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ABSTRACT

Large scde genome sequencing projeds have aeded a demand for more dficient sequence
analysis methods. For adaily output in the order of 10° finished basepairs per lab, many tradi-
tiona sequence anaysis methods are too labou intense to be pradicd. For a genome of a
higher eukaryote such as Caenorhabditis elegans, some of the most challenging analysis tasks
are crredly predicting the exons and introns of genes, and the functional anndation d the
proteins they encode. This thesis describes new methods that have been developed to assst
bath these tasks, in an integrated way. Gene structure prediction and functional classfication
are linked adivities in the sense that quality improvement of one often leals to improvement of
the other. The mgor isaue for doing both onalarge scdeis how to improve dficiency withou
saqificing quality.

Presented in part 1 are aset of software tods, that integrated in the ACEDB genomic data-
base form a graphicd analysis workbench well suited for high throughpu and high quelity ge-
nomic sequence analysis. They are based on single query sequence database seaching and
were implemented as algorithmic improvements and interadive graphicd visuali sation tods for
results from the BLAST programs. A nowel type of dat-plot program was incorporated for sen-
Sitive pairwise sequence omparison, and a database retrieval tod was developed to conred to
external databases.

Part 2 describes a different line of approadh, based onmulti ple sequence dignments for da-
tabase seaching. Multiple dignment based methods are often more sensitive than single se-
guence methods, and further automate the aanaation pocess In order to use such methods
efficiently, a comprehensive high-quality colledion d protein damain families described by
multiple dignmentsis needed. Methods were developed to buld and maintain such a database,
based on hdden Markov model profiles and seed aignments. This resulted in the database
Pfam, which currently contains 175 d the largest protein families. The high-quality align-
ments in Pfam are released together with automaticdly generated families of the remaining se-
guences. A graphicad workbench for display of Pfam seach results was developed and inte-
grated into ACEDB. Analysis of protein damain familiesin al predicted C. elegans proteins
was caried ou by using Pfam and by a study of nematode-spedfic families.



1. Introduction

This thesis concerns bioinformatics applied to genome sequencing. These ae bath very
yourg reseach fields, and are introduced separately below. Bioinformatics is a too wide-
ranging discipline to be fully covered in detail here. The introduction therefore mncentrates
on the aspeds that at present are most relevant for genomic sequence analysis. gene predic-
tion and sequence simil arity analysis. Because the second part of this thesis entirely focuses

on protein families, a separate introductionis provided of thisfield.

1.1 Genome sequencing projects

One of the most important steps towards fully understanding the biology of an organism is
the determination d its entire genome sequence. Thanks to recent improvements in DNA
sequencing techndogy, the sequencing of entire genomes has becme feasible. The genomes
of a number of model organisms, ranging from simple baderia to invertebrate animals, have
been o are aurrently being sequenced, leading up to the dallenge of completing the human
genome ealy next century.

The availability of complete genome sequences will dramaticdly change the way that
moleaular biology reseach isdore. The dasscd ‘f orward genetics' approach to find a gene
is atop-down approadh, wsing the phenotype of mutant individuals to progressvely narrow
down its location in the genome via genetic and ptysicd mapping techniques. Eventualy a
clone of the region that contains the gene is squenced. This procedure is very labour inten-
sive, and relies on good genome maps. With the entire genome sequence known, many short-
cuts can be taken which will acceéerate traditional ‘interest-driven’ reseach. In model or-
ganisms it is aso pdentially passble to turn this processaround going from a known gene
sequence to its function and impad on the phenotype by ‘knocking it out’ [Plasterk, 1992
Giese et al., 1992 Johrston, 1996 Spradling et al., 1995. This ‘reverse genetics' approad

will i nitially be dore on an ad hoc basis for particularly interesting genes, see eg. [Zwad et



al., 1993, bu hopes are high that a systematic knock-out analysis of al genes with unknavn
function in yeast will result in a wedth of new biologicd knowledge [Oliver, 1994. We
canna yet predict exadly what we will | ean from the genome sequence, bu it is arealy
clea that it will be amajor resourcefor biologicd reseach, bah by dired analysis of the se-
guence awell as areferencefor laboratory experiments.

Prokaryotic and single-cdl eukaryotic genomes are more atradive for whole-genome se-
guencing than those of higher multi-cdlular eukaryotes. The reasons are that they tend to be
small (0.5 - 15 million besepairs (Mb) compared to 100- 3000 Mb) and that the protein
coding regions tend to be densely paded single open realing frames instead of dispersed
exor/intron structures, thus rendering gene prediction relatively straightforward. In fad, less
than 5% of the human genome des for proteins. Because of this, most human genome se-
guencing projeds have so far concentrated onthe parts of the genome that are expressed into
proteins. Thisis dore by making libraries of cDNA clones from mRNA in cdls of different
tisaues. For efficiency reasons, usually only 300-500 kasepairs at the 5 and 3 end d these
clones are sequenced in asingle read, caled an EST (expressed sequencetag). Althouwgh this
data is enriched in protein coding sequences and hes tisaue-spedfic information attached,
EST datais fragmentary and alarge fradionis of poa quality. It shoud therefore mainly be
sea as valuable complementary data to the complete genome sequence. In fad, they arein-
valuable for finding protein coding regions in the genome sequence, as will be discussed in
sedion 1.2.

The complete genome sequence of four freeliving organisms has to date been determined:
the baderia Hemophilus influenzae Rd [Fleischmann et al., 1999 and Mycoplasma genita-
lium [Fraser et al., 1999, the yeast Saccaromyces cerevisiae [Dujon, 1996 and the acheon
Methanococcus jannaschii [Bult et al., 1999. A number of other microbial genomes are
projeded to be mmpleted within two yeas: The two thermophili ¢ archaeons and Pyrococcus
furiosus [Weiss 1994, Mycoplasma pneumoniae [Hilbert et al., 1995, Esherichia coli
[Wahl et al., 1994, Bacillus Subtilis [Medigue et al., 1995, a protozoan that causes typhus
Rickettsia prowazekii [Anderson et al., 1999, the spirochete that causes lyme disease Bor-

relia burgdorferi [Dunn, 1996¢, Mycobacterium tuberculosis, Methanobacterium thermo-



autotrophicum and Synechocystis sp. [Smith et al., 1995. From the first compete genome
sequences, it has emerged that while Baderia and Archea ae metabdlicdly similar, the a-
ched gene expresson systems has much more in common with Eukaryota

The methods described in this thesis are generally applicable to any genome. However,
since they were developed in collaboration with the sequencing projeds for C. elegans and
H. sapiens, the two main projeds at the Sanger Centre, a more detailed description d these

genome projeds foll ows.

Caenorhabditis elegans

This freeliving soil nematode has been the subed of intense moleaular biology reseach
ever since Sydney Brenner's (1974 classc screen for mutants. C. elegans is an attradive
model organism due to its completely known cdl development from egg to adult hermaphro-
dite (959 cdls) or male (1031 cdls), its sitability for genetic experiments (see review
[Hodgkin et al., 1993) and to its excdlent genetic [Edgley and Riddle, 199Q and plysicd
[Coulson, 1994 maps.

The systematic sequencing of its 100 Mb genome [Wilson et al., 1994 (appendix A) has
been underway since 1992in two laboratories, the Sanger Centre in Cambridge, UK and the
Genome Sequencing Center in St. Louis, USA, and is estimated to be finished in 1998[Wa
terston and Sulston, 199%. At present abou 50 Mb from the most gene-dense regions have
been completely finished, comprising more than half of all genes, while gproximately 20
Mb arein various gages of completion.

Currently around 3000CC. elegans EST sequences [Waterston et al., 1992 McCombie et
al., 1992 Y. Kohara, personal communicaion| are available, from approximately 5000
genes. Abou athird of all predicted genes are associated with ore or more ESTs. Normally
only asmall part of the5 and 3 ends are vered by EST matches, but some genes are cm-
pletely covered. Such cases are very useful for cdibrating the gene prediction methods.
ESTs have dso in some caes provided dred evidence of aternative splicing (see figure

2.1).



It has been estimated that C. elegans has a total of some 15000genes [Waterston et al., -
1997. This estimate was cdculated by dividing the number of genes predicted in a 200 Kb
region by the number of matching EST clones, and multiplying this number with the total
number EST clones in the @lledion. Asauming a representative EST matching frequency,
this would predict the total number of genes. Amazingly, this number, which was based on
only four EST matches, is very close to the arrent estimate, which is based on realy half
the genome. The total gene estimate has fluctuated somewhat, mainly due to lower EST
matching frequency on chromosome X, which is over-represented in the airrently finished
sequence. The number may aso be overestimated because it is based on pedicted genes,
some of which arelikely to be pseudagenes, bu in the dsence of conclusive evidence cana
be reagnised as such. Over 7000 genes have been predicted so far, including 330 tRNA
genes and numerous other structural RNAS.

The genome projed is at present mainly used as aresource to aid traditional reseach. If
somebody wants to use the nematode & a model to study the function and effeds of a gene
that has been dscovered in ancther organism, the traditional crossspeaes hybridisation
methods need no longer be used to identify the C. elegans hamologue. Instead, a scan
through the genomic sequence will rapidly identify all homologues (once the sequence is
completed) and reved their genome locdions. Thanks to a frozen library of randam Tcl
transposoninsertions [Zwad et al., 1993, the chances are that the gene in questionis nea a
Tcl element. If thisisthe cae, adeletion cerivative can be made to knack the gene out, thus
generating anull phenotype mutant.

The sequenceitself can aso been used to screen for particular gene families. For instance,
anumber of nematode-spedfic families of G-protein couded receptors have been implicaed
in dfadion. From the genome sequence, a large number of these genes were found ly se-
guence simil arity, which proved to be locdised to sensory neurons by reporter constructs
[Troemel et al., 1999.

A number of other genomic phenomena have been discovered, such as the high abundance

of DNA reped families. Some of these have the charaderistics of apparently inadive, partly



degenerated parasitic transposon families. Such elements may have exploited a functional

transposon in the past to spread throughou the genome.

Homo sapiens

Because the human genome has such alow density of genes (< 5% coding), the first large-
scde human genome sequencing projeds have mncentrated on sequencing expresed se-
guencetags (ESTs) [Adams et al., 1995 Hillier et al., 1999. Currently around 630000 i+
man EST sequences are available in the pulic database dbEST, bu many more ESTs exist
[Adams et al., 1995. The ESTs are dso used for mapping purposes by a number of groups
that form an international consortium [Boguski and Schuler, 1995.

It has been estimated that the 3000 Mb human genome mntains 50000- 100000genes
[Fields et al., 1994. The 280000ESTs squenced by the Merck-St. Louis projed [Hilli er et
al., 1999 were derived from an estimated 29000genes. Most other ESTs have only been
sequenced at the 5’ end, making the number of total genes hard to estimate, bu it is clea that
EST projeds will never be aleto find al genes. As more genes are sequenced, the dhance
of resequencing already known genes grows, and rarely expressed genes become increasingly
difficult to sift out from the ddundant ones. EST projeds were fast and cost-effedive in the
beginning of the human genome projed, bu are now drawing to an end.

Emphasis is alrealy shifting towards complete genomic sequencing. Before this can be
undertaken, the genome has to be mapped at a sufficiently high resolution. This has pro-
gressd well during the past yeas and many people ague that the time is now right to start
sequencing at large scde [Olsen, 1993. Already some 57 Mb of human sequences are avail-
able in the EMBL database, which in contrast to C. elegans is more than has been produced
by genome sequencing projeds. At the Sanger Centre, abou 8 Mb of human chromosomes
3,4,6,11, 13 16, 28hd X have been finished at thistime.

A substantial amourt of suppat is now becming available for genomic sequencing.
Fundng for abou 300Mb in the USA, 50Mb in Germany and 500Mb at the Sanger Centre
have drealy been allocaed, to be wmpleted within the next 5 yeas. The anount of data

produced will depend onwhat acarracy is aimed for. At low acaracy, the st per base be-



comes sgnificantly lower, bu the usefulness of the sequenceis also reduced die to its un-
cetainty. However, since the gene density in the human genome is relatively low, a lower
quality is perhaps acceptable, at least in the non-coding regions. It has been propaosed that
lowering the quality from 1 error in 10000 lses, which is the standard quelity, to 1in 1000
might be agood compromise which would make cmpletion d the entire genome &f ordable
and enable it to be finished 5yeas ealier than ariginaly projeded. The most important re-
gions would be finished at a higher quality, while nornesential ‘junk DNA segquence would
be left in alessacarate state [Marshall, 1993. The feasibility of this approad dependsto a
large extent on hav well analysis methods can be alapted to find coding regions in poa
quality sequencedata.

Human genomic sequencing is dill in avery ealy phase. As old techniques are refined
and rew ones are developed, efficiency will im prove and the @mst deaease. Currently alarge
propation d the resources are spent on development. For instance, it has been proposed that
instead of sequencing the commonly used 40 Kb insert cosmid clones, the whole genome
could be doned into 20000 35K b insert BACs (baderia artificial chromosomes) [Venter et
al., 1994. By sequencing 500 lases at both ends of ead clone, the ordering and seledion d
clones for complete sequencing would be smplified, and ptysicd mapping would nolonger
be necessary. The next yeas will see a onvergence of laboratory techndogies that can be
automated efficiently. With a world wide wllaborative dfort, the completion d the entire

human genome sequence by 2005seems feasible.
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1.2 Genomic sequence analysis

Once the genome sequence has been determined, what can we lean from it? All biologicd
phenomena ae ultimately encoded in the DNA sequence so in the long term we hope that
knowing the genome sequencewill provide answers to most biologicd questions. However,
in the short term this will not be passble, sinceour current level of knowledge of this codeis
insufficient for apredse and detail ed understanding of how it resultsin aliving organism.

The basic principles for how strings of DNA encode RNA and protein moleaules are
known. We can find protein coding regionsin DNA to some degreeof confidence by look-
ing for signas that are important for the transcriptional and RNA processng madhineries,
and by examining statisticd effeds of the usage of the genetic code (seebelow). Dired evi-
dence of coding regions can also be gathered experimentally, by sequencing transcribed
MRNA sequences, as was dore in EST projeds. However, the gene products interad with
other moleaules to perform life-suppating functions, and we ae not able to predict exadly
what these interadions are from the sequence done.

A tremendots effort has gone into cradking the moleaular enigma of protein folding, bu
the ultimate goal of predicting the threedimensiona structure and the function d a protein
from its amino add sequence doneis nat yet in sight. Instea, related bu simpler problems
have been tadkled, such as smndary structure (helix, shed or coil state) prediction, fold rec-
ognition and D structure mmparison. Genome sequencing projeds are in fad helping to
improve structure prediction, by rapidly producing more protein sequences. Structure pre-
diction wsing multi ple homologous sequences is superior to single-sequence prediction since
evolutionary information contained in the multiple dignment can reved many structural
feaures, albeit mainly onthe seoondary structure level. The main hope for predicting foldsis
pinned onthe belief that only alimited number of unique folds exist in neture, and orcethese
structures have been determined experimentally, the structure of new sequences could be
predicted by corredly assgning them to ore of the known folds. This nationis based onthe
fad that already with oy abou 300 knavn unique fold classes, over 90% of newly solved

structures has a previously seen fold class[Holm and Sander, 1994. This may however be
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due to oversampling of certain types of folds due to experimental bias, and that some fold
motifs occur at unusualy high frequencies. In fad, there is little evidence that the rate of
discovery of new uniquefolds is deaeasing.

