotter can be used to analyze whether fedures
of two dfferent sequences make sensein the mntext of the similarity provided by a dat-plot.
The size of the “diding windon” used to generate the dot-plot is by default set to the expeded
length of a high-scoring segment pair in Dotter, but can also be set manually to focus on
repeds of acertain periodicity. It is often useful to explore the dot-plot with dfferent window
sizes. Potentialy, awindow size of 1, showing all similarities at the single-residue level,
contains the maximum compasitional information content, but this tends to obscure diagonals
correspondng to repeaed motifs.

Blixem (Sonnremmer and Durbin 1994 shows database matches generated in aBLAST
seach in aslave-master alignment. It is valuable to combine sequencefeaures, which may,
for example, suggest domain boundries or functional characteristics, together with the
database matches, thus achieving amore accirate interpretation. Blixem hastwo panels; the
top panel shows a schematic overview of feaures and database matches along the entire query
sequenceor in azoomed inregion. A dliding box in the overview panel frames aregion that
is displayed in the bottom panel, in which fegures and database matches are shown in colored
residue letters. Blixem can aso be used withou showing BLAST matches, in which case it
simply ads as a general graphica data viewer for any sequencefedure.

We focus here on appli cations of the SFS format for detail ed analysis of compasitional and
repetiti ve protein sequence feaures, and for parameter cdibration, employing readily

avail able calculation and prediction programs. For these particular programs, we provide
user-friendy scripts to run them, conwvert the output to SFS, cdculate various profile airves,
andto view the combined output in Dotter and Blixem. The entire package of scripts,
parameter sets, and viewersis called SHNX. The scripts dotOmni and AxOmni run all
incorporated analyses and present the resultsin aviewer as asingle adion. Additional
analysis programs can be incorporated into the system with littl e dfort.

RESULTS

In this sction, we demonstrate particular appli caions of the SFINX padkage to anal yses of
compasitionally biased and repetiti ve regions, transmembrane segments, and alpha-helicd
coil ed-coil sin amino add sequences. The role of graphical visualization reedsto be
understoodin the mntext of the underlying theories, goals, and evauation criteria of each of
these methods.



Compositional complexity and repeat analysis

Many regions of contrasting compositional bias occur in bah nwcleotide and amino acid
sequences (Karlin and Brendel 1992 Salomon and Konogka 1992 Woaotton 1994; Woatton
and Federhen 1993. Investigation d local compasitional complexity and periodicity is
informative & an ealy stage of the analysis of a new protein sequence, particularly when
results can be interpreted together with locd matches from database searches (Altschul et al.
1994 Wootton and Federhen 19%). In netural protein sequences, there is a strong tendency
for compact globuar folded damainsto have ahigh complexity of composition that resembles
a"randam" distribution d amino add frequencies (Wootton 1994 Wocotton 1994D. In
contrast, compasitionally biased regions of lower complexity correlate in most cases with
nonglobuar, extended or intrinsicdly unstructured regions (Dunker et al. 1998 Woatton
1994k Wright and Dyson 1999. Numerous low complexity protein regions are involved in
crucia moleaular functions and interactions, bu, in general, they are relatively intradable to
structural investigation by crystall ographic methods, in contrast to globuar domains (Wootton
1994). Increasingly, NMR methods are yielding information onthe dynamics and
interadions of conformationally flexible low-complexity domains (Wright and Dyson 199).

Compositional complexity analysis provides, therefore, a general methodfor investigating
architedural features of polypeptides, especially for making provisional assgnments of some
domain boundriesin multi-domain proteins (Wootton and Federhen 1996. Simple
complexity measures and segmentation algorithms have been described previously (SEG,
PSEG for protein sequences, NSEG for nucleotide sequences (Wootton 1994 Woatton and
Federhen 1993. Theseidentify optimal segments of low complexity, subject to parameters
("window length", "trigger complexity", and "extension complexity") that control the
stringency and granularity of the analysis. Relatively long windows, for example 45 residues,
are often appropriate when SEG is used in seaches for long, paentially non-globular regions
of proteins (Wootton 1994h Wootton and Federhen 199§. However, amuch more
comprehensive analysisis achieved by using arange of parameter values and by integrated
visualization d severa measures of sequence @mplexity. Complexity profil es, calculated at
different sliding window lengths, and self-simil arity dot-plots also provide useful visual
chedks onthe adua data underlying the dgorithmicdly assgned segments.

Low complexity segments may have gproximate or exad sequencerepeds or may lak
regular or recurrent patterns. The dtribute of regular periodicity can be analyzed
independently of overall compasitional complexity, by cdculating the sequence @mplexity
only for residues that are spaced at a defined interval from each ather. Thisisimplemented in
the SHNX padkage using the PSEG program described previously (Wootton and Federhen
1996.

