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Abstract

Graphical dot-matrix plots can provide the most complete and detailed comparison of two sequences. Presented here is DOTTER 2, a
dot-plot program for X-windows which can compare DNA or protein sequences, and also DNA versus protein.

The main novel feature of DOTTER is that the user can vary the stringency cutoffs interactively, so that the dot-matrix only needs to
be calculated once. This is possible thanks to a ‘Greyramp tool’ that was developed to change the displayed stringency of the matrix by
dynamically changing the greyscale rendering of the dots. The Greyramp tool allows the user to interactively change the lower and upper
score limit for the greyscale rendering. This allows exploration of the separation between signal and noise, and fine-grained visualisation
of different score levels in the dot-matrix.

Other useful features are dot-matrix compression, mouse-controlled zooming, sequence alignment display and savingrloading of
dot-matrices. Since the matrix only has to be calculated once and since the algorithm is fast and linear in space, DOTTER is practical to
use even for sequences as long as cosmids.

DOTTER was integrated in the gene-modelling module of the genomic database system ACEDB 3. This was done via the homology
viewer BLIXEM in a way that also allows segments from the BLAST suite of searching programs to be superimposed on top of the full
dot-matrix. This feature can also be used for very quick finding of the strongest matches. As examples, we analyse a Caenorhabditis
elegans cosmid with several tandem repeat families, and illustrate how DOTTER can improve gene modelling.
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1. Introduction

Ever since the introduction of graphical dot-matrix plots
w xto sequence analysis 1,2 , they have been among the most

popular methods for analysing similarity between two
sequences, particularly for gaining a good picture of the
similarity between repeated domains.

The original dot-plot concept of drawing one sequence
along the horizontal axis and the other along the vertical
axis of a coordinate system, and drawing a dot where two
residues match has essentially stayed the same. Regions of
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) Corresponding author. Fax: q44 1223 494919; Tel.: q44 1223

494991. E-mail: esr@sanger.ac.uk
1 Fax: q44 1223 494978. E-mail: rd@sanger.ac.uk
2 http:rrwww.sanger.ac.ukrdotter.html
3 ftp:rrftp.sanger.ac.ukrpubracedb

similarity between the sequences will result in a diagonal
row of dots, whereas spurious matches give rise to a
background of single dots. A standard filtering technique
to reduce the noise is to apply a window along the
diagonals and only draw a dot in the centre of the window
if the sum of all dots in the window exceeds some score
threshold.

One problem is that the optimal threshold for drawing a
dot is hard to guess a priori. Poor choice of threshold may
result in dot-plots either too full of noise or lacking the
relevant diagonals. This can be frustrating, since changing
the threshold usually requires recalculation of the entire
dot-plot, which often is very time consuming. Estimating

w xthe threshold by probabilistic methods 3–7 can be of use
for finding the approximate border region between signal
and noise, but still usually requires recalculation of the
dot-matrix at different score levels. Inspecting the dot-plot
at different thresholds is very informative since it gives a
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better picture of the strength of a diagonal relative to the
w x 4noise and other 8 . DOTTER was created to make this

interactive aspect of dot-plots more powerful than in previ-
ous implementations.

ŽImprovements on the classical single-bit dot-plot where
.dots are either on or off have been to encode the score of

w xa dot by colours 9–11 or by lines of varying thickness
w x7 . However, none of these programs can plot more than
16 different colours or shapes, and since they can not be
modified dynamically to other thresholds, they do not
eliminate the need for recalculation if another stringency
rendering is required.

Modern graphics hardware offers new possibilities for
addressing this problem. DOTTER allows the user to set
score thresholds dynamically after the dot-matrix has been
calculated, using the X-windows system for changing
screen colours on 8-bit displays. This is done by a mouse-
controlled ‘Greyramp’ tool which lets the user modify two
score thresholds which can either be used as a strict - all or
nothing - cutoff, or as a smooth rendering of many differ-
ent score levels at once. Dots scoring below the first
threshold are invisible and dots scoring above the second
threshold get the maximum intensity while dots scoring
between the thresholds are rendered with an intensity
proportional to their score. Employing 128 different
greyscale colours ensures a smooth range of intensity
values.