Even withou a detail ed moleaular understanding of the genomic componrents, many func-
tional properties can be ducidated. One way is by dired experiment, which will now be per-
formed exhaustively on the genes for which nofunction is known in the genome of S cere-
visiae [Johrston, 1996. Another way isto compare the sequence of newly foundgenes with
other known sequences of proteins with aknown function.

The basis for structural and functional inference from sequence simil arity is that evolution
proceals via gene dugdication and spedation events, giving rise to families of related pro-
teins that we observe in the present day. Homologous sbling proteins caused by recent gene
dudication tend to have related functions, for instance enizymes that perform the same cda
lytic readion bu on dfferent substrates. Homologues in dfferent organisms may have iden-
ticd functions, such as caalysis of the same step in a pathway, or may be related via both a
gene dugication and spedation events. For both types of homologues, the constraints on the
sequence to make afunctional protein are such that the cmmon ancestry can be observed in
their sequences even after hundeds of milli ons of yeas. The sequences will differ much less
than the ad¢ual mutation rate would imply, because any functionally del eterious mutation will
not be propagated. Only dlight variations in the sequence ae usually tolerated. Thisis the
basis for inferring function and structure from sequence similarity. Whether proteins with
similar threedimensional structures but dissmilar sequences and functions are adually
highly diverged hamologues or are unrelated, is a matter open to dscusson. There eists a
‘twili ght zone', where amargina sequence simil arity may be meaningful or not. Only when
two sequences are sufficiently similar to ead ather can functional and structural inference be
dore with confidence

The first analysis that is dore to new protein sequences is therefore a @mparison to all
other known sequences, to determine whether functional information can be inferred by ho-
mology. Traditionaly, this has been dore by manually perusing the output of various data-

base seaches (see below) and further analysing potentially interesting database hits with
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various methods auch as dot-plots (see dapter 5) and multiple dignments (see below). A
reseacher would be content to spend several days analysing a sequence that took months or
yeas to determine. The main dfference for genome sequencing projeds is that so many
proteins are foundevery day that the processhas to be made more dficient and robust. For
this, spedal analysis workbenches have been constructed (seebelow), so that a human expert
can processlarge anourts of sequencein time-spans matching the sequencing rate.

Having accessto the entire genome sequence makes certain types of questions answerable.
For instance, the number of paralogues in gene families can be a&%ssxd, and a new reseach
field of *comparative genomics' is aready emerging. Here questions sich as comparing the
genomic organisation and content of different spedes [Tatusov et al., 1994, finding com-
mon sets of ancestral genes [Green et al., 1993, and estimating the size of a minimal life-
suppating set of genes [Mushegian and Koonn, 1996 are aldressed. We can exped to
lean alot from studying homologues in dfferent organisms. Already a number of intriguing
cases have been found, such as a nitrogen fixation like gene in S cerevisiae [Dujon, 1996
and hanologues to human dsease genesin lower organisms [Waterston and Sulston, 1995.

The remainder of this sdion will focus on the bioinformatics topics that are most rele-
vant to genomic sequence analysis, namely gene prediction, dcitabase seaching and auto-

mated analysis workbenches.

Gene prediction
Predicting protein coding regions in genomic DNA is a spedes-spedfic problem. Different
organisms use the interchangeable genetic codes to dfferent extents, and hgher eukaryotes
have their protein coding regions (exons) interrupted by non-coding regions (introns), while
prokaryotes and simple aukaryotes do nd. All gene finding systems are therefore fine-tuned
for aparticular organism.

Protein coding DNA differs from non-coding in that it contains triplets (codors), eat en-
coding an amino add residue. Since there ae 64 triplets but only 20 amino adds, several
triplets can encode the same anino add. The frequency of usage of ead codon apends on

the @undnce of the anino aad it encodes, and the choice of codonfor a particular amino
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add. Most organisms have apreference for cetain codors, which usualy refleds differ-
ences in the dundance of the different tRNA spedes that bind to eat codon. Highly ex-
pressed genes tend to use adors for abundant tRNAs [Bulmer, 1987. The wrrelation be-
tween expresson levels and codon sage is not perfed however, and a host of other reasons
are potentialy invalved in biasing the adon wsage (see [von Heljne, 1987 for a review).
Table 1.1 shows the mdon wage in E. coli [Krogh et al., 19948. Many codors are & fre-
guent as might be expeded by chance, bu there ae some notable exceptions, e.g. the Ar-

ginine wdors garting with A are hardly ever used.
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Table 1.1. Codon sage frequencies and their expeded frequenciesin E. coli.

Codon Amino Codon  Expected Codon  Aminoacid Codon Expected
acid usage frequency Usage frequency

AAA Lys 35 13 GAA Glu 4.3 16
AAG Lys 11 16 GAG Glu 18 18
AAC Asn 24 14 GAC Asp 22 17
AAT Asn 14 13 GAT Asp 3.2 15
AGA Arg 0.1 16 GGA Gly 0.6 18
AGG Arg 0.1 18 GGG Gly 1.0 2.2
AGC Ser 16 17 GGC Gly 3.2 2.0
AGT Ser 0.7 15 GGT Gly 2.8 18
ACA Thr 0.5 14 GCA Ala 20 17
ACG Thr 14 17 GCG Ala 3.6 2.0
ACC Thr 25 15 GCC Ala 25 18
ACT Thr 0.9 14 GCT Ala 16 16
ATA lle 0.3 13 GTA va 11 15
ATG Met 25 15 GTG va 2.7 18
ATC lle 2.7 14 GTC va 15 16
ATT lle 2.8 13 GTT val 19 15
CAA GIn 13 14 TAA * * *

CAG GIn 3.0 17 TAG * * *

CAC His 11 15 TAC Tyr 14 14
CAT His 12 14 TAT Tyr 15 13
CGA Arg 0.3 17 TGA * * *

CGG Arg 0.4 2.0 TGG Trp 14 18
CGC Arg 24 18 TGC Cys 0.7 16
CGT Arg 25 16 TGT Cys 0.5 15
CCA Pro 0.8 15 TCA Ser 0.6 14
CCG Pro 26 18 TCG Ser 0.8 16
CCC Pro 0.4 16 TCC Ser 0.9 15
CCT Pro 0.6 15 TCT Ser 0.9 14
CTA Leu 0.3 14 TTA Leu 11 13
CTG Leu 5.7 16 TTG Leu 12 15
CTC Leu 1.0 15 TTC Phe 18 14
CTT Leu 0.9 14 TTT Phe 1.9 1.2

The nonrandam behaviour of triplets in coding DNA can be used to recognise it as such
[Staden, 199Q. A number of different statisticd modelli ng techniques can be used for this.
The perhaps most straightforward way isto dredly derive astatisticd model from the differ-
encein base frequenciesin coding and norcoding DNA, as in the C. elegans Genefinder [P.
Green, unpullished], where the likelihood d coding is estimated by the logarithmic ratio of

the frequency of atriplet in coding vs. nonrcoding DNA. These scores aimmed over a win-
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dow gives the ading potentia. It has proved more discriminating to use di-triplets (6 bases)
than single ones. It isalso posgbleto train a neural network to recognise @ding regions, -
ther diredly from the DNA sequence or as a way to combine anumber of precdculated sta-
tistica properties in a weighted fashion, as is dore in Grail [Uberbadher and Mural, 199]
and GeneParser [Snyder and Stormo, 199§.

A statisticd framework that appeas well suited for gene prediction is the hidden Markov
model (HMM), in which a dhain of states model the probabiliti es of bases in the different
codon paitions [Krogh et al., 1994f. GenMark [Borodowsky et al., 1993 achieves im-
proved performance by comparing the cding probabiliti es of the top and bdtom strands,
and Genie [Kulp et al., 199§ combines an HMM based system with a neural network that
predicts glicesites by adynamic programming algorithm (seebelow).

Gene prediction in prokaryotes and lower eukaryotes is often considered trivial, since ayy
long region withou stop codors, so-cdled open reading frames (ORFs), islikely to contain a
gene. However, to avoid errors guch as acceting spurious long ORFs, missng short true
ORFs and wsing the wrong start codon,complex statisticad models are necessary.

Predicting genes with introns requires an extra statistic on splice dona and acceptor sites,
which are dso somewhat spedes-spedfic. The final goa of the gene prediction then be-
comes finding the parse of exons and introns that optimises the combined likelihoodscore of
coding segments and splices. The length dstribution d introns, and a minimal length for
exons are normally also taken into acournt. The most common method to find the optimal
exon pediction is dynamic progranming (see below), which is used by Genefinder,
GeneParser [Snyder and Stormo, 1993 and Grall [Xu et al., 1994.

In C. elegans, the length of introns is usually small compared to the length of exons (the
most common lengths are 50 and 100 bprespedively), which limits the number of ways po-
tential exons can be combined together, and makes lice prediction relatively easy. Human
genes on the other hand, dten have introns that are thousands of basepairs long. This makes
the ratio o true to false splice sites very unfavourable, and in many cases © many possble
parses are equally likely that little confidence can be given to the prediction. A further com-

plicaion is that multi ple parses may occur naturally, so-cdled ‘aternative splicing’, where a
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particular exon may be skipped or truncated. This may either occur at all times, producing
two or more versions of a gene product, or be regulated and ory occur under certain circum-
stances, such as in a particular developmental stage. A drawbadk of dynamic programming
is that it normally only reports the optimal parse, while the true parse may score dlightly
lower. It might therefore be preferable to list more than ore plausible parse, bu unfortu-
nately the number of possble mmbinationsis often so huge that this becomesimpradicd.

Prediction d exonsin higher eukaryotes can grealy be aded by matching EST sequences
from the same organism to the genome sequence. A match provides definite proof of any
spliced ou introns that are observed as insertions in the dignment. Also, thisisthe only re-
liable way of predicting alternative splicing. However, ab initio predictionis gill necessary,
sincethe EST colledion will never contain 100% of all genes, and sincethey do nd usually
cover the entire span o the genes.

Upstrean of the mding regionin agene lies a wntrol region, cdled the promoter, where
the transcription complex binds to start transcription. Promoter sites are known for many
transcription fadors, and these can be used for locating promoters in new genes [Prestridge,
1995. The main problems here aethat the sites are often orly a few basepairs long and that
sequence @nservation tends to be rather poar, which gives many false paositives. So far, no
algorithm has incorporated promoter finding with exon finding.

Many genes code for structural RNA moleaules. Since these ladk the adon bas of pro-
tein genes, thereisno obvous gatisticd means of finding them. However, most tRNA genes
can be found ly a mnsensus method [Fichant and Burks, 1991, or by sequence simil arity.
More sophsticaed methods to hurt for RNA genes exploit the fad that RNA moleaules fold
up by interna basepairing. This has made it amenable to stochastic context-free grammar
approadies [Sakakibara et al., 1994, which can be brought under the hidden Markov model
framework [Eddy and Durbin, 1994. In pradise this has been shown to be pradicd only for
tRNA (approximately 75 hbases) or smaller RNAs.

A theoreticdly posgble way to predict RNA genes would be to apply an RNA folding al-
gorithm [Zuker and Stiegler, 1981, and look for regions of DNA that fold into low energy

conformations. However, the reliability of available folding programs is currently not suffi-
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cient to dstinguish true RNA genes from the badground nase. Furthermore, the known
algorithms are so computationaly intensive that it would na be pradicd for genomic analy-
Sis.

Finally, sequence simil arity to hamologous genes can be very useful for predicting protein
coding genes. By comparing the raw trandation d all six DNA frames to knowvn protein se-
guences, the matching regions can give strong indicaions of what the @rred gene prediction
may be. Ignoring thisinformationin a genome projed invariably leals to incorred gene pre-
dictions and missed frameshifts [Tatusov et al., 19949. The first part of this thesis is con-
cerned with using sequence homology to improve bath gene prediction and annaation for

genome projeds.

Database searching

By far the most efficient way to predict the function d a newly found potein is by com-
paring its squence to aher proteins with knowvn function, and inferring the function from
sequence similarity. International collaborations have set up catabases that colled and ds-
tribute dl known nuwcleotide and potein sequences. The main nucleotide database is
EMBL/Genbank [Rodriguez-Tome et al., 1996 Benson et al., 1994, and the main protein
databases are Swisgrot and its sipdement TREMBL [Bairoch and Apweiler, 199€, and
PIR-international [George et al., 1996. Most entries of these databases have functional an-
notation, bu a growing propation have been sequenced by genome projeds and are simply
annaated as ‘ hypotheticd proteins'.

Approximately 100000- 150000 uigue protein sequences are known today, and this
number isincreasing rapidly. Although many database sequences are similar to ead cther,
usually the entire database is ®ached, a one where only identicd or aimost identicd se-
guences have been removed. Seach spedl is therefore of utmost importance, which can be
adhieved either by heuristic dgorithms or speda hardware.

Sequence omparison is based on dteding evolutionarily similar sequences. The sSim-
plest scoring scheme is to give apaositive score for identicd residues and a negative score for

norridentica residues. For all 20x20 = 400 pesble anino adds, this corresponds to an
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identity matrix. This oring system only works well for closely related proteins. For dis-
tantly related proteins, it beaomes important to weight similar amino adds higher than ds-
similar ones. The first scoring scheme where the scores were derived from statisticd analy-
sis of related sequences was the PAM series of score matrices [Dayhoff et al., 1978. This
was based ona matrix for closely related sequences that could be scded for other evolution-
ary distances. The drawbad of this g/stem was that the extrapalation to longer distances,
although theoreticdly justified, dd na correspondto biologicd redity. The BLOSUM se-
ries of score matrices [Henikoff and Henikoff, 19973, which were derived dredly from ob-
served dstant relationships are arrently most widely used.

Given two sequences and a scoring scheme, an algorithm is neeled to find the optimal
alignment. The main challenge here is that because related protein sequences not only have
diverged in amino add types, bu aso in the number of residues, they must be digned with
‘padding’ in the deleted or inserted regions. A suitable dgorithm for this is dynamic pro-
gramming [Neadleman and Wunsch, 1970 Smith and Waterman, 1981 (reviewed by
[Kruskal, 1983). Dynamic programming works by filli ng in a matrix of additive maximal
scores at all residue pair positions, alowing for gaps, and tradng bad the path of the highest
score. This path gives the optimal alignment, given the two sequences, the scoring scheme
and the dhasen gap penalties. If the scoring scheme and gap penalties are dhosen carefully,
dynamic programming can be more sensitive than any other method. However, these pa-
rameters can nd be generalised to any type of comparison, and the wrong choice of parame-
ters can make it perform poaly. Nevertheless it has becme very popuar due to the faa
that it produces gapped ali gnments.