A complementary approach, named HISEG, is aso implemented in the padage. This variant
of the SEG a gorithm reports optimized sequence segments of high, rather than low,
complexity. HISEG segments have the greatest locd compasitional complexity (or greaest
“randamness’) based onauniform distribution, a any arbitrarily specified dstribution, o
amino add frequencies, subjed to the same stringency and granularity parameters as SEG. In
pradice HISEG islessprecise than SEG for definition d the boundiries between adjacent
regions of contrasting complexity, because optimal matches to the target frequencies tend to
extend beyond hgh-complexity segments into more biased regions (Wootton and Federhen,
unpubi shed). Consequently the segments predicted by HISEG often overlap those assgned
by SEG and the latter usually more accurately indicate the gopropriate bourdaries.



Nevertheless the cmmplementary properties of HISEG and SEG are valuable when the results
of bath methods are viewed together, because their predictions tend to correspond
approximately to, respectively, globdar and nan-globuar domains, asiill ustrated below.

To acoommodate the diff erent types of compasitional complexity we run SEG and dsplay
entropy curves with 4 dfferent window sizes: 12, 25, 45and 75. For each window size, SEG
isrunwith three enpiricdly seleded parameters for “stringent”, “medium”, and “relaxed”
modes. For stringent mode, we used trigger and extension cutoffs of (2.0, 2.3, (2.95, 3.5),
(3.3, 3.69 and (3.55, 3.B) for the diff erent window sizes. For medium mode we used (2.2,
2.5, (3.0, 3.3, (3.4, 3.7, and (3.65 3.8%), while for relaxed mode (2.35, 2.6), (3.15, 3.45,
(3.5, 3.9, (3.7, 3.95. PEG isrunwith periodicities 2 through 12with trigger and extension
complexity cutoffs st to 1.5. These autoffswere set empiricdly in order to mainly revea
low complexity segments of significance.

Coiled-coil analysis

A particular form of repetiti ve protein sequenceis the heptad repea foundin most alpha-
helicd coiled-coil proteins. These mils can consist of either two or three helices wound
aroundeach ather in an extended rod-like structure. Lupaset al. (1991) developed a general
prediction methodfor predicting coil ed-coil subsequences, based onthe pasiti on-specific
biases within the heptads. In the present implementation, COILS2, (Lupas 199%), predictions
can berun wsing two scoring matrices, “MTI” and“MTIDK”, which are based on dff erent
sets of examples. One may also vary the window length, and runit with or withou position-
spedfic weighting. It is generally inadequate to use only asingle cmbination d these
parameters, because false-positi ve predictions tend to occur with some of them. However, a
goodjudgement of the gopropriate balance between sensitivity and specificity can be
adhieved using 12 combinations of these options and comparing the results graphicaly, as
implemented in the SHNX package. These 12 parameter combinations are obtained by using
ead o the 4 possble cmbinations of matrix and weights, with the threewindow sizes 14,
21,and 28.

Combined complexity and coiled-coil analysis

Sequences encoding coil ed coil s always contain regions of low sequence mmplexity and
short repetitions. The common type of coil ed coil with a heptad repeat, the target of COILS2,
isnormally associated with low complexity segments reported by SEG with the ébove
parameters. In addition, most such sequences give a PEG segment in period 7 ony, bu this
isnat aways the cae because many different types of coil ed coil s exist. Of 272 sequences
from SWISSPROT 39 (Bairoch and Apweil er 2000) with annaated coil ed coil s of length
100 a more, 56 (154) produced a PSEG period 7segment. Globuar proteins generally do
not produce such segments. In PDB (Susgman et al. 1998, which consists of mainly globuar
proteins, 1% (128 d 8997) of the sequences produced a PSEG period 7segment. It shoud be
noted that alternative types of coiled coails, e.g. the triplet type foundin coll agen, is not
deteded by COILS2, bu isreadily deteded by PSEG.

Figure 1 ill ustrates the value of combined interpretation wsing the complementary approaches
of complexity and coil ed-coil predictionswith dfferent parameters. In this example, the N-
terminal non-globuar region of T. thermophilus seryl tRNA synthetase is known from a high-
resolution crystal structure determinationto be mostly an extended, antiparall el, two-stranded
coil ed-cail (PDB:1SRY). The results with daOmni (Figure 1a) show a strong agreement in
predicting the goproximate position d this domain, among the different parameter sets for the
two agorithms. SEG assgnsthe entire non-globuar domain and COILS2 identifies the



coil ed-cail part that has heptad repeas. HISEG results are complementary to SEG and
correspondto the globuar domain. PSEG suppats the presence of a heptad repeat by
reporting a segment of period 7in the same region, bu nat in any other period. An additional
segment at residues 280-310gives a paositive signal with some of the parameter sets,
particularly with COILS2 at its horter window length settings of 14 and 21(Figure 1a).
However no PSEG segment is reported. The three-dimensional structure (Figure 1b) confirms
that this ssgment isnat a wil ed-cail: it i sadualy arelatively amphiphili c surface &pha-helix
of the globdar domain. Figure 1cill ustrates the greder structural mobhili ty of the non
globuar domain, suggested by the experimentally determined crystall ographic temperature
fadors. This N-terminal domain, and also neighbaing loopsin the globuar domain, makes a
substantial conformational shift on kinding tRNA (Biou et al. 1994.