Computationally, the main problem with dot-plots is
that the execution time is proportional to the product of the
lengths of the sequences, which makes long sequences
very time consuming. This problem has been attacked by

w xheuristic approaches 12,13 and trees combined with
w xheuristics 14 . Such techniques can give improvements in

speed of several orders of magnitude, at the cost of
generating a not entirely correct dot-matrix. For long se-
quences, where an overview of the strongest matches is of
main interest, such approximations may be acceptable, but
for detailed analysis of weak similarities the full matrix
still needs to be calculated. We recognise the usefulness of
such fast methods and have therefore equipped DOTTER
with the ability to also read in matches produced by the

w xBLAST suite 15 . Displaying ungapped matches from
BLAST is also informative since it shows the extent of
high-scoring segments.

DOTTER is a versatile tool for dot-matrix comparisons
of DNA and protein sequences. It can produce dot-plots

4 http:rrwww.sanger.ac.ukrdotter.html

for DNA vs. DNA, protein vs. protein, and DNA vs.
Protein. For DNA, it can draw the reverse complement
diagonals in the same dot-matrix as the forward ones. For
DNA vs. protein, it translates the DNA sequence in the
three forward frames and draws them all in the same
dot-matrix. All modes feature tools to inspect the sequence
alignment of any diagonal.

2. Materials and methods

DOTTER 5 was written in the ANSI C language, using
the graphics routines from the ACEDB 6 graphics library
w x16 . Supported platforms are UNIX X-windows worksta-
tions from Silicon Graphics, Digital and SUN.

2.1. Generating the dot-matrix

Here, the dot-matrix will not simply contain a zero or a
Ž .one one bit for each dot as in the traditional dot-plot, but

Ž .a value between 0 and 255 8 bits s one byte . The
dot-matrix thus contains scores, averaged over a chosen
window-span, but we prefer not to call it a ‘score matrix’
to avoid confusion with the well-known pairwise score
matrices, such as PAM120 and BLOSUM62. The dot-ma-
trix needs only to be calculated once for a given window-
span.

For maximum speed, we precalculate score vectors for
every possible symbol in the vertical sequence along the

w xhorizontal sequence 17 . For DNA, this requires 4q1
Ž .score vectors 1 extra for unknown symbols , and for

Žprotein 20q2q1 20 amino acids, 2 for ambiguity sym-
.bols and 1 for unknowns . This makes execution faster

since the few score vectors only have to be calculated once
and are later added to and removed from the sliding
window-sums. The window-sums are calculated for con-
secutive windows along the diagonal in a sliding manner
by simply adding the next score and subtracting the last
score inside the window. Instead of calculating the win-
dow-sums for one diagonal at a time however, we keep a
horizontal vector of all window-sums and add and subtract
the precalculated score vectors row by row.

The following pseudocode outlines the algorithm. The
score vectors are assumed to be initialised with the scores
from the pairwise score matrix used.

5 http:rrwww.sanger.ac.ukrdotter.html
6 ftp:rrftp.sanger.ac.ukrpubracedb
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iiiiinnnnnttttteeeeegggggeeeeerrrrrsssss N, // Length of horizontal sequence
M, // Length of vertical sequence
a // Size of alphabet
W // Span of sliding window

vvvvveeeeeccccctttttooooorrrrrsssss scoreVec[1..a+1][1..N], // The score vectors
newsum[1..N], // Window-sum vector 1
oldsum[1..N], // Window-sum vector 2
zeroVec[1..N], // Vector of zeros
symbVec[1..M] // Symbols in vertical sequence

pppppoooooiiiiinnnnnttttteeeeerrrrrsssss addVec, // Pointer to scoreVec to be added
delVec, // Pointer to scoreVec to be subtracted
tmp // Temporary pointer