In dynamic programming, constraints on the beginning and end d the dignment have a
gred influence onthe result. It can either be global, i.e. be forced to start at the first and stop
at the last residue in bah sequences, or be locd, i.e. the start and stop may occur anywhere.
The global agorithm can be more sensitive when appropriate, bu the locd agorithm is more
reliable and is used most often. Various improvements have been made to the original algo-
rithm. Many of these ae implementation detail s that make it lesscomputationally intensive.

It is posshble to reduce both its gace [Hirschberg, 1973 and time [Crook, 1991 Barton,
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1993h requirements. Other additions to the dgorithm have permitted reporting of multiple
nonoverlapping [Waterman and Eggert, 1987 or overlapping [Barton, 1993k locdly opti-
mal alignments. Improvements in speed have dso been adhieved by parale implementa-
tionsonDAP[Collinset al., 1989, MasPar and Bioccdl erator computers.

Withou hardware accéeration, the dynamic programming agorithm is too time-
consuming for routinely scanning large databases. Database seaching can be made faster by,
instead of aligning all database sequences to the query, applying a heuristic to seled the se-
guences most likely to have ahigh-scoring match, and orly aligning these sequences. This
can be dore by hashing, as is dore in FastA [Peason, 1990, or by a deterministic finite
automaton to find high-scoring word matches, as is dore in BLAST [Altschul et al., 199Q.
These dgorithms are so efficient that they can be used routinely for database seaches on
normal workstations. FastA applies a dynamic programming step at the end, while BLAST
reports ungapped matches. Thisis sametimes heavily criticised, bu on the other hand realy
all alignment information comes from the matching segments and nd from the gaps. An-
other reason that ungapped matches were dhosen is that arigorous datisticd theory could be
developed [Karlin and Altschul, 199Q, using a randam model. As will be discus=d in
chapter 4, dthough BLAST israther well suited for genomic analysis, many aspeds could be
improved upon.

Statisticd significance has been the subjed of much interest in database seaching. After
a seach, the scores of spurious matches to urrelated sequences tend to be randamly distrib-
uted around some positive value, while true matches to related sequences idedly are sepa-
rated from the tall of the noise. The badground naese airve can be fitted to a distribution
functionin order to estimate the statisticd significance of the matches. This can be dore re-
gardless of the dgorithm used, and hes been dore dso for dynamic programming [Colli ns
and Coulson, 199(0. However, the shape of the distribution d scoresis not known a priori,
so it was often approximated with the normal distribution. This has recently proved signifi-
cantly lessacarrate than the extreme value distribution (seeintroduction d chapter 4). Inde-

pendent of the method wsed to estimate the statisticd significance in most cases there is a
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‘twilight zone' of marginally scoring sequences that may be distant relatives or spurious
matches.

There ae some spedal requirements for database seaching for genomic analysis. It is
preferable to search with the raw DNA sequence & query insteal of the predicted genes, es-
pedally for genomes with intron-rich genes. The seach program must be cgable of report-
ing matches to widely spaceal exons withou a too strong penalty for the intervening introns.
It must also be fast enough to cope with a throughput of 10° basepairs per day. The Blastx
program satisfies bath of these condtions. Up to nav, no d/namic programming algorithm
has stisfied either of these requirements, unless pedal hardware is used. This may change
in the future, since dynamic programming agorithms are under development that either ex-
ploit a frameshift allowance for introns [Birney et al., 1994, or explicitly takes 9licing into
acourt, by not penaising gaps garting with GT (splice dona) and ending with AT (splice

accetor) [X. Huang, personal communication).

Automated and integrated analysis workbenches

Most large-scde sequencing projeds are undertaken by reseach centres gedalised in
DNA sequencing that have resources to streamline the processand attain high throughpu at
low cost. It is not uncommon to have adaily outpt in the order of 10° basepairs. To match
the speed of sequencing, a new breed of more dficient analysis methods has bemme neces-
sary. Thetwo main routes to increased efficiency are (1) automation d routine tasks and (2)
an efficient analysis environment for human computer interadion. At this moment a fully
automatic expert system that performs as well as a human dces not seem feasible. The rea
sonisthat a human expert uses a very broad spedrum of biologicd knowledge and combines
different pieces of evidencein an intuitive way of reasoning that is hard to expressas rules
that could realily be alapted to a cmputer program. Instea, the dficiency and quality of
the analysis can be improved by providing a human analyst with a powerful set of toolsin an
integrated workbench environment. These todls are intended to allow the expert to quckly
accessand analyse information that visuali ses the most relevant data but hides irrelevant data

to prevent exhaustion.
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Genomic sequence analysis can be performed at either the DNA or protein level. For pro-
karyotic and simple aukaryotic genomes, where most genes correspondto single ORFs, per-
forming the analysis on the protein level is more or lessaccetable. For higher eukaryotic
genomes, where genes consist of many short exons embedded in introns, gene prediction is
lesstrivial. Because of the inacaracy of such gene predictions, the homology analysis of the
encoded proteinsis more reliable when performed diredly onthe DNA sequence

A system that has concentrated on ORF analysis of smaller genomes is GeneQuiz [ Scharf
et al., 1994, which successully has been appli ed to the Hemophilus influenzae [Casari et al.,
1995, Mycoplasma capricolum [Bork et al., 1995, Mycoplasma genitalium [Ouzouns et
al., 1994 and Saccaromyces cerevisiae [Casari et al., 199. For DNA analysis, a number of
graphicd tods for visudisation d sequence similarity and dher fegures exist, such as
ChromoScope [Zhang et al., 1994, the BDGP java viewer [Rubin, 199, WebEntrez
[Kuzio, 199 and APIC [Bison and Garreau, 1993.

At the Sanger Centre, the analysis environment is built around the genomic database
ACEDB [Durbin and Mieg, 1999. ACEDB was initially developed for storage and dstribu-
tion d genomic data such as genetic and ptysicd mapping data, strains, authors and pleno-
typicd information. With the arival of the large-scde sequencing of the nematode C. ele-
gans, ACEDB was extended to incorporate asequence analysis workbench. This workbench
was extended with todls for more detail ed simil arity analysis, which are described in this the-
Sis.

Figure 1.1 shows <hematicdly the different steps of the analysis process where ACEDB
forms the central foundation. The sequencing groups normally finish the sequence of an en-
tire cosmid (40000 bp before it is submitted to analysis. First, a number of analysis pro-
grams are run in batch mode, such as gene finding and database seaching. The output of
these programs is then reformatted and read in to ACEDB. At this point, an analyst will | ook
through the gene predictions and consolidate them using the simil arity to ather sequences.
The underlined comporents in figure 1.1 were developed as part of this thesis (see thesis
outline below). If strong similarity is found that suppats a different splicing pattern, the

gene prediction can be aited manually. Once this type of analysis has been dore on the
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DNA level, a more sensitive analysis can be performed on the translated gene predictions.
After the analysis has been dore, the cosmid sequence and the dtached annaations are sub-

mitted to the EMBL datalibrary.
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Finished genomic sequence (cosmid)

L ook for Use program(s) Search database
Protein homologs Blastx + M SPcrunch Swir
Exons Blastn + M SPcrunch C. elegans ESTs

Protein homologs

Thlastx + M SPcrunch

dbEST + C. elegans ESTs

Protein motifs

queryprosite (perl script)

Prosite

Protein genes genefinder -
tRNA genes trnascan -
DNA repeds tandem, inverted -
DNA repea families hmnmfs Known C. elegans repea famili es

Transposon inserts Blastn + M SPcrunch Tcl insertion sequencetags

lConvert to .aceformat

-

Trandate gene prediction
ACEDB *
L ook for Programs Database
Protein homologues Blastp + M SPcrunch | swir
DNAmM
P Protein family matches | hmmfs/ hmmis Pfam
\ lConvert to .aceformat
ACEDB
PEPmap
Blixem

l T

Dotter Belvu

Figure 1.1. Comporent overview of the workbench for genomic sequence analysis built
around ACEDB. The seach methods in the tables are spedfic for C. elegans. Boxes with
rounckd corners are interadive visualisation tools. The underlined componrents are described
inthisthesis.
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1.3 Protein Families

The method described above for genomic sequence analysis is esentially an extension and
streamlining of traditional methods. It is clealy a significant improvement over manual
methods, and it works well enough to analyse and annatiate genomic DNA at sufficiently high
rates and quality. The main drawbadks are: (1) The aanaationis gill subjed to the imagina-
tion d the aanaator, who also has to spend much time reading annaations of database hits
to form an opgnion onwhich damain(s) the query possesses. This is compounded for pro-
teins containing multiple or repeaed danains. (2) Sensitive analysis methods are only used
as asemndstep, after the database seach.

These problems can be mitigated by instead of searching a database of single sequences,
seaching a database of multiple dignments of protein damain families. A family member-
ship thus found povides unambiguous domain anndation, and since the multiple dignment
contains evolutionary information, the method can more eaily discriminate between true and
false members.

There ae severa ways to exploit the information in multiple dignments. One way is to
convert it to a score matrix based profile [Gribskov et al., 1987. Here eat column is com-
pressed into a vedor of 20 scores, ore for eaty amino add. The scores are derived from the ob-
served amino add frequencies and a score matrix, such as BLOSUM. Ancther way isto bring it
under the framework of hidden Markov models [Krogh et al., 19944], in which ead column is
represented by a state which has a probability to produce the anino adds derived from the ob-
served frequencies. Insertions and celetions are represented by separate states, and paitions
where insertion and celetions are likely to occur are refleded by high probabiliti es to enter these
states. HMM-based profiles have some alvantages over score matrix based profiles, bu need
many examples to train on. The two models are however similar enough to be interchangeable,
and it is posshble to combine them in a ‘hybrid’ model, in which the score matrix behaviour
dominates at small sample sizes but the probabili stic behaviour gradually takes over with more

examples (see tapter 7 for more detail s).
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The methods for comparing a sequence to a profile ae normally based on d/namic pro-
gramming, usualy with an extension that allows multiple non-overlapping matches in the

query sequence

Alignment databases
The second line of approad in this thesis is to exploit family based tedhniques to genomic
sequence analysis. For this, a cmprehensive @lledion d multiple dignments is needed.
The most comprehensive protein family database is Prosite [Bairoch et al., 1994, bu it is
only based onsmall motifs, or patterns. Other databases are avail able that contain multiple
sequence dignments of the Prosite families [Gribskov et al., 1988 Attwoodet al., 1996 Pie-
trokovski et al., 1994, bu these dignment are still only of the most conserved regions and do
not span the entire protein damains. For mere family membership identificaion thisis not a
problem, bu for adetailed danainwise analysis, whole-domain aignments are necessary.
Avail able databases sich as PIRALN [George et al., 1999 and ProDom [Sonnhammer
and Kahn, 1994, do contain full-domain alignments, but these families tend to contain orly
very closely related sequences and are unlikely to be more sensitive than pairwise mmpari-
son. Therefore, it was dedded to crede a @mprehensive database of whole-domain align-
ments, which contain as much evolutionary information as passhble. A system for construc-
tion and maintenance of such a database, based on HMM /score matrix hybrid profiles, was

developed. The resulting databaseis cdled Pfam and is described in chapters 7 and 8.

Multiple sequence alignment construction

Extending the dynamic programming algorithm to more than two sequences has a omputa-
tional complexity in the order of LN, where L is the average length, and N is the number of
sequences. This makes it prohibitively time and space onsuming for more than three se-
guences. Tedhniques that limit the search space ca be gplied to reduce the computational
cost [Carrill 0 and Lipman, 1988 Altschul et al., 1989, bu this methodis gill only pradicd

for afew sequences.
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Another methodis to look for motifsin common to all sequences and wse these & anchor
points to construct either a partial or complete dignment [Bacon and Anderson, 1986 John-
son and Dodlittl e, 1986 Waterman and Jones, 199Q Schuler et al., 1991 Smith and Smith,
1992 Depiereux and Feytmans, 1992 Posfa et al., 1994 Smith et al., 19970. These pro-
grams are usually best suited to find short motifs, and are often na pradicd for large sets of
sequences.

A more dficient method is based onconstructing a tree hierarchy of al sequences to be
aligned, and then progressvely aligning sequence pairs, starting from the dosest sequences.
Aligned pairs are merged into an averaged sequence, containing gap residues, which is
treded as a single sequence in subsequent pairwise dignments. All sequences have amap-
ping to the final alignment at the roct of the treg and this gives the complete multiple dign-
ment. Several implementations of this algorithm exist [Barton and Sternberg, 1987 Feng
and Dodlittle, 1987 Taylor, 1988 Higgins et al., 1993. A review [McClure et al., 1994
comparing the quality of these methods concluded that they al to various extents make
similar mistakes. One program may be more sensitive to inclusion d rogue sequences in the
dataset, while another one may have more problems merging subsets corredly. No single
program stands out as being better than the others.

A further method is based ontraining a hidden Markov model on uraligned sequences,
which afterwards can be digned to the model, thus generating a multiple dignment. This
method was $hown to be goproximately as acarate & progressve pairwise methods [Eddy,
1995h, bu is much slower.

Multiple sequence dignments can aso be @nstructed from superposition d three
dimensional protein structures [Sutcliffe et al., 1987 Sali and Blunddll, 1990 Russl and
Barton, 1992. This method is only applicable to proteins with a known o modelled 3D
structure, which is a minority of all protein families. Furthermore, although the dignment
corresponds closely to the structural aignment, it is not clea whether this aways corre-

sponds to an evolutionarily corred ali gnment.

Sequence weighting
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When generating the model from the multiple dignment, care must be taken that the dign-
ment is representative of all members. If agroup d closely related members are overrepre-
sented, the model will be biased towards that group and may not be sensitive to uncerrepre-
sented members. This can be compensated for by either removing closely related sequences
from the dignment or by a weighting scheme, which donvnweights overrepresented se-
guences. The latter methodis better for preserving information abou the sequence variation,
but on the other hand \ery littl e information is lost by removing nea-identicd sequences.
Various methods to cdculate sequence weights are available [Sibbald and Argos, 199Q
Thompson et al., 1994 Gerstein et al., 1994 Eddy et al., 1995 Gotoh, 199%. Using a
weighting scheme often leads to substantial improvements in sengitivity for seaching. The
difference in sensitivity between various weighting schemes is usualy negligible, so aspeds
such as gead of computation and robustnessare of more wncern. Some methods are very
vulnerable to inclusion d false members [Krogh and Mitchison, 199% and shoud be used
with umost care. A robust and fast method that was developed as part of this thesis is de-

scribed in appendix B.

1.4 Thesis outline

This thesis is divided into two perts because two main lines of methoddogy have been pu-
sued. Thefirst part contains chapters that describe componrents that have been developed as
parts of a sequence analysis environment for genomic sequence analysis, based on pairwise
comparison agorithms. The seand p@rt is concerned with family-based comparisons, and
treds different aspeds of the Pfam database of protein families, which was developed with
genomic analysisin mind. As se in figure 1.1, comporents from part 1 and 2are adually
integrated in the same workbench.