In contrast with 1SRY, in xylose isomerase from Streptomyces rubiginosus (Figure 2), the C-
terminal domain is known from the aystal structure (PDB:1X1S) to be anonglobular
extension that wraps roundancther suburit of the tetramer, bu this region does not contain
any coil ed-coil conformation. SEG identifiesthis gructure & having relatively low
compasitional complexity, shown as segments together with an alignment of database
matches (Figure 2a) and as highlighted region d the 1X1S structure (Figure 2b), whereas
COILS2 gives negative results. This exampleill ustrates the aili ty of SEG to identify anon
globuar region onthe general basis of sequence @mplexity data. In this case, there aeno
regular repeats or sequence patterns that can be modeled onthe basis of aknown structural
class sich as coil ed-coil. Several other examples of relatively long, low complexity regions,
that are identified by SEG in protein sequences of known crystal structure, correspondto parts
of lesswell-determined electron density , or in many cases are “missng” from the

crystall ographic data, suggesting structural flexibility (Wootton 1994, Woatton

unpubi shed).

Combining coil ed-coil and compositional complexity analysis can aso be used to deted if
other types of low complexity regions cause false prediction d coil ed-coils. Figure 3 shows
the bIxOmni results for the C. elegans protein C25A11.4A. COILS2 gives a strong coil ed-
coil signal with most parameters, and SEG indicaes low complexity. However, PSEEG
produces repetiti ve low complexity segments in awide variety of periods, which suggests that
the il ed-coil predictionwas fooled by a strongly biased sequence mmposition. The residues
reported by PSEG, visible in the Blixem window in figure 3, indicae that the regionis very
rich in glutamate and argninine. This*“oversensitivity” to regions with charged residues was
also naed by the authors of COILS2. This analysis further ill ustrates that COILS2 aone, in
the dsence of complexity and periodicity analysis, would probably give amislealing concept
of the nature of this sequence.

Transmembrane analysis

A spedal case of biased sequence mmposition, are regions of the polypeptide that span a
membrane. Because of the lipid environment, the protein is constrained to hydrophobc
residues, particularly for alpha-helices that are exposed onall sidesto thelipids.
Transmembrane dpha helices that have hydrophili c interactions with ather helices are
generally lesshydrophobc. Sophisticated transmembrane prediction programs improve
acaracy by exploiti ng the diff erencein charged residues between loops on the cytoplasmic
and noncytoplasmic sides of the membrane (Claros and vonHeijne 1994 Persson and Argos
1997 vonHeijne and Gavel 1988. The most striking diff erence is the preference for the
pasitively charged lysine and arginine on the cytoplasmic side. Incorporating such signals
also alows the topdogy, i.e. the orientation relative to the cytoplasm, to be predicted.



Transmembrane segment predictionis nat only important from a structural point of view, bu
also gives astrong indicaion d aprotein’s locdization. Transmembrane prediction programs
are proneto predict signal peptides as integral membrane segments.

Figure 4 shows the output of four transmembrane prediction programs of this type, TMHMM
(Sonnhammer et al. 1999, HMM TOP (Tusnady and Simon 1998, MEMSAT (Joneset al.
1994, and PHDHTM (Rost et al. 1996, together with hydrophobcity curves for a given
window length acwrding to two scaes (Black and Mould 1991 Kyte and Dodlittl e 1982).
Also shown are signal peptide feaures from signalP (Nielsen et al. 1997, including the
segment between the N-terminus and the most likely cleavage siteif oneisfoundwithin the
first 50 residues. Positively charged residues (arginine and lysine) are marked as boxes to
show whether they cluster on the cytoplasmic side. The hydrophohcity scales are highly
correlated but can differ in some caes, e.g. the transmembrane segment aroundresidue 300in
the examplein figure 4 is much better suppated by the Kyte-Dooalittl e aurve than by the
Bladk-Mould curve. The Dotter view features a dot-plot display of the query sequencevs. a
randamly generated sequence of hydrophobc residues according to a distribution typica for
transmembrane segments. This way, the Dotter Greyramp tod can be used to see therelative
strength of transmembrane propensity for different regions.

In the example, rat glycine receptor beta cdhain precursor (SWISSPROT: P2078)), al four
programs predict diff erent topdogies. However, looking vertically at individual TM
segments, five of them are suppated by threeof the four methods, although by different sets
of methods. The orientation N-in is also suppated by threemethods (assuming that the N-
termina segment predicted by HMM TOP is a deaved signa peptide). TMHMM and
MEMSAT predict fewer segments than the ansensus, while HMM TOP is the only method
that predicts the signal peptide & a transmembrane segment. The SWISSPROT anndationis
consistent with the TMHMM prediction, which ladks the segment aroundresidue 90 that was
predicted by the threeother programs. Given the presence of asignal peptide, the SWISS
PROT/TMHMM topdogy appears corred. The segment aroundresidue 90, predicted by the
threeother programs, is not strongly supported by the hydrophobcity curves or the daot-plot,
and therefore probably represents aburied helix in alarge extracellular domain. Because the
N-terminal part of this globuar domain contains clusters of positively charged residues,
prediction algorithms can easily be fooled to forcethis part over to the cytoplasmic side for a
better score. This exampleill ustrates that taking the consensus prediction daes not necessarily
producethe crred prediction, bu asssted with underlying propensities and dd-plots, the
predictions can be validated and a aorrect result can be achieved.