for i¤1 tttttooooo N dddddooooo
{
tmp¤oldsum
oldsum¤newsum
newsum¤tmp

addVec ¤ scoreVec[symbVec[i]]
iiiiifffff i)W ttttthhhhheeeeennnnn delVec¤scoreVec[symbVec[i-W]]
eeeeelllllssssseeeee delVec¤zeroVec

newsum[1]¤addVec[1]
fffffooooorrrrr j¤2 tttttooooo W dddddooooo
newsum[j]¤oldsum[j-1]+addVec[j]

fffffooooorrrrr j¤W+1 tttttooooo M dddddooooo
{
newsum[j]¤oldsum[j-1]+addVec[j]-delVec[j-W]

iiiiifffff newsum[j] )0 aaaaannnnnddddd i)W ttttthhhhheeeeennnnn
dot-matrix[i-W/2][j-W/2]¤newsum[j]/W

}
}

It is worth noting that the main operations are all vector
additions and subtractions, which would make the program
M times faster on an architecture allowing simultaneous
vector operations. The above algorithm gives a perfor-
mance of 5.7 million dots per second on a DEC Alpha
AXP 3000r700. This means that a cosmid sequence of
40.000 basepairs can be compared against itself in about
4.5 minutes. Other programs have reported speeds of

w x w x w x w x0.0005 18 , 0.1 4 , 0.005 7 and 0.08 17 million
dotsrsecond, albeit on slower hardware. The only program
we could benchmark on the same hardware as DOTTER

w xwas DIAGON 8 which runs at 0.46 million dotsrsecond.
Ž .The total memory usage of DOTTER is aq4 Nq2M

Ž .plus the dot-matrix itself 1 byterdot . The memory usage
Ž .of the dot-matrix is not O NM since if NM is large, we

only keep a compressed matrix. DOTTER calculates the
compression factor based on a user-settable option S, the

Žmaximum memory usage of the dot-matrix default 0.5

.Mb . If the product NM is greater than S, we let each pixel
represent aa T=T region of the full matrix, where T is the
smallest integer that satisfies NMrT2 -S. Although all
the values in the full matrix are calculated, only the

w xmaximum value in each T=T square is kept 18 . This
process increases the background noise, but this is readily
compensated for by raising the thresholds in the Greyramp

Ž .tool see below . If either N or M is greater than the
number of horizontal or vertical pixels of the screen, scroll
bars will appear to let the user pan through the dot-matrix.

By default, DOTTER sets the window-span to the
Ž .length of the expected Maximal Segment Pair MSP ,

which is calculated for the given sequences and score
matrix the following way. Karlin and Altschul showed that
for two sequences of length n and m, the MSP score
Ž . Ž Ž .M nm has a distribution approximated by P M nm y

Ž . . � yl x4ln nm rl ) x f 1 y exp yKe , and provided a
w xmethod for solving K and l 19 . The mode of this
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Fig. 2. DOTTER plot of DNA vs. protein with gene predictions from ACEDB. Shown here is a stretch of genomic DNA from the C. elegans cosmid
Ž . Ž . Ž .ZK637 EMBL Z11115 compared to the protein glutathione reductase from Escherichia coli SWISSPROT P06715 . The gene prediction ZK637.10

w xwas made in ACEDB, but some exons have only very weak homology. Matches found by BLASTrMSPcrunch 20 are superimposed in the dot-plot as
red lines. The match at exon 3 was too weak to be reported by BLASTrMSPcrunch, but it is visible in the dot-plot. Also, the BLAST match at the end of
exon 5 was extended past an insertion, whereas the dot-plot shows the correct diagonal. The Alignment tool shows the alignment of the three translated

Ž .forward frames of ZK637 with GSHR_ECOLI at the end of exon 5 see crosshair position . Frame 2 contains the match missed by BLAST. The
calculation took 0.6 seconds.