Chapter 2 introduwces the main methoddogy and pogramming environment of the
ACEDB database and graphics library, which are the foundition orto which all the graphicd

anaysis toadls are integrated. Chapter 3 presents Blixem, a graphicd viewer for multiple se-
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guence dignments constructed from BLAST database seach results, which have been proc-
esed by a program MSRcrunch, described in chapter 4. MSRcrunch uses empiricd rules to
filter out irrelevant BLAST matches, at the same time & it make the seach more sensitive.
For detailed pairwise similarity analysis, Blixem has been integrated with a new type of
dotplot program, Dotter, presented in Chapter 5, which has a new way of dynamicdly setting
stringency thresholds. This, and its relatively fast operation makes Dotter also well-suited
for comparing cosmid-size DNA sequences. Chapter 6 describes a general purpose database
retrieval todl, Efetch, which is used by the other programs in the workbench. A picture of
thesetodsisgiveninfigure 1.2
Part 2 describes family-based analysis methods. Chapter 7 presents the database of pro-
tein families that this work is based on,Pfam, and explains why and haw it was constructed.
Chapter 8 then explains how Pfam can be used for genomic sequence analysis, and describes
some graphicd todsto assst this, which are depicted in figure 1.3. In chapter 9, an analysis
of the proteins that have been dscovered by the C. elegans genome projed is presented. The
anaysis focuses mainly on protein families, and was dore bath by exploiting Pfam and by a

clustering procedure to examine nematode-spedfic famili es.
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Figure 1.2. The graphicd sequence analysis tods for the ACEDB genomic gene prediction
workbench. Top left: the ACEDB main window. Top right: the ACEDB DNA map, show-
ing the prediction d the C. elegans gene ZK637.10. The mlumns own are, left to right:
gene prediction (exons, blue boxes; introns, kinked lines), Blastx matches (blue boxes),
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left: The Blixem window of the same gene; The top part shows a schematic overview of all
Blastx matches; the matches inside the scroll able box are shown as a sequence dignment in
the bottom part. Midde right: A Dotter dotplot of the genome & the ZK637.10gene predic-
tion versus an E. coli hamologue, cdled up dredly from Blixem. Bottom: Swisgrot anno-
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Figure 1.3. The graphicd sequence analysis todls for the ACEDB protein family analysis
workbench. Top left: The ACEDB main window. Top right: The ACEDB PEPmap display,
showing the sequence of the C. elegans predicted protein C14F5.5. The olumns hown are,
left to right: The protein sequence, a hydropholcity plot, Blastp matches (blue boxes) and

matches to Pfam protein families (green baxes).

Bottom right: Blixem alignment of the

Blastp matches;, Pfam matches are shown schematicdly at the top. Midde left: Belvu align-
ment of the first SH3 damain of C14F5.5to the Pfam family SH3. In Belvu, the residue ol-
ouring is based onthe overall conservation d all members, while Blixem's colouring is only
based onthe mnservation relative to the query sequence. Bottom: Swisgrot anndation d a
human protein with hamologous domains retrieved by Efetch, adivated by a doulde dick on
the match in Blixem or onthe member in Belvu.
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2. Materials and Methods

The work in this thesis was caried ou on a duster of UNIX workstations from Silicon
Graphics running Irix 5.2, from Digital runnng OSF 3.2, and from SUN running SunOS
4.1.3and 5.3. The software was written in ANSI C [Kernighan and Richie, 198§, which is
easy to pat between patforms, is suitable for large projeds, and for which many mature de-
bugging tods are avail able.

Much o this thesis concerns the development of new graphicd user interfaces. For ge-
nomic sequence analysis, an efficient and paverful work environment is of paramourt im-
portance The interfaces are based onthe ACEDB database and graphics library [Durbin and
Thierry-Mieg, 19949. These wereinitially developed for storage, analysis and dstribution o
al genetic, mapping and sequence data of the nematode C. elegans, bu have been genera-
ised to suit any organism. The entire source @de, which is fredy available, is written in
ANSI C, with a number of low-level API padages for accessng the database, memory man-
agement, array operations and the graphicd displays. The two aspeds of ACEDB that are

perhaps most important for this thesis are described in more detail below.

The ACEDB database kernel

Instead of basing ACEDB on a aommercialy avail able database engine, it was dedded to
equip it with anative kernel. There ae two main reasons for this: first, genomic datais very
different in nature from the type of data for which most database systems were developed, so
aspedaly designed system will be better tail ored to hande the data dficiently. Seocond,the
often very stegp cost of commercial systems will restrain widespread usage. In fad,
ACEDB’s gorage medanism is very different from the dominating relational model.

The datais gored as objects, which belong to a set of predefined classes. The dassmod-
els geafy al attributes that can belong to an oljead of that class bu if an oljed omits any
of the dtributes, they will not use up any space Attributes can be organised in a hierarchicd
treestructure to group related attributes together in a subsedion. Classmodels can be rede-

fined ona live database, making incorporation d new types of data eay. Inheritance be-
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tween classes is nat possble, bu there is no owerheal in sharing one large model between
related types of objeds.

The dficiency of ACEDB is achieved by two-level cading system. The first cadeis a
raw disk cade which contains copies of disk blocks and the second cade stores in memory
asembled oljeds. User interfaces have dired accessto the seoond level cade, which en-
sures high performance On the other hand, the dired control of the database means that only
one processcan accessit, and although many copies can be run on dff erent workstations in
read-only mode, this effedively predudes multiple smultaneous edits. A server/client ver-

sionexists, bu nat in conjunction with graphica interfaces.

The ACEDB graphicslibrary

To avoid platform-dependent function cdls in the graphica interfaces, a set of graphics
primitives are cdled instead, that make the gpropriate function cdl depending on which
platform it was compiled. This alows the programmer of a graphicd interfaceto write mde
that is portable throughou the platforms that are suppated by the graphics library.

Some standard fadliti es offered by the graphics library are button, menu and keyboard
event handing, postscript generation, kesic scrollbars and various line and text drawing rou-
tines. The programmer can choaose between a number of different window-types, depending
on whether he plans to dsplay mainly text, graphics or pixelmaps, and which scrollbars are
desired. Text and graphics can be mixed in the same window, bu a text window uses char-
ader based coordinates, while apixelmap window uses pixel coordinates. Pixelmap win-
dows can display two-dimensional arrays (matrices) of 8-bit pixels, which can be rendered
dynamicdly to any grayscae. Thisisfor instance eploited in the program Dotter, described
in chapter 5. The graph library is based onlow-level X routines and some Athena widgets.
No widgets from the in some ways more evolved Motif library are used, mainly becaiseit is
under license, and ACEDB maintains a padlicy of freedistribution.

It is possble to write light-weight graphicd programs that only use the graphics library,
but not the rest of the ACEDB database system. Both Blixem and Dotter exist either as
stand-alone gplicaions, or as linked-in moduesin ACEDB.
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The graphics library is currently suppated for UNIX X-windows, Maantosh, and Win-
dows95/NT. The two latter platforms are however somewhat experimental, and nore of the
toals described in this thesis are routinely released for them. Since the graphics library was
initially developed for X-windows, it uses threemouse buttons. Instead of atoolbar, thereis
amain menuwhich pogs up when the right mouse button is pressed anywhere in the window,
except on butons with spedal menus attached. On systems with fewer mouse buttons, this
buttonisreplaced by a pull-down menu onthe todlbar. On single-button systems, the middle
mouse button is smulated by a combination d a keyboard key and the mouse button. The
system of attaching spedal menusto certain ojedsin ACEDB iswidely used. For instance,
Blixem and Belvu are cdled from the DNAmap and the PEPmap via menus under homol ogy
objeds. A todbar can be simulated by a row of buttons at the top with attached pul-down
menus. This is used in most ACEDB map dsplays and in Belvu. Some &apeds of the
graphics library are only suppated under X-windows. For instance the pixelmap rendering
tod used in Dotter, the Greyramp, exploits aspeaal fedurein 8-bit X-windows displays, and

currently does not work onMacor Windows.

The ACEDB genomic database front-end

A large number of genome and boinformatics centres use ACEDB to store, andyse and ds-
tribute genomic data. At present, most end-users copy bath the data and the program to a
locd system. Most of the tods described in this thesis are part of the distributed ACEDB
code.

The front-end to ACEDB consists of a number of spedalised maps. The main types are
the genetic, physicd and sequence maps. Objeds displayed in these maps are normally ‘hy-
perlinked’, i.e. by clicking onabox or text which represents an oljed, the objed is displayed
in anew window. The dassof the picked olged determines whether the new window will
displayed it in a cetain map (e.g. markers, clones or genes), or simply in a text window (e.g.
articles, aleles or strains).

Figure 2.1 shows the two most fundamental ACEDB comporents, the main windov and

the keyset window, and the DNA sequence map. The main window lists the presently stored
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classes; by doule dicking on ore of them, all the objeds of that classare listed in the keyset
window (‘key’ means ‘objed’ here). If a seledion d the objeds is desired, an expresson
with wildcards can be entered at the top. In the example, “Genomic_canonicd” means ob-

jeds of class*”Sequence”, that have the dtribute genomic_canonicd, i.e. cosmids squenced

by the C. elegans genome projed.

' in: 1 40659
Search: |z7zs0 (s8ET)
In Class¥ Ready [Zoom Out] [Clear] [Rev—Comp.. ]| [OMA..] [Analysis, .| [GeneFind.. ]
ap Sequence Clone
Author Journal Paper
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Allele Strain Laboratory i -
Motif Protein Method 1= ZK637 . Ba
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Figure 2.1. The ACEDB main window, a keyset of cosmids and the DNA sequence map.
The upper gene ZK637.8 was predicted to be dternatively spliced, acording to evidence
from different ESTSs.
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Part 1: A graphical workbench for genomic sequence analysis
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3. Blixem: a multiple alignment viewer for BLAST

3.1 Summary

The widely used database seach programsin the BLAST suite present the results as pairwise
alignments. While alequate for standard laboratory use for short query sequences, this type
of output is poaly suited for high-throughpu use with genomic cosmid-size queries. Not
only is the large volume of output data difficult to dgest, bu it isaso hard to form a picture
of which dfferent homology domains the query contains.

Presented hereisagraphica viewer for BLAST output, Blixem, which constructs a multi-
ple dignment of all pairwise matches and the query. A zoomable schematic global view
makes it easy to seethe big picture of the distribution o the matches, while another display
shows the acua multiple dignment in a scroll able region. Blixem is also hyperlinked to the
annaation d matching sequences viathe retrieval tod Efetch (chapter 6), and to the dotplot
program Dotter (chapter 5). Detailed similarity analysis and functional annaation thus be-
come dficient enough for processng large anourts of data. Couped to the gene prediction
workbench in ACEDB, Blixem is used routinely in genomic sequencing projeds. Examples
of usage ae taken from the C. elegans genome, from which cosmids totalling 50 million

basepairs have been analysed this way.

3.2 Introduction

With the arival of large scde genome sequencing projeds [Wilson et al., 1994 Callins,
1995 Dujon, 1996, where highly automated |aboratory techniques produce DNA sequences
at an ever increasing rate, the need for equally powerful sequence analysis toadls has beaome
obvious. Charaderising genes foundin 'blindy' sequenced DNA by seaching for homolo-
gous proteinsis presently the most tradable way to predict their function. Thanks to efficient

database seaching programs sich as BLAST [Altschul et al., 1991, Blaze [Brutlag et al.,
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1993, and Flash [Califano and Rigoutsos, 1993, and spedalised hardware [Collins et al.,
1989, seaching time is of little mncern. Instead, the main bdtlened lies in the manual
evauation d the matches reported by the seach programs, which dften form a list of many
thousands of potential homologies.

Summarising the results automaticdly by e.g. using the annaation d the most similar se-
guence ca often lead to mislealing results. Not only isthe most similar sequence not neces-
sarily the best anndated ore, bu it is also easy to get misguided by partial matches to multi-
domain proteins. Furthermore, similarities that are truncated or are foundin predicted in-
tronic sequence may provide evidence that a predicted gene is incorred, and requires re-
examination d both the DNA sequence and the exon predictions. These problems need hu-
man intervention to ensure ahigh quality of both gene predictions and annotation.

However, manual reading of exceadingly long search result li sts beacomes an inhuman task
for sequencing projeds of several megabases. What is needed is a workbench which auto-
maticdly performs the routine adions of a sequence analyst as well as presents the caes
where manual inspedion is necessry in an interadive user-friendy environment [Bernstein,
1987 Medigue, 1995.

This chapter describes a core comporent, Blixem, of the large-scde sequence analysis
workbench presented in this thesis. Seefigure 1.1 and 1.2for an overview of all workbench
comporents. Blixem provides interadive multiple sequence dignment analysis of database
matches reported by the seach programsin the BLAST suite, which produce alist of ungap-
ped alignments, or MSPs (Maximal Segment Pairs). The MSPs dhoud first be filtered by
MSRcrunch (chapter 4), to reduce redundancy, remove low complexity ‘junk matches, and
enhancethe sensiti vity and seledivity of multi ple cnsistent matches.

Blixem is a genera purpaose viewer, athough it was developed espedally with the C. ele-
gans and human genome sequencing projeds in mind. It can either be used as a stand-alone
applicaion, a as an analysis tod incorporated into the gene prediction workbench in the ge-
nomic database ACEDB. The combination d Blixem and ACEDB forms an efficient inter-
adive system for making gene predictions where homology to ather proteins can be analysed

in detail to improve both the gene structure and the functional annaation.
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3.3 General features

Blixem does not parse BLAST output diredly. Instea it relies on MSRerunch to convert the
BLAST results to a format readable by Blixem. These formats, ‘seqbl’ and ‘exblx’, are de-
scribed in chapter 4. Any program could be used to convert BLAST output to ore of these
formats, bu MSRcrunch is grongly recommended, since it aso enhances the quality of the
data

Overview display of matches

The upper part of Blixem, the "Big Picture" display, draws al the matches to the query sym-
balicdly as lines, which onthe y-axis are positioned acrding to the percent identity of the
MSP (seefigure 3.1). For DNA queries, the matches to either only one strand a to bah
strands can be shown simultaneously (see figures 3.2 and 3.3. By pressng the “whoe”
button, matches along the whole query are shown, whil e the zoom buttons all ow the user to
enlarge aparticular region. If a match is clicked on,all MSPs with that database sequence
become highlighted. The blue square frame in the Big Picture is the part that is aigned on
the residue level in the Alignment display below. The Big Picture display is centred around
this areg which can be shifted aong the query with the middle mouse button.

Alignment display

For Blastp, Thlastn and Thlastx, a single query sequenceis drawn onyellow badkground,as
in figure 3.1. For Blastn, bdh strands are shown simultaneously (figure 3.2), and for Blastx
the threetrandations of one strand are shown (figure 3.5). In the latter cases, the MSFs are
aligned under the gopropriate query sequence Residues in the matching sequences are @l-
oured in three different colours: Cyan (bright blue) for the same residue & the query, light

blue for a mnserved substitution and nocolour for amismatch.
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For Blastx, the DNA query sequence is drawn ontop, with staggering so that one triplet
covers the width of one dharader. Amino aad residues in frame one thus correspond to
triplets that start with a base onthe top DNA row, and end with the base on the third row that
IS just to the right. Residues in frame two start on the seaond row, and residues in frame
threeon the third.