Using the SFINX WWW server with Blixem and Dotter as helper applications
The analyses described here can be achieved withou installi ng the assortment of bad-end
analysis programs and the SFINX padkage locally. It is sufficient to install the Dotter or
Blixem viewers as hel per appli cations to aweb browser and run all prediction programs on
the CGR web server at http://www.cgr.ki.se/SFINX . The web page dl ows the sequence
complexity, structure, and transmembrane analyses to be turned on a off individually. The
Blixem view can include BLAST results from a “netblast” seach of the NR database & the
NCBI. Seeinstructionsin the web page on how to set up Blixem and Dotter as hel per
applications.



METHODS
Programs and availability

The faciliti es described here are avail able in Blixem version 3.0and Dotter version 3.0. Both
these programs are written in C and use the ACEDB graphics library (Durbin and Thierry-
Mieg 1999. Binaries are provided for X-windows on Unix workstations and Windows
95/98/NT. To parse output from BLAST to view in Blixem, afiltering program M SRcrunch
isnecessry. Dotter, isavail able & ftp:/ftp.cgr.ki.se/pubdprog/datter. Blixem and MSRerunch
are avail able d the same ftp servers, bu in the directory MSRerunch+Blixem instead of
dotter. Documentation on hav to run Dotter and Blixem with SFS data can be foundat
http://www.cgr.ki.se/cgr/groups/sonnfemmer/Dotter.html and Blixem.html. Both allow the
user to control the display of the feaures with a “Feature Series Seledion Tod” (Figure 1a) in
which each series can beindividually turned onor off. The caabili ty of seledively showing
the seriesis crucial sinceby default alarge number of series are generated, o which namally
only afew arerelevant at onetime.

The onrectionto external programs was done by csh and gawk scripts (seeTable 1) which
are available d ftp://ftp.cgr.ki.se/publprog/SFINX.

The SEG, PSEG, HISEG, and NSEG programs are fredy avail able &
ftp://ncbi.nim.nih.gov/puldseg. COILS2 was downloaded from
ftp://alf.biochem.mpg.de/Coil s.

Seehttp://www.cbs.dtu.dk/services TMHMM/ for acquiring TMHMM,
http://www.enzim.h/hmmtop/ for HMM TOP, http://insulin.brunel.ac uk/~jones/memsat. html
for MEMSAT, and ftp://cubic.bioc.columbia.edu/pubdrost/ for PHD.

A generic sequence feature series data format

The‘'SFS' dataformat isa‘meta-language’ between nongraphicd computation programs and
graphicd viewers that all ows generic data exchange for visuali zation puposes. To makeit as
universal as possble, the format mainly suppats only the core data. Information such as
screen placement of the objeds, fonts, order of the series, etc., were explicitly avoided, since
such feaures are better controll ed interadively in the graphicd viewer. The SFS
spedficaionfollowsbelow. By “datapoint” we mean the small est unit of data, either a
segment or an XY -value pair in a arve.

1. Each data point is associated with anamed series; one series can contain any number of
data points of any number of data types.

2. Each datapaint is dored on e line (<10000characters).

3. Thefieldsin aline are separated by white-space dharaders, which are not all owed within
fields.

4. SFSdatashoud be preceded by a header line with the words “# SFS format 1.0 for
badkwards compatibili ty in the future.
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5. SFS data shoud be preceded by a data type spedfier; currently one of:
# SFS type=SEG
# SFStype=XY <data...>
# SFS type=HSP
# SFS type=GSP
# SFS type=GFF
# SFS type=SEQ <data...>

The SEG type spedfies that segment data follow; XY that curve (XY plot) datafoll ow;
HSP("High Scoring Pair”, asin the BLAST programs) indicaes that ungapped pairwise
matches foll ow; and GSP (" Gapped High Scoring Pair") that gapped matches follow. GFF
isincluded for compatibili ty with the existing GFF format. SEQ dataisthe aminoacid or
nucl eotide sequence from which the SFS data was generated: visuali zation todls often
require the original sequence. For segment data (SEG, HSP, GSP, and GFF), properties
such as color and annaationis given per segment, while for data of XY typethese ae
given oncefor an entire aurve. All XY coordinates are ansidered to belong to ore arve
until the next “# SFS type=" line. However, one XY series can contain any number of
CUrves.

6. For data of type SEG (segment data), the format of each segment is:
<score> <segname> <seriesname> <start> <end> <look> [annaation]
These fields are specified as:
<score> [int] The score of the segment®
<segname> [string] The sequencethat the feature belongs to?
<seriesname>  [string] Name of series that this data belongs to

<look> [string, comma separated list in ore word] The gpearance, e.g. color®
<start> [int] Start coordinate of segment
<end> [int] End coordinate of segment.