Ždistribution, or the expected MSP score is then ln nmq
.ln K rl. The expected score per residue in an MSP is

� 4RsSq S ; q sp p exp lS , where p and p are thei j i j i j i j i j i j

symbol frequencies in the sequences. By dividing the
expected MSP score with the expected score per residue
we obtain a simple approximation to the expected MSP

Ž . Ž .Fig. 1. Dot-matrix analysis of the C. elegans cosmid ZK1307, EMBL Z47358 with DOTTER. a The entire cosmid compared to itself, with the forward
and reverse direction diagonals superimposed. Only half the dot-matrix is drawn since the other half is an identical mirror image. Features that can be seen
at this level are an inverted repeat at 4000–6000, a region containing a multitude of small tandem direct and inverted repeats at 6700–9500 and a
duplicated gene repeat at 25000–28000. The alignment in both directions at the position of the crosshair is shown in the Alignment tool window in the

Ž . Ž .middle. b Zoomed in detail of a in a tandem repeat region of about 100 10 bp repeats between 6700 and 8100. The Greyramp Tool is used to view the
dot-matrix at different stringencies. The pixel values are 50 times the average residue-score in the window, meaning that a 100% identical match would
score 250, given the scoring scheme of q5 for matches and y4 for mismatches. Any dot scoring below the min threshold of 10 will be invisible, dots

Ž .above the max threshold of 70 will be completely black, and dots in between will be drawn in a greyscale proportional to their score. c If the rendering
thresholds are moved up to 70–130, it becomes clear that every 4 of the 10 bp repeats have stronger similarity with each other, suggesting a super-structure

Ž .repeat unit of 40 bp. d Moving the thresholds up to 130–190 shows only the 40 bp repeat structure in the forward direction and only faint inverted
Ž . Ž . Ž . Ž .diagonals, also with a pitch of 40 bp. The calculation of a took 170 seconds and of b , c and d , which are different renderings of one dot-matrix, 0.1

seconds.
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length:
ln nmq ln K

l
l ,S ijÝ p p e Si j ij

For typical sequences and score matrices such as BLO-
� 4SUM62 for protein and matchsq5; mismatchsy4

for DNA, this usually gives a window-span of about 25
residues. If the above method gives an undesired window-

span or fails because l is undefined for the chosen scoring
scheme, it can also be set manually. Because we are
interested in local similarities we set n and m to a constant
value of 100. This makes the noise density independent of
the sequence lengths.

DOTTER can also run in batch mode. In both interac-
tive and batch mode, the dot-matrix and all used parame-
ters can be saved to file and be inspected later. The ability
to load dot-matrices from file also makes it possible to

Ž .Fig. 3. Analysis of a highly repetitive protein with symbolic domain annotation. The protein UNC-22, or twitchin PIR S07571 from C. elegans is
compared to itself. Pixel values are 50 times the average residue-score in the window. The colours of the segments are: greens fibronectin type III domain
Ž . Ž .FN3 ; reds immunoglobulin domain IG ; Blueskinase domain. It is clear that the all the FN3 domains are much more closely related to each other than
the IG domains, and that the FN3-FN3-IG cassettes between 1000 and 3000 are more closely related than the other ones. The calculation took 3 seconds.
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generate dot-matrices with other programs and read them
in DOTTER for interactive inspection. See the World
Wide Web address below for details of the format.

2.2. Visualizing the dot-matrix with the Greyramp tool

The Greyramp tool was designed to enhance the visuali-
sation of greyscale images, particularly images with a
delicately balanced mix of noise and signal. The simplest
form of displaying the score of a dot as a greyscale is to let
the intensity be directly proportional to the value of the
dot. The Greyramp tool provides two additional features:
A min cutoff score, below which all dots get minimum
intensity, and a max cutoff score, above which all dots get
maximum intensity. For dots scoring between min and
max, the dot intensity is linearly proportional to the score.
The score shown in the Greyramp tool is the score per
residue, i.e. the total score of the sliding window divided
by the window-span, multiplied by a scaling factor to use
the pixel intensity range 0–255 optimally. By setting this
scale factor to 256r5R, where R is the expected score per

Ž .residue in an MSP see above , we place the expected
Ž .noise level at a fifth 51.2 of the intensity range and

thereby make the significance of the pixel intensities
roughly the same for different scoring schemes. By starting
the Greyramp tool with mins40 and maxs100, the top
of the noise will be just visible, and all scores above twice
the expected significant level will be at maximum inten-
sity. Empirically this gives reasonable starting points.