The start and end coordinates shown in the alumns adjacent to the dignment refer to the
entire match, which may extend beyond the arrent windov. Horizontal scrolling is dore
either with the scroll buttons at the left, or with the middle mouse button, which starts up a
crosshair, and centres the display on the aosshair position where the button is lifted. When
the aosdhair is on, the sequence ®ordinates of the query and the last clicked matching se-
guence ae shown. For Blastx, the query coordinate is that of the base under the aosdair.
The scroll buttons allow horizontal scrolling of the dignment in threedifferent step sizes: a
residue (>, <), awhade window-width (>>, <<), or to the next match (match>, <match). If
not all matches fit in the window, the lower parts of the dignment can be viewed by using
the verticd scrollbar on the left.

Annaation d a protein is fetched by double dicking on the sequence of interest in the
bottom display. The program Efetch (chapter 6) will then retrieve the record from an exter-
nal database and dsplay it in a separate window (figure 3.1). Alternatively, a world wide
web browser can be launched, which cdls Efetch and marks up the retrieved entry so that
references can be followed to ather databases. The fetch method can be set interadively in
the Settings todl. The default fetch method can be set by environment variables (see

http://www.sanger.ac.uk/~esr/Blixem.html).
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Figure 3.1. Blastp matches to the C. elegans protein ZK622.1shown in Blixem. The top
display shows a global overview of the MSPs in the vicinity of the dignment window in the
bottom display. Each MSPis drawn as a line & its position in the query and percentage
identity level in the overview. All matches to the dicked protein become highlighted, which
makes it easy to identify the domains shared with ather sequences. For instance the matches
to the protein kinase RYK AV IR3 only covers the C-terminal part (a), whil e the matches to
FES HUMAN, which contains an SH2 damain N-terminal to the protein kinase domain,
coversthe aitire query (b).
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Figure 3.2. Blastn matches to C. elegans ESTs aligned in Blixem. By setting Blixem in
“highlight differences” mode, identicd residues are shown as dots, while mismatches are
highlighted. The example shows atypicd case of EST hits, with a number of matches in the
5 and 3 ends of the gene. The last intron and exon are confirmed by EST matches. The
quality of EST sequences usually drops after 300 kase pairs, which is exemplified here by a

number of mismatches to the genomic sequence and a frameshift in the EST yk62f10.5.

Settings tool

The button “settings’ contains most configuration ogions. It can either be used as a pull-

down menu a as a button. Clicking on it produces a separate Settings too window (figure

3.1). Theoptions ontheleft side ae on/off switches:

Big Picture
Big Picture Other Strand

Highlight differences

Squash matches.

Low complexity analysis

Togge Big Picture (top dsplay) or/off.
Toggd e between single and doulbe
strand dsplay in the Big Picture.

Show identicd residuesasadat (.) and

draw mismatching residuesin bright blue.

Draw multi ple matches to the same sequenceon oreline

(seefigure 3.3).

Turn onthe sequence mmplexity display (seebelow).
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Figure 3.3. When the matches are split by many gaps, the normal display method, which
draws one MSP per line, can cause the dignment to become broken up (A). In the “squash
matches’” mode (B), al MSPs to the same database sequence ae superimposed on ore line,
and the start of eath MSPis marked with ared verticd line.
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On theright hand side in the Settings todl, a number of multiple doice settings are avail able.
These ae seleded with right mouse button menus. The badgroundand the grid in the Big
Picture display can be set to 32 dfferent colours, and the MSPs in the Alignment window
can be sorted, top to batom, in four ways: alphabeticdly, highest score first, highest identity
first, or positionally, with the most N-terminal first. Fetching can be dore by Efetch, WWW,
or ACEDB (only if runinside ACEDB).

Low complexity analysis
To anayse regions of biased composition (i.e. low sequence mmplexity), Blixem has a spe-
cia display panel which can draw threedifferent curves of the complexity of the query se-

guence The complexity is defined as the shannonentropy, i.e.

20

Z fnf

Ei
for al residuesi with afrequency f; in the window of a cetain length. The three wrves can
be assgned individual window sizes and colours. The panel can aso show segments of low
complexity from the Seg program [Wootton and Federhen, 1993. Seg usesthree enpiricdly
derived window sizes and complexity thresholds to dedde whether a segment has gringently
low complexity, medium low complexity, or “nontglobuar” low complexity, i.e. the segment
isunlikely to have aglobuar fold [Wootton, 1994. The stringent level is the default opera-
tion d Seg, and wses awindow size of 12 and athreshold of 2.2 hits. The other levels have
window sizes of 25 and 45,and threshalds of 3.0 and 3.4 lits. Internally, Seg uses dightly
higher ‘trigger’ cutoffs to find initial segments, which are merged if they overlap [Woatton,
1994. Asarule of thumb for protein sequences, a mmplexity below 3 hitsis considered a
significant deviation from what is expeded of an unbased sequence at least with window
sizes abowve 25. To dsplay Seg segments in Blixem, they are real in as pseudo MSPs with

scores of -4, -5 and -6 for the threedifferent levels. The default window sizes of the com-

plexity curves are set to the three Seg window sizes.
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Figure 3.4. Low complexity analysis of the C. elegans protein F58A4.5, which has aregion
of biased composition between 200and 500 (mainly serine rich). The entropy of the se-
quenceis plotted using threedifferent window sizes. Undernegh, segments are drawn that
were found ly the Seg program at threedifferent stringency levels. Blastp reports thousands
of matches to urrelated sequences with asimilar bias. This can be avoided by removing the
region in the query with e.g. the Seg program, or, as was dore here, by filtering the Blastp
output with MSRcrunch.

Dotter analysis

The dot-plot program Dotter (chapter 5) is linked in with Blixem. It is normally used to
make adot-plot of the query and a database sequence, but can aso be cdl ed to make aplot of
the query vs. itself. The Blast MSPs are dso passed onfor display in Dotter, as shown in
figure 5.2. If Blixem is used for Blastx data, Dotter makes three dotplots of the diff erent
frame tranglations, and superimpases them in ore graph. When using Blixem to analyse an
entire wsmid, orly a part of the query is passed onfor Dotter analysis. Blixem uses a heu-

ristic to guesswhich region is relevant, bu may get confused by repeaed damains. If this
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happens, it is posgble to seled the query region manualy with the option “manual Dotter
parameters’ under the main Blixem menu. This also allows manual setting of the zoom fac-
tor in Dotter. Sequence feaures sich as exons and introns are passed on from Blixem to
Dotter.

If Blixem is run in stand-alone mode, Dotter relies on Efetch to retrieve the entire se-
guence, since BLAST does nat provide this. If Efetch fail s, only the matching region can be
analysed in Dotter.

3.4 Special features inside ACEDB

For efficient large scde genomic sequence analysis, Blixem has been integrated in the
ACEDB genomic database padage. Thisis particularly useful if the user wants to predict
genes in a DNA query sequence, since ACEDB includes a semi-automatic gene prediction
environment. Blixem can be cdled up from ACEDB's squence display windows < that
exon predictions can be validated in the light of homology to ather proteins.

When used from ACEDB, the BLAST output is first filtered by MSRerunch, which ou-
puts the acceted matches into .aceformat (seefigure 4.9c). These ae then read in to and
stored in the ACEDB database. When Blixem is cdled, ACEDB conwerts the data to
Blixem's internal data structure. Exons and introns are passed on as pseudo MSPs with
scores of -1 and -2, respedively. As own in figure 3.5, the genes are displayed bah in the
Big Picture overview, andin the dignment.

Doule dicking on amatch in Blixem, which namally cdls Efetch to retrieve the annaa-
tion, is here by default set up to cdl up the crrespondng ACEDB objeds. This can be used
to retrieve anaation independent of Efetch, as shown in figure 3.5. It also allows further
analysis of the matching objed in the DNAmap o PEPmap (chapter 8). Normal Efetch an-
notation retrieval can also be used. To make this the default when using Blixem in ACEDB,
an environment variable ‘BLIXEM_FETCH_EFETCH’ must be set.
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Figure 3.5. Multiple dignment of Blastx matches in Blixem when cdled from ACEDB.
Example taken from the C. elegans cosmid ZK637, showing matches between the predicted
gene ZK637.10and glutathione reductases. The global overview display in the top panel
shows MSPs on bdh the top and bdtom strand. The lower alignment panel shows the DNA
sequence d the top, and its trandation in threeframes on the yellow lines below. Predicted
exons are marked in the dignment panel as blue frames on the translated genomic sequence
and as yellow boxes with the other MSPs (ZK637.1(X). It is very common that the MSPs
extend dlightly beyondthe true end d the exon.
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3.5 Blixelect: an organiser for multi-query Blixem analysis

For medium-scae sequence similarity analysis projeds, where only inspedion d BLAST
matches to a set of query sequences is wanted, bt no gene prediction is intended, setting up
an ACEDB database may invalve unrecessary overheads. For such cases, a simple organiser
tod was developed, cdled Blixeled. It reals a list of query names from afile, and expeds
two files for eath query: one cntaining the query sequence and ore with MSRcrunched
BLAST output in the seqbl format (figure 4.9b). The filenames must start with the query
name, bu the extensions may be diosen by the user. Normally they are *.seq’ and *.seghl’.
Blixeled first parses the seghl file to court the number of matches, which it li sts next to eah
guery name, as shown in figure 3.6. To save space Blixeled can be set to only list queries
with ore or more matches.

Ancther optionisto force Blixem to automaticaly cdl dotter with the first listed database
match. This can be useful for e.g. efficient comparison d the proteins of two genomes, if
one only wants to establish if there is any homologue in the other database. The keyboard
arrow keys can be used to go to the next query in the Blixeled window. Queries with a
sought feaure such as *has a homologue’ can be seleded, and after all of them have been in-

speded, alist of the seleded queries can be printed ou.
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Figure 3.6. The Blixeled tod (top left) is useful for analysing a batch of BLAST seaches.
The number of matches to ead query is listed next to its name. By clicking on a query,
Blixem and Dotter (optionally) are cdled up. This example contains al H. influenzae pro-
teins that were foundto match C. elegans but nat S. cerevisiae using stringent MSRcrunch
criteria. After analysing the output using less s$ringent criteria, the proteins marked red were
foundlikely to be homologous to ayeast protein.
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3.6 Discussion

A number of graphica todls exist for schematic display of database hits [Medigue et al.,
1995 Rubin, 199§. Asfar aswe ae avare, however, Blixem is the only viewer that recon-
structs a multi ple sequence dignment from BLAST matches. The unique combination d a
schematic overview and cetailed residue analysis, and the integration with the other work-
bench tods make Blixem a key comporent for complex analysis tasks. A number of other
systems also employ Blixem as a BLAST viewer. It is siited for WWW servers that report
BLAST results, sinceit can read bah the query sequence and the MSPs from standard inpu.
For web usage, ore @uld argue that it might be preferable to re-implement Blixem in Java,
which would make it platform-independent. On the other hand, progressis being made on
porting the ACEDB graph library to PC and Mac platforms, which in pradice would make
the standard Blixem application equally portable, but faster.

Blixem can in principle be used to view the output of any database seach program that
produces ungapped matches. Allowing insertions in the query sequence would require afun-
damental change in Blixems drawing routines, and the result of many insertions at different
points could be detrimental to the dignment. We have therefore not pursued this approadh.
To display output from programs that report gapped matches, they would first have to be
converted to a set of MSPs. Ironicdly, the latest version (2.0) of BLAST reports gapped
alignments, which makes it alot less sitable for Blixem than version 1.4.

A number of feaures may be incorporated in the future. For instance, it would be
preferable to limit the verticd scrolling to the dignment part of the display only, so that the
Big Picture would be visible & all times. Although such a medhanism exists in the ACEDB
graph library, such windows can na be printed properly, and are therefore not used. To use
Blixem as a generic graphicad display tod for showing data from an arbitrary external pro-
gram, a general interfacespedficaion would be needed. At present, all displays are hard-
coded in the program, even the Seg displays. Instead of using “magic scores’ for eath
method, such data shoud instead be mnwverted to a standard format, which would speafy the

type of data and dsplay parameters guch as colour and scding. If such a format beames
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widely used, it would allow graphicd display of the output of third party sequence analysis

programs, with avery small overhead for their developers.
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4. MSPcrunch: a BLAST enhancement tool for large-scale se-

guence similarity analysis

4.1 Summary

For high-throughpu genomic sequence similarity analysis, most database seach programs
generate prohibitively large anourts of information. To alow an annaator to concentrate on
esentia tasks, an automatic system was developed that makes many of the standard ded-
sions a trained sequence analyst would, and orly presents the most informative matches to
the annaator.

The system is currently based onthe database seach programsin the BLAST suite, which
have been primarily designed for short query sequences. A number of agorithmic additions
were made that are espedally valuable for multi-domain queries, which is the norm for ge-
nomic cosmid-size sequences. It is implemented by changing some inpu parameters to
BLAST, and applying a number of filtering rules to the output by a post-processng program,
cdled MSRcrunch.

The main advantages compared to default BLAST seaching are: 1. Domains with wegk
but significant hits will not be missed dwe to ather higher-scoring domains. 2. *Junk
matches with biased composition are diminated. 3. Higher sensitivity and seledivity are
adieved for multi ple matching segments in the *twili ght zone’, thanks to strict consistency
criteria. 4. A range of output formats is provided, including gapped alignment, graphicd
schematic and tabular data.

The default mode of operation hes been cdibrated empiricdly to suit the needs of efficient
and sensitive genome annaation. This mode will remove redundant matches even if they are
significant, but will report the highest scoring of the statisticdly insignificant matches, since

these may proveto be biologicdly relevant after further analysis.
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4.2 Introduction

Large scde genome sequencing projeds [Wilson et al., 1994 Dujon, 1996, generate new
sequences at such a high rate that homology analysis has become aserious bottlenedk. The
avail ability of fast database seaching programs sich as BLAST [Altschul et al., 1991], Fasta
[Peason, 1990,and Flash [Rigoutsos and Califano, 1993, and fast parallel computing hard-
ware such as MasPar [Brutlag et al., 1993, DAP [Callins et al., 198§ and Bioccderator
[Esterman, 1993 ensure that the adual computation is a more or less ®lved problem for at
least the foreseedle future. Anaysing the seach results generated from a hunded thousand
newly sequenced basepairs per day, however, presents a mgor chalenge. Available seach
programs produceresults that are too time-consuming to dgest onalarge scde. For genome
projeds, there is a demand for automated analysis g/stems [Scharf et al., 1994. Our phi-
losophy is that human evaluation is dill a required for high-quality sequence analysis, bu
many monaonous time-consuming tasks can be aitomated by computational methods. Pre-
sented here is a program, MSRcrunch, which applies a number of rules to evaluate matches
reported in a database search, and concisely presents only the most relevant information for
further consideration.