[annatation] [strings] Optional description d the segment

7. For data of type XY (curves), the format of the type spedfier is:

# SFS type=XY <segname> <seriesname> <look> [annaation]

where the fields are the same & gedfied for the segment data under 6.

All li nes until the next “# SFS type=" line must contain XY data, of which the format is:
<> <y>

Spedfied as:
<x> [int] Residue number in sequence
<y> [int] Y-value & residue x*

8. For data of type HSP.
<score> <gname> <gframe> <gstart> <gend> <sname> <sframe> <sdart> <send>
<sequence>
These fields are specified as:
<score> [int, 0-10Q0 The score of the segment
<gname> [string] Name of the query sequence
<gframe> [string] Frame of the query segment, “+1”, “+27, “+3", “-17, “-2", “-3"

<gstart> [int] Start coordinate of query segment
<gend> [int] End coordinate of query segment
<sname> [string] Name of subjed sequence
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<sframe> [string] Frame of subject segment
<sdart> [int] Start coordinate of subjed segment
<send> [int] Start coordinate of subjed segment
<sequence> [string] Sequence of matching subject segment
The annatation d each sequence may be given onthe next line, preceaded by “# DESC “.

9. For data of type GSP.
<score> <gname> <gframe> <gstart> <gend> <sname> <sframe> <sdart> <send>
<sequence>
where the fields are the same & gedfied for the segment data under 8.
All li nes until the next “# SFS type="'line mntain the gapped pairwise dignment, in the
form of pairwise starting points and lengths of each ungapped segment (block). It is
asumed that regions between ungapped blocks contain an insertionin ore sequenceonly,
whil e the other sequence has a zero distance between two adjacent blocks. The format to
spedfy each ungapped bock is:
<gstart> <sdart> <len>
Spedfied as.
<gstart> [int] Starting point in query sequence
<sdart> [int] Starting point in matching database sequence (subjea).
<len> [int] Length of the ungapped bock (number of residues).

10. For dataof type GFF:
<segname> <seriesname> <look> <start> <end> <score> <strand> <transframe>

[annatation]
where the fields are the same & gedfied for the segment data under 6, except:
<strand> [char] For DNA, thestrand‘+’, *-", or *.".

<transframe>  [int] For coding DNA, theframeof the wdors. ‘'0’, ‘1, ‘2", or ‘.
See(http://www.sanger.ac uk/Software/ GFF) for detail s onthe GFF format.

11. For dataof type SEQ, the format of the type spedfier is:
# SFS type=SEQ <sequence> <segname>[anndation]
where the fields are the same & Pedfied for XY dataunder 7, except:
<sequence> @[int] Ordina number of provided sequence preceded by ‘@’: “@1”,
“@2', etc.. Thisisnecessary when multi ple sequences are included,
for instancefor Dotter.
All li nes until the next “# SFS type=" line mntain the entire query sequence. No
formatting charaders sioud be used in the sequence

Foatnates (including implementation-spedfic detail sin Blixem and Dotter):

1. For simplicity, the scoreisrequired to fal between 0and 10Q the raw score must thus be
rescaed. In many cases, it iswise to rescale the score so that the ‘twili ght zone' scores
fall inthe 0-100range, while dl clearly significant scores are mnverted to 100. Thisis
advantageous for visuali zation puposes, asit focuses the analyst’s attention to features
that require aiticd evautation. The adual score of clearly significant feauresis
normally not important.

2. Blixem and Dotter can for simplicity use specia shorthand codes for the field <seqgname>.
“@1" means the horizontal sequence and“ @2” the verticd sequence
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3. The dook> field contains information d the gopearanceof a particular feature, e.g. its
color, shape, line thickness etc. Multiple atributes are dlowed to be spedfied as comma
separated lists, in which the atributes are mncatenated to ore word with asingle mmma
character as sparator (no space before or after the omma). The exad wording and
meaning of the look attributes need to be spedfied in the definition as “magic tags’. In
SFS 1.0, SEG data ae restricted to colors, and XY datato color and a drawing mode
(“interpdated” or “partial”). By default, XY curves arelinearly interpolated in regions
where no datawas given, bu if “partial” isused in thelookfield, the aurveisonly drawn
in the spedfied regions. Interpdation grealy simplifies the spedfication d straight lines
which are ommonly used for indicating thresholds etc. The wlorsin Dotter and Blixem
are limited to the wlor names used by ACEDB, which al ows 32 common colors (see
http://www.cgr.ki.se/cgr/groups/sonnremmer/Dotter.html). Aside from
parital/i nterpolated, noshape atributes are specified in SFS 1.0. Alternative shapes might
be useful, particularly for DNA sequencefeatures sich asintrons and splicesites, bu on
the other hand these can easily be accommodated as XY curves.

4. For backwards compatibili ty, Blixem also still suppatsthe old SEQBL format (<score>
<gframe> <gstart> <gend> <sdart> <ssend> <sname> <sequence>), which isasimpler
version d the generic HSPdata type spedfication.