The min and max cutoffs can be changed dynamically
and can be controlled independently by point-and-drag
actions with the mouse on the little triangles seen in Fig. 1.
By dragging the little box in the middle between min and
max they are modified simultaneously while keeping the
difference between them constant. Minimum intensity is
usually white and maximum black, but this can be reversed
by the ‘swap’ function. For any setting of the min and max
thresholds, the rendered dot-matrix can be printed out on a
postscript printer.

DOTTER changes the greyscales on the screen by
modifying the colormap cells of 8-bit X-windows displays,
which are the most common. Since the colormap cells are
not needed on 24-bit graphics, DOTTER will not work on
such displays. To work properly, DOTTER needs to allo-
cate 128 of 256 colormap cells for which it can change the
displayed colour without other programs becoming dis-
coloured. Situations may arise however, when DOTTER
cannot run due to other applications that allocate too many
colormaps, in which case they have to be terminated
before DOTTER can work. Simultaneous DOTTER jobs
on the same display share the same colormaps.

2.3. The crosshair and Alignment tool

A crosshair can be moved either with the mouse or
cursor keys around the dot-plot. The extent of a diagonal

can be found either by reading the coordinates next to the
crosshair or from the rulers on the axes. The sequence
alignment of a diagonal can be displayed by moving the
crosshair onto it and launching the Alignment tool from

Ž .DOTTER’s main menu right mouse button . The Align-
ment tool displays a residue by residue alignment of the
two sequences corresponding to the diagonal around the
crosshair. Identical matches are highlighted in bright blue
and conservative substitutions in dark blue. If both se-
quences are DNA, two alignments are possible: of the
original sequences and of the reverse complement of the
horizontal sequence to the vertical sequence. The two
alignments can be shown simultaneously as in Fig. 1. If
the horizontal sequence is DNA and the vertical is protein,
the three forward frames are translated and superimposed
in the dot-matrix, keeping the maximum value in each
pixel as described above for compressed matrices. The
only way of telling which frame caused a diagonal is to
use the Alignment tool, which displays all three reading

Ž .frames aligned to the protein sequence Fig. 2 .
If the nature of some segments in one or both of the

sequences is already known, DOTTER can enhance the
analysis by displaying such segments as coloured boxes
along the border of the dot-plot, as in Fig. 3. The coloured
segments seen in the border are read in from a simple data
file with one line per segment. The format is: sequence
Ž .1shorizontal, 2svertical , start, end, colour, annotation
Ž 7.more details . In combination with the crosshair, the
coloured boxes are easy to relate to a particular diagonal.

2.4. Zooming in

It is possible to zoom in to any region in a compressed
dot-matrix by dragging with the middle mouse button to
delimit a rectangle, or with exact coordinates via a dia-
logue window. A new DOTTER job will then be spawned
for the selected region only. The parent DOTTER job will
not be superseded but will remain intact on the screen. The
two dot-plots will be independent of each other so that
either can be killed without affecting the other one. Since
all simultaneous DOTTER jobs share the same colormaps,
any Greyramp tool will control the greyscale rendering of
all active dot-plots.

2.5. Displaying high-scoring segments

Calculating the full dot-matrix, as described above, has
two drawbacks: it is slow for very long sequences, and it
does not display the maximum high-scoring extent of the
diagonals. Sometimes it is informative to try to extend a
diagonal in both directions until the total score doesn’t
increase further. The ungapped alignment giving the maxi-