Much o the recent developments of database seach programs has been refinement of the
statisticd significance of amatch [Karlin and Altschul, 1994, i.e. finding the probability that
a match was caused by chance For most seach agorithms, the extreme value distribution
[Gumbel, 1958 has proven the best model so far for describing the distribution o optimal
scores to database sequences [Altschul et al., 1994. Statisticd significance of a match cd-
culated uncer this model has been shown to generally agreewell with biologicd relevance

However, sequences that are unusualy rich in a few amino aad types may give rise to
spurious matches that under the randam model are very significant. A solution to thisis to
deted low complexity regions and remove them from the query [Wootton and Federhen,
1993 Claverie and States, 1993, bu this has the drawbad of artificialy disrupting the
guery sequence, which may lead to missed true simil arities [Koonin et al., 1996K. The risk
of this is reduced if only the ébnamally frequent residues are removed [Casari, personal

communicaion]. In this chapter a method for avoiding matches caused by biased composi-
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tion is described, that instead of modifying the query, compares the observed score to the
expeded score, given the residue composition. If the observed score was deaned to be the
result of compasitional bias, the match is regjeded.

When the anino add composition is not biased, the statisticd significance of single
matches reported by BLAST [Altschul et al., 199Q is normally reliable. The significance of
multiple matching segments is however difficult to cdculate properly using the extreme
value distribution, and BLAST uses a heuristic to dedde which segments are consistently
ordered with resped to eat aher [Karlin and Altschul, 1993. This heuristic does not take
the distance between two segments into acourt, and dten owerestimates the cmbined sig-
nificance of what are redly independent segments [Koonn et al., 1996k. In this chapter, a
method is described that uses empiricaly derived consistency rules for multiple matches
between two sequences, which explicitly takes the distance between segments into acourt.
This has a flavour of gap penalties, bu the method is very different from dynamic pro-
gramming.

MSRcrunch is implemented as an add-on tod for the BLAST programs, which were do-
sen because of their robustness speed and the underlying phil osophy of only looking for un-
gapped matching segments, which allows finding of matches to multiple independent do-
mains. For genomic analysis, which invaves finding protein matches to short exons inter-
spersed between introns, this is a big advantage. The main problem with using BLAST for
large multi-domain queries is that it by default only reports the highest scores. This can
cause we&ly conserved damains to be missed if other domains generate too many high-
scoring matches. The problem can be dleviated by changing a parameter so that BLAST re-
ports al matches. This can cause severe over-reporting, bu MSRcrunch then removes re-
dundancy in congested regions 0 that only the high-scoring matches of any given region are
kept.

Statisticd significancetends to work well to suppat clea similarities. We&kly significant
matches may or may not infer homology. Matches in this -cdled ‘twilight zone' are a

mixture of true and false simil ariti es, and the problem is to separate the signal from the noise.
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For ungapped matches from BLAST, the problem of spurious matches is bigger than for dy-
namic programming methods that find the single best match.

After filtering out redundant and ‘junk matches, the acceted matches can be viewed ei-
ther as agraphicd Big Picture" schematic display with ore database sequence per line, as a
gapped aignment, or can be exported to ather programs such as ACEDB or Blixem in a

tabular form.

4.3 Methods and materials

MSRcrunch is in itself not a database seach program, bu relies on the programs Blastp,
Blastn, Blastx, Thlastn and Thlastx from the BLAST suite [Altschul et al., 199]]. This has
the alvantage that end-users can use any BLAST serviceprovided onthe internet and process
the output with MSRcrunch.  Ancther reason for implementing MSRcrunch as a post-
processng filter was to kee it flexible to adaptation to ouput from other database seach
programs that may become popuar in the future.

Version 1.4.6 6 BLAST was used. BLAST seaches for ungapped segments in two se-
guences and extends them until the maximum score is achieved. All such maximal segment
pairs (MSPs) scoring above a cetain threshdd are reported. Thisthreshold is normally set to
report 10 spurious hits, bu here we lower it to 25for Blastp and 35for Blastx, Thlastn and
Thlastx, using the BLOSUM®62 score matrix. A lower threshold causes BLAST to report
more spurious and true MSPs, bu M SRerunch removes most of the spurious ones by consis-
tency chedks described below.

The BLAST B parameter was st to a high enough value so that it does not limit the num-
ber of MSPs reported (10°). For Blastx on cosmids, we use the -spanl ogion to avid a too
voluminous output, and the score matrix BLOSUM62-12, which is a slightly modified ver-
sion d the BLOSUM®62 matrix [Henikoff and Henikoff, 1993. The modificaion was to
lower the score for stop codors from -4 to -12. Such a high penalty for stop codorsis prefer-

able for DNA sequences with very low error rates.  Note that for older versions than 1.4 d
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BLAST onre nedls to set the S (first passcutoff) parameter set to alow value, since only da-
tabase sequences that have amatch abowve this threshold will be seached in the seaond pass
which looks for matches above S2.

Runring Blastx on long DNA query sequences (more than 10 bases) may prove imposs-
ble due to memory limitations. For such cases, we have developed a program Seqsplit
which splits up the query into smaller chunks with owerlaps. After running BLAST on the
smaller chunks, anather program Blastunsplit combines all the output files into ore and re-
constructs the positions in the original query.

The protein sequence database seached, Swir, is a low-redundancy colledion o se-
guences from Wormpep, Swisgrot and TREMBL [Bairoch and Apweiler, 19964. Redun-
dancy was removed by a program nuswir [P. Rice personal communication], which rejeds
any sequence from TREMBL that is more than 95% identicd to any Wormpep o Swisgrot
entry. Wormpep entries in Swisgprot were dso removed. 118182Release 11 d swir con-
sisted of 118182sequences. 7299 ¢ these sequences came from Wormpep release 11, 51474
from Swisgprot release 33 and 59409rom TREMBL. See tapter 9 for more information on

Wormpep.

4.4 MSPcrunch rules
The post-processng of MSPs from Blastx or Blastp in MSRcrunch is outlined in figure 4.1.

An MSP consists of an urgapped alignment between a segment in the query sequence, sim-
ply cdled 'the query' heredter, and a segment of a database sequence, cdled 'the subjed'.
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database sequence

Remove biased compasition
MSPs

Remove M SPs positionall y
covered by stronger MSPs

Remove nonradjacent MSPs
in twili ght zone

Output remaining MSPs
in the dhosen format

More MSPs
?

Yes
No

Finished

Figure4.1. Overview of the different moduesin MSRcrunch.
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Biased composition matches

Biased composition MSPs are deteded by arule that compares the score of the MSPwith the
score of an MSPwith nocompasition kas, in relation to the anino aad composition d the
MSPin question.

The epeded score of an MSP, S, is the average score two random sequences of that
particular length and amino add composition would have. For atypicd MSPthe expeded
score is negative, bu if the cmpasition is biased the expeded score may be paositive. The
expeded score is cdculated the foll owing way: Two vedors Q and D with the observed fre-
guencies of the amino adds in the query and database segments making up the MSPare con-

structed. The vedors are then scored against ead ather so that

SEXP= LZiZSIZ?ngi Dj M ij

where L is the length of the MSPand M is the scoring matrix. This methodyields the same
result as randam shuffling methods would asymptoticaly, bu isfaster. To avoid urjustified
high values of Sy, due to small sample sizes in short MSPs, the frequencies Q; and D; are
given pseudocourts acarding to

_Qc+alp  _Dc+alp

_ , D
Q L+a L+a

where Qc; and D¢; are the courts of residuei in the query and database segments in the MSP,
and p; is the badkgroundfrequency of residuei. A good \alue for the pseudacourt weight o
was foundto be 5 (cf. [Henikoff and Henikoff, 1994). Using alower weight tends to rejed
too many short true matches, while ahigher weight may cause accetance of too many biased
compasition matches.

To evaluate whether the score S of the MSPis the result of biased composition, we cdcu-

late the bias-ratio 3:
S-S
— exp
& S-LM
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where Mgy, is the frequency-weighted expeded score of random (unbiased) sequences ac-
cording to the scoring matrix used. For BLOSUM62, Mgy, = -0.945.3 can be used as an in-
dex of how biased the composition o the MSPis. Asarule, < 0.8isa dea sign that the
MSP has a biased compasition and shoud be rgjeded. Table 4.1 shows to what degreethe
unwanted biased compasition MSPs are removed for different values of 3. For values of
abowve 0.8, lossof good matches with slight bias becomes a problem.

A simpler and lesseffedive version d this algorithm has previously been described. The
method described here has been implemented sinceversion 1.2 & MSRerunch.

YMH5_CAEEL B02841 CAl1l4 CAEEL GRP_ARATH
B biased good biased good biased good biased self
0.1 331 132 292 3 2503 27 1625 1
0.2 298 132 288 3 2485 27 847 1
0.3 221 132 277 3 2443 27 326 1
0.4 133 132 51 3 2418 27 66 1
0.5 23 132 191 3 2378 27 15 1
0.6 7 132 67 3 2255 27 3 0
0.7 0 132 15 3 1867 27 0 0
0.8 0 132 3 3 623 25 0 0
0.9 0 132 0 O 22 22 0 0

Table 4.1. Separation d biased compasition matches from good ores by MSRerunch as a
function d the biasratio . The numbers refer to counts of MSPs that passed the
MSRcrunch adjacency criteria. No coverage limit was used (see below). YMH5 _CAEEL
(Swisgrot P34472 has a stretch o biased compasition (add-rich) in the N-terminus as well
as a reverse transcriptase domain and 3 C-type ledin damains (see figure 4.7. B0284.1
(Wormpep CE0065Q has a darged-residue biased region. CA14 CAEEL (Swisgrot
P17139 isa wllagen, containing mainly [Gxy] repeds. Although these matches have biased
compasition, they are to ather collagens, and it is therefore useful that MSRcrunch does not
rged all of them. GRP_ARATH is the most biased composition protein in Swisgrot 28
(72% Glycine, relative entropy 2.0 bts). In this extreme cae even the match to itself does
not passthe biased composition test when 8> 0.6.

Positional coverage limitation

For genomic cosmid-size analysis, this is perhaps the most important feaure of MSRcrunch.
BLAST has a settable limit for the number of highest scoring database sequences to report,
which is by default set to 250. If matchesto ore domain fill this quaa entirely, other weaker

scoring domains will not be reported. To prevent this from happening, we set the limit in
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BLAST to a sufficiently high number that all matches are reported (B=1000000.
MSRcrunch then limits the number of matches by taking the position in the query into ac-
court. If the query segment of an MSPis arealy covered by many other MSFs that score
higher and are acceted by MSRcrunch, the MSPisrgeded. Figure 4.2 shows the MSP cov-
erage on a wsmid sequence of 40 kbeses. The two main causes of very high number of
MSPs covering certain regions are strong amino add frequency bias and large protein fami-
lies. Welimit the mverage by default to 10fold onead strand. An MSPisonly rejeded if
every residue in the query segment is covered. In pradise, due to staggering of matches, this

leadsto a mverage upto 20fold.
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Figure 4.2. Histograms of MSP coverage on bdh strands of the 40 kbase DNA query se-
guencefrom the C. elegans cosmid ZK643(A) before and (B) after MSRcrunch. MSPs were
generated by Blastx as described in Methods. The number of MSPs was reduced from
119168to 200 ly MSRerunch. The peek at 38000is the result of a repetitive region which
gives rise to very biased amino add sequences (pay-G in the paositive strand and pdy-P in
the negative) and the peeks at 29000and 30000 hve astrong bias for charged residues.
Most matches to these regions were removed by the biased compasition detedion medha-
nism. The main significant homology in this cosmid is to a G-protein cougded receptor
(ZK643.3, locaed between bases 25000and 28000.Most matches are insignificant alone,
but satisfy the aljacency criteriain MSRcrunch with neighbouing matches. There is aso a
motif conserved with DCMP deaminases at 3270332800. Most other accepted matches are
to predicted proteins from this cosmid.
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Adjacency tests for multiple MSPs

MSPs that have an unbased composition and score @owve a cetain threshold are dea indi-
caors of homology. This threshod is normally considered to be gproximately 80-90 score
units, using the BLOSUMG62 score matrix. MSPs with scores in aregion below this thresh-
old, i.e. in the twili ght zone, may have such low scores due to fragmentation caused by gaps
in ore of the sequences relative to the other. Since these gapped aignments are potentialy
red, a lower score threshold shoud be used for adjacent MSPs that can be @mncaenated
within some limits of al owed overlaps and gaps in the query and subjed sequences.

Figure 4.3 ill ustrates two cases of pairs of MSPs; the MSPs in the first pair AVA2 is
clealy consistent with a normal gapped alignment. The MSPs of the second @ir B1/B2
could be caused by agap in atrue dignment, bu this is lesslikely due to the long overlap.
The wider the gaps and the more the MSPs overlap, the lesslikely are they to combine into a
true gapped alignment. If B2 would owerlap B1 with more than the length of B1, nogapped
alignment could passbly join them together and the MSPs shoud be treaed separately.

The definition d adjacency completely depends on the dhosen parameters for how big the
gaps and owerlaps between MSPmay be. BLAST itself has a mnsistent ordering ched for
multi ple matches [Karlin and Altschul, 1993, which is used for cdculating the cmbined
probability. It is very conservative however, and oy dismisses consistency if joining a pair
of MSPsisimpossble, and daes naot take the length of the gap into acourt. Still, this smple
rule does reducethe noise level afair amourt.

To test adjaceicy between two MSPs MSPL and MSP2, where MSP2 is C-terminal of

MSPL in the subjed sequence, we define the foll owing variables (seefigure 4.3):
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Figure 4.3. Diagrams of two cases of neighbouing MSPs in the sequences Q and S, for il-
lustration d the MSRcrunch parameters MSP_dist and MSP_shift. The MSPs Al and A2 do
not overlap, while B1 and B2 do,yielding a negative MSP_dist value.
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Query_gap = MSP2_QueryStart - MSPL_QueryEnd -1
Subjed_gap = MSP2_SubjedStart - MSPL_SubjedEnd -1

MSP_dist = minimum ( Query_gap, Subjed_gap)
MSP _shift = | Query_gap - Subjed_gap |

For Blastx, the query coordinates are mnwverted to amino add coordinates. Introns are es-
sentially Query gaps. If the Query gap is larger than the Subjed_gap bu smaller than the
intron limit, MSP_intron, pdential introns are acommodated by setting Query_gap equal to
Subjed_gap before cdculating MSP_dist and MSP_shift.

Consistency checking algorithm. For a truly consistent pair of MSPs, the values of
MSP_dist and MSP _shift are locaed in a band that in order to dstinguish true from false
adjacency must beame more narrow for lower scoring MSPs. The @nsistency cheding al-

gorithm is performed as foll ows:

For al pairs of MSPs between two sequences {
Calculate MSP_dist and MSP_shift for the pair.
Calculate the accetanceboundariesfor MSP_dist and MSP _shift based onthe
lowest scoring MSPof the pair.
If MSP_dist and MSP _shift are within the limits, mark the two MSPs as adjacent
to ead cther.