5. GSPdataiscurrently not suppated in MSRerunch and Blixem. However, MSRerunch
can turn gapped HSPs from gap-BLAST into pseudo-ungapped HSFs, in which deletions
in the subjed sequence ae shown as gaps whil e insertions are @llapsed. These can be
displayed in Blixem with amost nolossof information.

An example mntaining some segments and a arve to mark upa 200residue long sequenceis
shown below. A threshald lineis gedfied in the last threelines.

# SFSformat 1.0

# SFS type=SEG

100@1 TM 1 38yellow TM prediction: brown=TM, yellow=cytoplasmic
100@1 T™M 39 61 own
100@1 TM 62 73white
100@1 TM 74 99 lvown
100@1 TM 100 112yellow
100@1 TM 113 133 lbown
100@1 TM 134 152white
# SFS type=XY @1 myhydrophobgreen My hydrophohcity
110

36 10

41 90

59 90

64 10

7110

76 90

97 90

102 10

110 10

11590

13190

136 10

152 10
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# SFS type=XY @1 myhydrophob thack
150
200 50

DISCUSSION

The main conclusion from thiswork isthat the picture of sequence features becomes clearer
as more types of analyses and more parameter combinations are explored. Many anaysis
methods have been developed using proteins of ‘typicd’ amino add compasition and may
produce highly misleading results when applied to protein sequences of ‘atypicd’
compasition, i.e. strongly biased towards afew amino acids. Thereforeit is vauable to aso
look at sequence @mpasition dredly, to be &le to judge whether afedure prediction may
have been influenced by biases in sequence @mpasition. Many programs for predicting

coil ed coil and transmembrane ae prone to produce mispredictions on sequences of biased
compasition. We provide aset of general rules for asggning structural classbased on
compasitional feauresintable 2; it is however important to kegp in mind that al of the
feaures are only indicative and nd conclusive. They need to be judged in the context of locd
sequence ompaosition bases and repedsin order to avoid false predictions. This context is
provided by the graphicd SHNX package described here.

The viewersin the SHNX padkage anploy the SFS data exchange format for importing
predictions and data from avariety of sequence analysis programs. The SFS dataformat is
meant to be ageneric vehicle for exchanging sequencefeaures including curves, functioning
as a meta-language between computing programs and gaphical viewers. We believe that such
asystem will accderate the development of future computation programs, because providing
such programs with an interfacefor the simple SFS format is clearly easier than developing a
entirely new viewer. It may also stimulate development of more sophisticated and interadive
results viewers. We hope that an SFS viewer will soon le available in Java; in the mean time,
Dotter and Blixem can be used as WWW helper appli cations under UNIX X-windows and
Windows 95/98/NT.

The SFS format currently fulfill s the requirements of the most fundamental generic tasks.
There ae anumber of more speciali zed tasks that would profit from a special datatype,
which we have not suppated here. One exampleis symbadsfor gene finding, where splice
sites andintrons usually have adifferent layout than the ommon boces. This could in
principle be indicaed with <look> atributes gecifying shapes, e.g. intron, splice5, a arrow.
However, to keg the SFS format as generic and as sSmple & paossble, and as most shapes can
be well represented by XY curves, we have refrained from defining these looks here. In most
casesit is however sufficient to mark up features with a particular meaning using spedal color
codes.

One mnsequence of the SFINX package's design isthat the scripts are pre-configured with
cetain parameter choices. These aethus nat interadively settable, bu we believe that our
seledion d parametersin the release and onthe web server will serve casua users well.
More advanced users will need to dovnload the scripts and analysis programs, and can then
easily modify the parametersto their own choice
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TABLES

Table 1. List of the scriptsin the package presented here that are wuped to Dotter and
Blixem analysis. Notethat all Blixem displays can be cmbined with ouput from BLAST.
All Dotter scripts except bIxTM produce aself-dat-plot; bIxXTM makes a dat-plot of the query
sequence and arandamly generated hydrophobc sequence

Front-end Runs programs | Helper scripts
scripts
Sequence complexity analysis by SEG with blxseg seg SFeg
multiple parameter sets dotseg pseg seg2SFS
hiseg pseg2SFS
SFSntropy
Secondary structure and accessibility prediction blxStruct phd sec SFStruct
by PHD and coiled coil prediction by COILS2 dotStruct phd acc phdse@2SFS
with multiple parameter sets coil s2 phdac@SFS
coil S2SFS
coil s2script
Transmembrane prediction by TMHMM, bIxTM tmhmm SFSTM
HMMTOP, MEM SAT, and PHDHTM; dotT™M hmmtop TMHMM 2SFS
hydrophaobicity plots memsat HMMTOP2SFS
phd htm memsat2SFS
signap phdhtm2SFS
signap2SFS
signalp2seq
hydroph
Integrated complexity, coiled-coil, and BIxOmni All of the @ove | All of the &ove
transmembrane analyses DotOmni

Table 2. Guidelines for interpreting sequence composition dcerived feauresto assgn the
structural classof aprotein. Theinterpretationis sgnificantly enhanced if these feaures are
anayzed graphically in the context of dot-plots and matching sequences with the SHNX

padkage.