7 http:rrwww.sanger.ac.ukrdotter.html
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Ž .mum score is called a high-scoring segment pair HSP .
w xThe BLAST programs 15 search for HSPs in a fast,

heuristic fashion. Instead of replicating the BLAST algo-
rithm, DOTTER simply reads in HSPs reported by BLAST
and draws them in the dot-plot as in Fig. 2, similarly to

w xPLFASTA 12 for FASTA output. Here it is accomplished
w xvia the BLAST output viewer BLIXEM 20 , which con-

structs a multiple alignment of HSPs reported by BLAST
and displays it graphically in a scrollable window. The
advantage of this is that BLIXEM first can give an overview
of all sequences that match a given query. The most
interesting homologies can then be explored in much finer
detail by calling up DOTTER ‘on the fly’. BLIXEM hands
the HSPs over to DOTTER, which can display the HSPs in
two different ways: by greyscale according the total HSP
score, or by monochrome red lines which can be superim-
posed over the full dot-matrix. It is also possible to
superimpose four different shades of red to reflect the
score of the HSP.

2.6. Using DOTTER for gene prediction

8 w xThe genomic database ACEDB 21 allows interactive
gene modelling, with full display of relevant features such
as splice sites, open reading frames, segments of high
coding potential, sequence homology, etc. If the gene in
question has homologous sequences, the multiple align-
ment of the homologues can be viewed by calling up
BLIXEM from ACEDB, which also passes on the tentative
gene prediction coordinates. For a more detailed analysis
of how the homology fits with the gene prediction, the
coordinates of the predicted gene are also passed on from
BLIXEM to DOTTER, which then displays the dot-plot
comparison between the genomic DNA where the gene

Ž .was predicted and the homologous protein Fig. 2 . Having
the gene prediction displayed in the dot-plot significantly
aids the ability to accept weakly conserved exons, and to
reject ones that are inconsistent with the homology.

3. Application

Sequenced cosmids from the C. elegans genome se-
w xquencing project 22 are routinely compared to themselves

with DOTTER 9 for analysis of the extent and nature of
direct and inverted DNA repeats. Such repeats are inter-
spersed throughout the genome, and there are many differ-

w xent recurring families 23 . For example, the C. elegans
Ž .cosmid ZK1307 Fig. 1 contains several repeat families:

33q4 copies of a 40-mer, 22 copies of a 35-mer, 21
copies of a 15-mer and 2 copies of a 123-mer which
contain 5 copies of an 11-mer in the middle. Naclerio et al.

8 ftp:rrftp.sanger.ac.ukrpubracedb
9 http:rrwww.sanger.ac.ukrdotter.html

previously described the first 3 of these repeat families and
named them RcC9, Rc35 and RcD1, respectively. The 40

w xbp repeat RcC9 24 , between 6750 and 8050, shown in
detail in Fig. 1b–d is especially interesting since it has a
less strongly conserved subunit of 10 bp which itself is
palindromic, giving a minimal repeat unit in alternate
orientations of only 5 bp: -TTC-. The smaller repeat units
are however much less conserved than the 40 bp repeat. At
very low stringency the dot-plot hence shows 10 bp spaced

Ž .diagonals in both orientations Fig. 1b . As the stringency
Ž .is raised Fig. 1c–d , the 10 bp spaced diagonals fade

away, leaving only the strongest conserved 40 bp repeats
in the dot-plot.

For arrays of tandem repeats such as this, DOTTER
makes it very easy to find the start and end of the
repetitive unit and the number of repeats, which is espe-
cially important for constructing high-quality multiple
alignments. As illustrated in Fig. 1, it is often far from
trivial to determine the length of the main repeat unit,
since multiples or fractions thereof are plausible units too.
With the Greyramp and Alignment tools, this becomes a
relatively easy task.

The need for a dot-plot program that can compare DNA
to protein sequences was also prompted by the C. elegans
genome project, where most primary protein homology
analysis is carried out by comparing DNA to protein. The
reason for doing this is that using predicted coding seg-
ments may miss homologies if the gene prediction was
incorrect. Database searching is usually done with the
program BLASTX in conjunction with the filtering pro-

w xgram MSPcrunch 20 to increase sensitivity and selectiv-
ity. The DNA-protein HSPs are then aligned in the X-
windows viewer BLIXEM. Integration of DOTTER into
ACEDB and BLIXEM hence made it natural to carry over
the DNA vs. protein philosophy to DOTTER, as shown in
Fig. 2. One could envisage using a different colour for
each translated frame, but given that real homologies are
normally confined to a single frame, and that the frame can
easily be determined with the Alignment tool, we found
the best solution was to leave them in the standard greyscale
colours. The exons and introns of the gene prediction are
shown just below the dot-plot border.