}

For al MSPs betwean two sequences {
If it scores above the twili ght zone upper limit, accept it.

Otherwise, rgjed unlessit was foundto be ajacent to ancther MSP.
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Parameter estimation. The basis for adjacency analysis is that randam spurious matches
may occasionaly end upadjacent to ead ather purely by chance, whereas red matches will
do so very frequently. To investigate the range of the aljaceicy parametersin red homolo-
gies, matches to a G-protein couped receptor and a caboxyl esterase were analysed manu-
aly to verify if they were true or false, based on the overal dotplot as reference The
MSRcrunch adjacency parameters for 78 MSPs that were verified to be crred are shown in
figure 4.4. Most of the values are dustered nea zero, bu some low-scoring true neighbous
are dso present. Inthe lower region, there is overlap between nase and signal, bu not in the
upper region. A similar plot of randamly generated spurious matches would have aflat dis-
tribution along y axesin bah plots, bu tend to be strongly concentrated in the lower region

onthe x axes.

Allowed adjacency bands. We ae now facel with the problem of devising a set of rules
that will i nclude & many as passble of the true MSPs, while & few as possble of the false
MSPs. Usualy it is more desirable to include some spurious matches, since removing all of
them may reduce sensiti vity to true matches.

The simplest rule for confirming adjacency would be @mnstant distance and shift cutoffs
for matches in the twili ght zone. This would na work well, however, sinceit would be too
permissve for low scoring MSPs and too restrictive for high-scoring ones. To acammodate
for this, a gradual tightening of the permissve distance and shift cutoffs is needed. This
could be dore ather linealy, or acording to some function. For MSP _shift and the lower
bound & MSP _dist (maximum allowed owerlap), we foundthat the rule neels to be quite
strict, even for MSPs in the upper twili ght zone, so a linea curve was foundadequate. For
the upper bound & MSP_dist and MSP _intron, havever, strictnessis much more required in
the lower twili ght zone than in the upper. Attempts to use alinea allowance function were
unsatisfadory becaise they were ather too strict in the upper zone, or would go to zero too

suddenly in the lower zone. A
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Figure 4.4 A sample of true MSP_dist and MSP _shift values from 78 MSPs that were
manually verified. The score of the weekest MSPin eat pair was used. Data from matches
to the G-protein cougded receptor ZK643.3(Swisgprot YOW3_CAEEL P30650 and the ca-
boxylesterase KO7C11.4(Wormpep CE07347).
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quadratic function proved to gave asignificant improvement over alinea. We did nd pur-
sue amore mmplex curve form, aswe would ony exped margina improvements from this.
The bounds for the dlowed bands that performed best were produced with these parame-
ters. If the twilight zone is defined between scores lower and upper, we define the bounds
for a parameter at these endpants as distmax.lower, distmax.upper, distmin.lower, etc.. The
shape of a aurve is controlled by the .power exporents. A power of 1 gives alinea curve,
while ahigher power gives a airve which is relatively more stringent in the lower region.

For scores in the twili ght zone, this gives the foll owing bounds:

MSP_dist < distmax.lower + (score - |lower)distmax.power/distmax.scde
MSP_dist > distmin.lower - (score - lower)*distmin.power/distmin.scde
MSP_shift < shiftmax.lower + (score - lower)”~shiftmax.power/shiftmax.scde

MSP _intron < intronmax.lower + (score - lower)"intronmax.power/intronmax.scae

where

distmax.scade = (upper-lower)*distmax.power/(distmax.upper - distmax.lower)
distmin.scae =(upper-lower)*distmin.power/(distmin.lower - distmin.upper)
shiftmax.scde =(upper-lower) shiftmax.power/(shiftmax,upper - shiftmax.lower)
intronmax.sca e=(upper-lower)intronmax.power/

(intronmax.upper-intronmax.lower)

(MSP_shift and MSP _intron are dways pasiti ve so the lower boundis zero ).

For Blastp (protein-protein comparison) we foundthe best definition d the twili ght zone
to be 2575 (12.537.5 hits), while for Blastx, Thlastx and Thlastn (DNA-protein compari-
son) 3575 (17.537.5 bts) due to the higher badground nase levels. A default score of 75
was chosen as the upper limit of the twilight zone since only few spurious matches sore

abowe thisvalue. For Blastn (DNA-DNA comparison) we set the zone by default to 70140
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(19-39 hts). We foundthat alinea behaviour in the distmin parameter was adequate, while
a squared function for the other parameters gave better performance The dlowance bands
that these functionsyield are plotted graphicaly in figure 4.5.

To ill ustrate how these ruleswork in pradice an example is sown in figure 4.6. BLAST
reports me false MSP together with the true MSPs. The false MSPs are not the lowest
scoring ones, bu since they ladk adjacency, they can be ruled ou as purious twili ght zone
matches. The rule is gringent enough to allow confident use of lower scores than BLAST
normally does. By default, BLAST sets the autoff so that we exped 10 spurious matches to
be reported, ona purely statisticd basis. For this particular query sequence and database
(ZK643.3and swirl0), this gives alowest accepted MSP score (S2) of 33. As wown in fig-
ure 4.6¢c and d,lowering the BLAST score aitoff to 25results in more true matches, but also
more noise. However, thanks to the aljacency rules in MSRcrunch, the MSPs that are low-
scoring due to gaps in the dignment can be separated from the spurious ones. Of course, all
true MSPs are nat always found. For instance of the 78 manually verified MSPs in figure
4.4, 9could nd med the aljacecy criteria and were thusincorredly missed by MSRcrunch.

Our results are generally applicable to any scoring scheme, bu since the most popular
scoring schemes, BLOSUM [Henikoff and Henikoff, 1993 and PAM [Dayhoff et al., 1979,
are in half bit units, we have dosen to expressall scores in this unit. To convert them to
other scoring schemes, they have to rescded appropriately. Since the parameters have been
estimated empiricdly to best suit the needs of interadive genome analysis, they may require
adjustment for other purposes. All the twili ght zone parameters can be changed onthe com-
mand line. The &owe described agorithm was implemented in MSRcrunch version 2.0.
Simpler and less effedive dgorithms have previously been described [Sonnhammer and
Durbin, 1994; Sonnhammer and Durbin, 1994b.
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Figure 4.5. Bands of allowed MSRcrunch twili ght zone adjacency parameters. If the pa-
rameters MSP_dist, MSP_shift and MSP _intron (Blastx only) between two MSPs fall within
the shaded areg they are considered adjacent and will be acceted by MSRcrunch. The lower
score of two MSPsis used.
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Figure 4.6. Dotplots illustrating the dfead of MSRcrunch onthe comparison d ZK643.3
(Swisgprot YOW3_CAEEL P3065Q with CLRA_RAT (Swisgprot P32213. A. The full
dotplot generated by Dotter (chapter 5) with a window size of 17. B. MSPFs generated by
Blastp using default parameters in a search against swirl0 (S2=33). 5true and 3fase MSPs
are reported. C. MSPs generated by Blastp using an S2 cutoff of 25. 9true and 11false
MSPs arereported. D. MSPsfrom C kept by MSRcrunch. All the false MSPs were rejeded
and all the true MSPs were kept, thus effedively enhancing both sensitivity and seledivity.
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4.5 Displaying results

The recmmended way to view MSRcrunch results is in Blixem. Nevertheless MSRerunch
also suppats a number of ASCII text output formats, that are useful for quick inspedion o
the results, and for exporting the data to ather programs. Currently, the following output

formats are avail able:

» A graphicd Big Picture" schematic of the relevant matches, with ore database sequence
per line & down in figure 4.7. This way one rapidly gets a good pcture of which pro-
teins match a cetain region d the query. It is not unlike the Big Picture display in
Blixem, except that matches that are wnsidered adjacent are cmbined orto ore line, and
the sum of their scores is given as the score. The number of adjacent segments is also
shown. Non-adjacent MSPFs of the same sequences are displayed onseparate lines. If an
MSPwith a pasitive expeded score passs the biased compasition filter, its score will be

marked by an asterisk.

» Gapped pairwise dignments, as siown in figure 4.8a. This is achieved by simply con-
caenating adjacenit MSFs. Only if BLAST reports overlapping MSPs will gaps appea as
dashes in ore sequence and residues in the other. For nonroverlapping MSPs, BLAST
does nat provide the residues of the one sequence that spans the gap, and noattempt is
made to retrieve it separately, sincelittl e information would be added by this. Such gaps
will t herefore be represented by dashes in bah sequences. In pradice short gaps of afew
residues can usualy be remnstructed from the overlap, while long gaps can nd. For a
more aoncise report, any gap longer than ten will not be shown at full length, bu will be
truncated to ten dashes. The layout has been designed to be eay to read by humans as

well as easy to parse by other programs.

* A detaled listing of eatt MSP, as shown figure 4.8b.Instead of sorting the MSPsin score

order, which BLAST does, MSRerunch sorts them by position from N to C-terminus in
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the database sequence. This way a much better appredation d the global alignment with
gapsisganed, if it exists.

In tabular format, with ore line per MSP, for parsing by other programs. A variety of one-
line formats are suppated, ore of which is diown in figure 4.9a. This format, cdled
‘exblx’ can be parsed dredly by Blixem (chapter 3), which will fetch al the matching se-
guences, using Efetch (chapter 6). Ancther format, ‘seqbl’, contains al the information
Blixem nedds, including sequence data (figure 4.9h), and thus eliminates the sometimes

time-consuming sequencefetching.

In .aceformat, for export to ACEDB, as $iown in figure 4.9c. Thisis particularly useful
for homology asssted gene prediction, since ACEDB includes an interadive gene predic-
tion workbench couded to Blixem, which integrates the display of predicted exons into

the BLAST-based multi ple sequence di gnment (see tapter 3).
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QUERY= YMH5_CAEEL P34472 HYPOTHETI CAL 136.3 KD PROTEI N F58A4.5 I N CHROMOSOME | |1 .

| 1222
CE00617 REVERSE TRANSCRI PTASE

FAOF12. 2 1643

ZK1236. 4 423 - CE00531 TRANSPOSON T1- 2
B34751 453 o T B34751 MOSQUI TO TRANSPOSON
PC1123 320 T PC1123 BLOODFLUKE PLANCRB
PC1231 329 - PC1231 MOSQUI TO TRANSPOSON
H44490 260 o - H44490 REVERSE TRANSCRI PTASE
S31175 309 S31175 TRANSPOSON NLRLCTH

P14381 TRANSPOSON TX1
CE00800 RNA- DI RECTED DNA POL
P21328 RNA- DI RECTED DNA PCL
S20106 HYPOTHETI CAL PROTEI N
P22897 MANNCSE RECEPTOR
P22897 MANNCSE RECEPTOR

YTX2_XENLA 137
CO6ES. 4 220
RTJK DROVE 343
S20106 168
MANR HUMAN 75
MANR HUMAN 79

B26330 229 o B26330 TRANSPOSON | FACTOR
A32713 358 - A32713 REVERSE TRANSCRI PTASE
POL2_MOUSE 210 - P11369 REVERSE TRANSCRI PTASE
S16783 233 T S16783 RETROPOSON L1 - RAT
B34087 2745  ~T-= B34087 HYPOTHETI CAL PROTEI N
A44490 147 - A44490 REVERSE TRANSCRI PTASE
S28721 304 T S28721 HYPOTHETI CAL PROTEI N
JU0033 226 - JU0033 HYPOTHETI CAL L1 PROT
S27771 263 T T S27771 RNA- DI RECTED DNA POL
Y2R2_DROME 202 -~ P16425 RETROTRANSPOSABLE ELEM
B27672 214 - T B27672 RNA- DI RECTED DNA POLY
POLR DROME 183 - P16423 POL POLYPROTEI N
LINL_NYCCO 199 - P08548 REVERSE TRANSCRI PTASE
07A9. 1 114 e CE00502

B36186 208 o B36186 TRANSPOSON

E44255 75 o E44255 MANNOSE RECEPTOR
44255 77 — (44255 MANNOSE RECEPTOR
TETN.CARSP 77 1 P26258 TETRANECTI N- LI KE
TETN HUMAN 76 1 P05452 TETRANECTI N PRECURSOR
S23650 160 o S23650 HYPOTHETI CAL PROTEI N
LECE_ANTCR 83 P06027 ECHI NOI DI N.

I XA _TRI FL 85
LECI _HUMAN 99
LECI _MOUSE 88

P23806 FACTOR | X/ X- Bl NDI NG
P07307 HEPATI C LECTIN H2
P24721 HEPATI C LECTIN 2

A42230 88 A42230 LECTIN M ASGP- BP

LECH _RAT 96 P02706 HEPATIC LECTIN 1
ODP1_ECOLI 99 _ P06958 PYRUVATE DEHYDROGENASE
ANP_OSMVO 90 Q01758 ANTI FREEZE PROTEI N

JH0626 90
VP3_ROTS1 92
LEC _RAT 82

JH0626 ANTI FREEZE PROTEIN ||
P15736 | NNER CORE PROTEI N VP3
P08290 HEPATI C LECTIN

NNNPNNNNNNNNNNNWORRPRPRPRANOORMNOWAORAAONORAWONPARPREPNOWRDOWORATOWER

Figure 4.7. Example of the Big Picture display of MSRcrunched Blastp results. The se-
guence YMH5_CAEEL (Swisgrot P34472 was ached against swir5. The domain or-
ganisation d this protein is C-type ledin (30-160), an add-rich stretch (160-540), C-type
ledin (540-620), Reverse Transcriptase (650-980) and C-type ledin (10861150. All
matches to the acdd-rich stretch were removed by the biased compasition rule (8=0.8). In the
original output from Blastp, the 62 hghest-scoring MSPs were dl biased compaosition
matches, apart from the dose relatives F40F12.2and ZK1236.4from the same chiromosome.
The wlumns are: Entry name, combined score, nr. of MSPs, schematic dignment, accesson
nr. and abbreviated description. Sequences from Wormpep include adot and the ones from
Swisgrot an underscore. Other sequences are from PIR.
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QUERY = ZK643.3 Length = 522

> CLRA_RAT P32213 CALCI TONI N RECEPTOR A PRECURSCR ( CT- R-

Score= 96 (Sum of 2 contiguous HSPs), ldentity= 48%

Query: ZK643.3 146 - 171 CPPTWDGWNCFDSATPGWWFKQ CPNY
C TWDGW C+D Gv+ Q CP+Y
Shjct: CLRA RAT 72 - 98 CNRTWDGWCWDDTPAGVMSYQHCPDY

Score= 61 (Sum of 2 contiguous HSPs), ldentity= 25%

Query: ZK643.3 227 - 283 LLTYSASVI FLI PAVFLLTLLRPI RCQ@- - - -
L+ +S S+ LI ++ + + +
Sbj ct: CLRA_RAT 153 - 208 LVGHSMSI AALI ASMGE FLFFKNLSCQ- - - -

Score= 322 (Sum of 5 contiguous HSPs), ldentity= 33%

Query: ZK643.3 275 - 486 | TVSLFVWNDAPLSSQVFONHLFCRLL- - - -
| +++V P V ++ + C++L
Sbjct: CLRA_RAT 196 - 407 11111 HLVEVWPNGDLVRRDPI SCKI L- - - -

EGETLRSYKVI CWGVPGVI TWYI FVRSL- -
E+LRY ++ WG PV T+++  Re+

A (ClA).