Structural class

Positive indications

Negative indications

Non-globuar, type

coil ed cail

Non-globuar, other

types

Transmembrane

Coil ed-coil suppat with
many parameter sets.
SEG low complexity.
PG low complexity of
period 7.

SEG low complexity.
PG low complexity of
various periodicities.

TM prediction suppated by
many methods.

Suppated by hydrophohcity
propensiti es.

Not suppated by many

coil ed-coil parameter sets.
HISEG high complexity.
PSEG low complexity of other
periodsthan 7.

HISEG high complexity.

SEG or PEG low
complexity.

Overlap with signal peptide
prediction.
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FIGURES

Figure 1. Combined coil ed-coil and sequence mmplexity analysis applied to seryl tRNA
synthetase (PDB:1SRY). A. Thegraphicad output in Dotter produced by the dotOmni script.
Relevant feature series from PSEG, SEG and COILS2 were seleded. The dot-plot was
cdculated with awindow size of 42. B. Actual structure of one monamer in 1SRY. The
segments foundby SEG low complexity analysis and COILS2 are marked dark in the
structure. The extended N-terminal region, which isfoundwith all parameter settings, isa
typicd coiled-coil. However, the short segment detected aroundresidue 300is nat a @il ed-
coil, bu merely an amphipathic surface helix. Indications that this was afalse positive
prediction include the fads that no PSEG low complexity segment of period 7was foundin
thisregion, and that only some COILS2 parameter settings predict it. Such short spurious
predictions are rather common, hence only looking at one of the il ed-coail predictions might
give amisleading result. C. The 1SRY structure olored acording to the aystall ographic
temperature factors. High temperature (flexible) residues are dark whil e rigid residues are
light. Theflexible region corresponds to the N-terminal segment predicted as coil ed-coil .

Figure2. Analysisif nonglobuar segments that are not coil ed-coil s, applied to xylose
isomerase (PDB:1XI1S). A. Blixem display of results produced by the blxseg script (selected
feaure series hown) together with database matches reported by BLAST. The C-terminal
regionisfoundto have low sequence complexity, suggesting that it has an irregular, non
globuar structure. Thisregionisonly present in some homologs. B. Actual structure of one
monamer in 1XIS. The low complexity segment foundby SEG is marked dark and
corresponds to an extended, norrglobuar tail with apartly irregular structure. Because this
extended segment is not of the il ed-coil ed type, COILS2 does nat deted it.

Figure 3. Coailed-coil or not? SHNX analysis of C. elegans protein C25A11.4A. The
bIxOmni output shows that the region predicted by COILS2 to contain a il ed coil, also
feaures very low sequence acomplexity in various periodiciti es, as reported by PSEG. The
coil ed-coil predictionis unlikely to be crrect becaise the region is much more biased
towards charged residues than atypical coil ed-coil, and thereis no pgreferencefor low
sequence omplexity in period 7. A more likely scenarioisthat thisisa darged cluster with
aflexible or irregular folding pattern.

Figure 4. Combined transmembrane topdogy anaysis, applied to a glycine receptor
(SWISSPROT:GRB_RAT). ThedotTM output shows a dot-plot of the query sequence
versus arandamly generated sequence of hydrophohc residues, along with the results from
signalP and four TM prediction methods (written below the prediction), foll owed by
pasitively charged residues and hydrophohicity curves from two dfferent scdes. The
topdogy predictions are marked according to: dark=in the membrane; shaded=cytoplasmic
loop white=non-cytoplasmic loop.All four predictions are different - which oneis corred?
The datplot and hydrophobcity curvesindicate that the TMHMM predictionis most likely
the corred one.

18



Dotter 1SRY B vs. 1SRY B
£

15EYtE (horizontal? ws, 15EY:B {(vertical?
o] 100 200 200 400
0IIIIIIIII|IIIIIIIII|IIIIIIIII|IIIIIIIII|II
g S, ) ) . .,
100-%
150 3
200 3
250 3
300-%
350 =
400 3
|
Feriod ¥ low complexity e
Complexity win==25
Low complexity seg win=2H stringent
[
High comple=xity =eg win=2b
[
N — N —
Y L | —
Enl%ﬂzﬁbirl i31ghted_w1n28 _FH_W
CoilsZ: MTI _unweighted_winld
I [ |
— —
Coil=sd: MTIDE _weighted_winld
[ (I
CoilsZ: MTIDE uwnweizghted_winZl
[ — =
£
-] | [




1C



Complexity win=25

.