Fig. 3 shows a self-comparison of the protein UNC-22
or twitchin, a large muscle protein which probably inter-

w x w xacts with myosin 25 26 . It consists of repeated fi-
Ž . Ž .bronectin type III FN3 and immunoglobulin IG do-

mains and one kinase domain. At the N- and C-termini,
five tandemly repeated IG domains are present, while the
interior contains repeated ‘cassettes’ of usually two FN3
and one IG domain. With the coloured segment boxes, it is
easy to see how the similarity levels vary for the different
domains. For instance, while the FN3 and IG domains in
the N-terminal portion of the cassette repeat region are
very similar, they are less conserved towards the ends.
Especially the IG domains are very poorly conserved
except in the middle of the cassette region. The five
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N-terminal IG domains are more similar to each other than
to other ones, whereas for the five C-terminal IG domains
this is not the case. The dot-plots in Figs. 2 and 3 were

w xgenerated using the score matrix BLOSUM62 27 .

4. Discussion

DOTTER 10 is a new type of dot-plot program which
is well suited to handle demanding homology analysis
tasks involving weak and difficult to assess matches in
both traditional protein or DNA comparisons and in more
complex situations when genomic DNA is compared to
proteins or DNA. Its main strength is that the dot-matrix
only has to be calculated once, after which the stringency
thresholds are varied dynamically, avoiding tedious reitera-
tion of the dot-matrix calculation. This is particularly
useful when no optimal stringency exists, for instance if a
diagonal can only be seen when the background noise is
also visible. Such diagonals may still be biologically sig-
nificant if they make good sense with other diagonals
andror if they contain important key residues. In cases
like this, it is desirable to view the dot-plot under many
different stringency conditions and be able to change them
in a scrolling fashion.

w xThe program XSauci 28 also uses colormaps for dy-
namic threshold control, for a variant of dot-plots called
‘correlation images’, which transforms diagonals to hori-
zontal lines. XSauci uses greyscales differently than DOT-
TER however, in that the pixel intensity reflects the length
of a match instead of the score, and it employs only one
threshold.

The integration of DOTTER into the multiple alignment
viewer for BLAST matches, BLIXEM, makes a very
powerful combination. With the add-on MSPcrunch,
BLAST usually picks up at least one local match to
homologous sequences, but may miss weak matches or
matches to repeated domains. DOTTER can then be called
up directly from BLIXEM for a particular protein to show
the true extent of the homology. This system provides very
efficient and comfortable sequence homology analysis,
with a minimal risk of overlooking similarities or assessing
them incorrectly.

Alignment algorithms based on dynamic programming
are a popular method of pairwise sequence similarity
analysis which can be very sensitive if the gap weights are
set correctly. However, for weak similarities the alignment
is often very vulnerable to small changes in the gap
weights, and often only a narrow range of parameters gives

w x w xthe correct alignment 29 30 . Dot-plots do not suffer
from this problem, since no attempt is made to string
matching segments together with gaps in between. Several

10 http:rrwww.sanger.ac.ukrdotter.html

users have asked if it would be possible to generate a
gapped alignment by dynamic programming from DOT-
TER. Since this would not improve over the standard
implementations of dynamic programming, we have not
included this feature. One might envisage however, that
the user could select a number of diagonals, which are
considered relevant. These segments could then be strung
together in an alignment, possibly using dynamic program-
ming to fill in the gaps, but allowing interactive control of

w xthe alignment path 31 .
DOTTER is available by anonymous FTP 11, World

W id e W e b 1 2 o r b y se n d in g E -m a il to
esr@sanger.ac.uk. ACEDB is available by anony-
mous FTP 13.
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