High complexity seg win=25

100 150 200 250 300 350 i
-7 1
-
- 1
Phd I
-

-
-7 llllllllllllllll*llllll
- Low complexity seg win=25 med

1
- 1
‘ S '
CoilsZ; MTI_weighted_winld P - ]
- 1
CoilsZ: MTIDK weighted_ win2@ - - 1
Ll
-
P ‘ !
-
1
\

| Score [#ID| Start

TRIS (8]
sez_win2EMED)
hisee_win25
KYLA_STRDI | 1853 | 93

HKYLA_THEET 269 31

End
257 LRFGAGOLRARFLILYDLLESALRYSGPRHFDFKPPRTEDFDGYLIASARGCMRENTY LILKERARAF RADPEWHEAL RASELOEL ARPTARNGLEAL LDORSAF EEFOVDAAARARR 367

LRFGPGDLAARFWLYDLL ESAGYEGFRHFDFKFPRTEDFDGYIWASARGCMRNY LILKERARAFRADPEVIEALRARRLDEL ABFTAGDGLAALLPORSAFEDFOFDAAARR | 388
LRFGAGDLRAAFWLYOLLESAGYEGFRHFOF KFPRTEDFDGYWASAEGCHRNY LILKERARAF RADPEY QEALRARRLDAL A PTRRDGi:RLLHDRlHFE FOVERAAAR | 388
L (3

S
=i
0
=
f}
=}
[
=
=
T
=
[i7}
o
=
=]
[t
E
m

DGFPHFDIK.IRTEDFDEVLJESRKDNIPMYLILKEERKRFEQDFEVDRRLHES ELRTPTLHP! DLLADRSAFE] RDAYEAK | 394
LEFGIEILIRRFFL\/DLLES G 0GPRHFOAHALRTEDEEGYWAF ARGCMRTYLILKERAEAFREDPEWKELLARYY D L GPYSREKAEAL. . , , . KRRELPLEAKRRR | 387
41 |ESTOWYDTTLAMY, , 3

41
43|, OFPTHYYD Ln GL| FDRK\IRR 344
45| EFPSDLYEA RH E .ESIGPR FOAKPRR! 348
50| EFPTOLYS FOAKYRRSEPDDLYYAHIAG 365
45 [@PSH YITTRRMYEVVENGSIEF‘EGEL FORKPRR! 348
42| ,EFPTD FORKWRRBEPEDLFYAHIAG 357
42, EFP] DLYS LF] L L GL FORKYRREEPEDLFYAHTAG 357
43|, AFPTDIRMTTLAI KMGGFRGGLNFDAKWRR 3dd
43| AFPTODIRMTTLAL KMGG GEL FOAKWRR 3dd L
42 |IFM. . ....TTLAI KMGEG] FORKVRRE 343

2A

2B

.
N\



Complexity win=45 v

Low complexity seg wln!E medium ~
= 1 l — |

/

[Zoom In][Zoom Out][Whole] 250 378 500 625 780 ars
100%
80% S
GO — — —
40%  —— —
20%
0% S
~
~
\ N
\ 0 N | l =
\ Perisd 2 low com lexiti
\ Period 4 low.Eomplexit
(U~ i
Petiod 6 low complexity ~
[ T
— Fariod 7 low complexity ~
— <
~

rn;"————1 — r—\-én‘

\TU L/ ™ T T S — I - e
Coil=s2t MTI_unweighted winld ~

H =, I FE I = > |

Score |#I0| Start

— | —_—— ——, —
H iy H —f 19| o B! 1 H S
CoilsZ; MTI_urweighted_wir2g N
N | N N . S
\ \\
1 N
Coils2: MTIDK _weighted_win2 \'\
. /T | E— (I
\ N
S
! Hel

C2GALl. 4At+1:

pzeg B 100 50 15 B--—-B----f----B----E--—-B----B----H
pzeg_ B

pzeg_6 100 22 166 378
pseg 7

pseg_8

P
F

m

E
A--E

BE-B

=eg_wind5MED
MTI_unweight|
MTI_urweight|
MTIDOK weight RALAERERADKERLAWERLLRUAREKKRREE

R
[ E R I
pseg_9 100 E R E R A R
peeg_10 100 B----E-B--E-B--R-E--B-B--E-BE--BE-B--0-E-
pseg_11 100 R R—— ER---E
pzeg 12 100 R E E E




100

GRE_EAT {horizontal) w=, 1 {vertical?

100 200 300 400

: . " \ EQ\Q U \\\‘ B
\ . %\ &, : '\3 j:\ 5
| \ N\ N N h

o

s

k3

"

ikx f\ -

. %
-, ' RS NN . .
L o . . ~, Y
NN N _\;}NQ
\\ e B

o
e
siﬁnalP_Euk tC oredr S green: Y blued

I
THMHMM: H-out (hon—cytoplasmic?

HMTOF : M-owut (hon—cytoplasmic?

I
PHOREm: M-in fcytoplasmic?,. Score=0,935

|
ml
(871

tDp asmlc} Score=8,

EMSHT* M-
min IIITI PTO00T "0 0w merm

_E\Slt-l'-.-'E rezidues o, -

N e N

ggte DDDllttle wlnduw 1? T —

“Nwﬁfﬂ‘“xﬁf ‘VWWJ“wa \mefxwmqwfhﬂmf*'

Black-Mould window=17

i