LHRHLLI SCLLYGAFYLI TVSLFVVN
LH+++ ++ +L + + VN
LHKNMFLTY! LNSI ||| | HLVEVWPN

- RYLRLTNFTWWMLAEAVYLWRL LHTAQHS
+Y+ N+ W E +YL L+ A +
- QYMVACNYFWWLCEG YLHTLI VVAVFT

-- - - OW ENSTVAW EWM | TPSLLAMGV
OM T  + ++H P+ AtV
- - - - OWLSTET- - HLLYI | HGPVMAALW

NLLLLGLI VYI LVKKLRCDPHLERI QYRKAVRGALM.I PVFGVQQLLTI YRFSN- - - - - -

N L IV +LV K+R E

Y KAV+

++L+P+ G+Q ++ +R SN

NFFFLLNI VRVLVTKVROTHEAEAYMYLKAVKATMWLVPLLG QFVWFPWRPSN- - - - - -

YQVTDQSLNGLQGVFVSFI VCYTNRSWECVLKFWS

Y SL QG FVv+ I G+ N V

+ + W

YDYLMHSLI HFQGFFVATI YCFCNHEVQVTLKROM

Figure 4.8. MSRcrunch ouput of pairwise dignments. A (this page). Gapped ali gnments of
the acceted MSPsin figure 4.6d. Note that only contigs of adjacent MSPs are digned with
gaps, separate ntigs are not. The start and end coordinates of the eitire @rtig is given at
the start of ead alignment, to make parsing essy. B (next page). Each MSPreported sepa-
rately with MSP-spedfic information in N to C-termina order. Matrix_expeded and has-

retio are referred to in the text as Me, and S.
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QUERY = ZK643.3 Length = 522

> CLRA_RAT P32213 CALCI TONI N RECEPTOR A PRECURSOR (CT-R-A) (CLA).

Score= 68, ldentity= 50% Matrix_Expected= -20.8, bias-ratio= 1.04, Adjacency= R ght
Query: ZK643.3 146 - 167 CPPTWDGANCFDSATPGVWWIFKQ
C TWDGW C+D G+ Q
Shjct: CLRA RAT 72 - 93 CNRTWDGWWCWDDTPAGVMSYQ
Score= 28, ldentity= 43% Matrix_Expected= -6.6, bias-ratio= 1.00, Adjacency= Left
Query: ZK643.3 165 - 171 FKQCPNY
++ CP+Y
Shjct: CLRA RAT 92 - 98 YQHCPDY
Score= 34, ldentity= 26% Matrix_Expected= -25.5, bias-ratio= 0.89, Adjacency= R ght
Query: ZK643.3 227 - 253 LLTYSASVI FLI PAVFLLTLLRPI RCQ
L+ +S S+ LI ++ + + + CQ
Shjct: CLRA RAT 153 - 179 LVGHSMSI AALI ASME FLFFKNLSCQ
Score= 27, ldentity= 23% Matrix_Expected= -24.6, bias-ratio= 0.83, Adjacency= Left
Query: ZK643.3 258 - 283 LHRHLLI SCLLYGAFYLI TVSLFWN
LH+++ ++ +L + + VN
Shjct: CLRA RAT 183 - 208 LHKNMFLTYILNSIII |1 HLVEVVPN
Score= 27, ldentity= 22% Matrix_Expected= -25.5, bias-ratio= 0.97, Adjacency= R ght
Query: ZK643.3 275 - 301 | TVSLFVVNDAPLSSQVFQNHLFCRLL
| ++ +V P V ++ + C++L
Shjct: CLRA _RAT 196 - 222 | 1111 HLVEVVPNGDLVRRDPI SCKI L
Score= 109, ldentity= 35% Matrix_Expected= -53.9, bias-ratio= 0.98, Adjacency= LeftRi ght
Query: ZK643.3 307 - 363 RYLRLTNFTWWMLAEAVYLWRLLHTAQHSEGETLRSYKVI CWGVPGVI TWYI FVRSL
+Y+ N+ WML E +YL L+ A +E + LR Y ++ WG P V T+++  R++
Shjct: CLRA_RAT 227 - 283 QYMVACNYFWWLCEG YLHTLI VMAVFTEDQRLRWYYLLGWGFPI VPTI | HAI TRAV
Score= 27, ldentity= 43% Matrix_Expected= -6.6, bias-ratio= 0.98, Adjacency= R ght
Query: ZK643.3 370 - 376 CW ENST
cw T
Shjct: CLRA_RAT 289 - 295 CW.STET
Score= 105, ldentity= 35% Matrix_Expected= -69.9, bias-ratio= 0.93, Adjacency= LeftRi ght
Query: ZK643.3 375 - 448 STVAW EWM | TPSLLAMGVNLLLLGLI VYI LVKKLRCDPHLERI QYRKAVRGALM.I PV
ST +++ P+ A+ VN L IV +LV K+R E Y KAV+ ++L+P+
Shjct: CLRA RAT 292 - 365 STETHLLYI | HGPVMAALVWNFFFLLNI VRVLVTKMRQTHEAEAYMYLKAVKATMWLVPL
FGVQQLLTI YRFSN
G+Q ++ +R SN
LG QFWFPWRPSN
Score= 54, ldentity= 33% Matrix_Expected= -34.0, bias-ratio= 0.99, Adjacency= Left
Query: ZK643.3 451 - 486 YQVTDQSLNGLQGVFVSFI VCYTNRSVWECVLKFWS
Y SL QG Fv+ | G- N V + + W
Shjct: CLRA RAT 372 - 407 YDYLMHSLI HFQGFFVATI YCFCNHEVQVTLKRQWA
Figure4.8b.
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A

68 (+1) 146 167 72 93 CLRA_RAT P32213 CALCI TONI N RECEPTOR
28 (+1) 165 171 92 98 CLRA _RAT P32213 CALCI TONI N RECEPTOR
34 (+1) 227 253 153 179 CLRA_RAT P32213 CALCI TONI N RECEPTCR
27 (+1) 258 283 183 208 CLRA_RAT P32213 CALCI TONI N RECEPTOR
27 (+1) 275 301 196 222 CLRA_RAT P32213 CALCI TONI N RECEPTOR

B

# seqbl

# BLASTP
68 (+1) 146 167 72 93 CLRA_RAT CNRTVDGWWCWVDDTPAGVMSYQ
28 (+1) 165 171 92 98 CLRA RAT YQHCPDY
34 (+1) 227 253 153 179 CLRA_RAT LVGHSMsI AALI ASME FLFFKNLSCQ
27 (+1) 258 283 183 208 CLRA_RAT LHKNMFLTYILNSI 111 HLVEVVPN
27 (+1) 275 301 196 222 CLRA_RAT I 1111 HLVEVWPNGDLVRRDPI SCKI L

C

Protei n ZK643. 3
Pep_honbl CLRA _RAT BLASTP 68 146 167 72 93

Protei n CLRA_RAT
Pep_honol ZK643.3 BLASTP 68 72 93 146 167

Prot ei n ZK643. 3
Pep_honpl CLRA _RAT BLASTP 28 165 171 92 98

Protei n CLRA_RAT
Pep_honol ZK643.3 BLASTP 28 92 98 165 171

Prot ei n ZK643. 3
Pep_honpl CLRA RAT BLASTP 34 227 253 153 179

Protei n CLRA_RAT
Pep_honol ZK643.3 BLASTP 34 153 179 227 253

Prot ei n ZK643. 3
Pep_honpl CLRA RAT BLASTP 27 258 283 183 208

Protei n CLRA_RAT
Pep_honol ZK643.3 BLASTP 27 183 208 258 283

Prot ei n ZK643. 3
Pep_honpl CLRA _RAT BLASTP 27 275 301 196 222

Protei n CLRA_RAT
Pep_honol ZK643.3 BLASTP 27 196 222 275 301

Figure 4.9. Examples of tabular output from MSRcrunch. A. The ‘exblx’ format, which
contains gore, frame, start and end coordinates and subjed name and description d eat
MSPon oreline. B. The ‘seqbl’ format, which is the same & exblx, except that it contains
the sequence of the database entry instead o its description. Both formats are parsed by
Blixem, bu for exblx data, Efetch (chapter 6) must be install ed to retrieve the sequences. C.
The same datain .aceformat, which is used to export the MSPsto ACEDB.
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4.6 Discussion

An diten head criticism of using ungapped alignments is that distantly related proteins as
arule can orly be digned by inserting gaps. However, the regions which require gaps usu-
ally correspondto loops between secondary structure dements in the 3-dimensional struc-
ture, where the length o the loop may vary. The loop residues can often nd be digned
structurally, which makes sequence dignments of these regions rather meaningless Also,
the results of algorithms that produce gapped alignment depend strongly on a somewhat ar-
bitrary gap penalty. A further advantage of ungapped alignments is that repeaed and shuf-
fled damnains in ore sequence ca be deteded, something which is often compromised by
programs that produce agapped ali gnment.

One drawbadk of ungapped alignments is the difficulty of cdculating an appropriate com-
posite score for al MSPs with the same protein. Here we put the enphasis on making sure
that a series of MSPs are truly consistent with a single gapped alignment. We then smply
sum up the individual scores. The BLAST programs also cdculate the probability of multi-
ple matches by summing the individual scores of consistently ordered MSPs and correding
for the number of MSPFs. However, their consistency criterion [Karlin and Altschul, 1993 is
much wegker than ou adjacency criteria and falsely high significance may arise from spuri-
ous hitsthat are not truly adjacent, espedally thase invalving biased composition matches.

An additional pradicd problem with the probabiliti es caculated in BLAST is that they
increase with the size of the database, because the expeded number of spurious matches in-
creases dowly as the database grows. However, the true match scores do nd change, and
becaise many of the new sequences are homologous to existing ones, the @rredion dten
overestimates the drop in significance In any case it is more onvenient to work with a
measure of similarity that remains gable for a particular match. For these reasons we de-
signed M SRerunch to work only with the raw scores (which are log odds ratios).

The parameters used to deem two MSPFs adjacent or not, MSP_dist and MSP _shift, were
here used independently of ead aher. It might be worth considering treaing them in a
combined way, so that alarge MSP _dist is more reaily acceoted if MSP _shift is snall. We
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have not found any such combinatorial rule that works satisfadorily in pradice and that
make sense both hiologicdly and statisticdly. Biologicdly one would exped a larger
MSP _shift for a larger MSP _dist, but alowing this would increase the levels of accepted
noise. There does not seam to exist a strong correlation ketween the parameters, and sinceit
is also important for rules to be simple enough to understand, we have not pursued this any
further.

The reduction d redundant results due to large protein families was achieved here by re-
jeding excess matches to a given region. A more subtle way of aceomplishing this is to
seach a pre-clustered database. Instead o finding simil arities to every member of the fam-
ily, a single match would be foundto the entire family, thus giving the relations to all other
members of the family, na only the dosest relatives. This is demonstrated in Part 1, using
the Pfam colledion d protein families based on hdden Markov models. Whether searching
a olledion d aligned families always is more sensitive than pairwise wmparison to all se-
guences is however nat entirely clea. Sensitivity may aso deaease if the family is not well
defined, o if the query is much closer to ore of the members than to the average of the fam-
ily. Therefore, we have here pursued a higher quality of traditional single-sequence database
seaching, which most likely will remain an important too complementary to family-based
seaching tedhniques.

The system described here is smilar to GeneQuiz [Scharf et al., 1994 in that it per-
forms many sequence analysis tasks automaticdly. MSRcrunch however is primarily con-
cerned with the proper treament of similarities along large DNA queries, for which a solu-
tion d the multi-domain problem is needed. Together with Blixem and Dotter, integrated in
ACEDB, MSRcrunch is part of a sequence analysis workbench. This workbench also has
different goals than GeneQuiz, since it was designed to analyse the DNA sequence and im-
prove the quality of exor/intron predictions using sequence similarity, as well as being an
annaation tod. Given the complexity of the gene prediction processin higher eukaryotic
genomes, we don't envisage afully automatic system for thisin the nea future.

Many of the feaures in MSRcrunch have been made partly obsolete by subsequent im-

provements in the BLAST software. Espeaally the sensitivity for multiple weak matches
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was improved significantly in BLAST 1.4. Our biased composition chedk is currently being
tested as an oggionin BLAST, and we hope that other feaures will be included in the future
too. Performing the filtering process during the seach phase would reduce the mmputa

tional load.

MSRerunch, Seqsplit, Blastunsplit are avail able by anonymous FTP from ftp.sanger.acuk
in the diredory /pul’M SRerunch.
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5. Dotter: A dot-matrix program with dynamic threshold control

suited for genomic DNA and protein sequence analysis

5.1 Summary

Graphicd dot-matrix plots can provide the most complete and detailed comparison d two
sequences. Presented here is Dotter, a dot-plot program for X-windows which can compare
DNA or protein sequences, and also DNA versus protein.

The main nowel feaure of Dotter is that the user can vary the stringency cutoffs interac-
tively, so that the dot-matrix only needs to be cdculated orce This is passble thanks to a
"Greyramp tod" that was developed to change the displayed stringency of the matrix by dy-
namicadly changing the greyscade rendering of the dots. The Greyramp tod allows the user
to interadively change the lower and uppr score limit for the greyscde rendering. This a-
lows exploration d the separation ketween signal and nase, and fine-grained visuali sation o
different score levels in the dot-matrix.

Other useful feaures are dot-matrix compresson, mouse-controlled zooming, sequence
alignment display and saving/loading of dot-matrices. Since the matrix only has to be cd-
culated orce and sincethe dgorithm isfast and linea in space Dotter is pradicd to use even
for sequences as long as cosmids.

Dotter was integrated in the gene-modelling modue of the genomic database system
ACEDB. Thiswas dore viathe homology viewer Blixem in away that also alows sgments
from the BLAST suite of seaching programs to be superimposed ontop d the full dot-
matrix. Thisfedure can also be used for very quick finding of the strongest matches. As ex-
amples, we analyse aC. elegans cosmid with several tandem reped families, and ill ustrate

how Dotter can improve gene modelli ng.
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5.2 Introduction

Ever since the introduction d graphicd dot-matrix plots to sequence analysis [Fitch, 1969
[Gibbs and Mclntyre, 197Q, they have been among the most popuar methods for analysing
simil arity between two sequences, particularly for gaining a good pcture of the similarity
between repeaed damains.

The origina dat-plot concept of drawing one sequence dong the horizontal axis and the
other along the verticd axis of a mordinate system, and dawing a dot where two residues
match has esentially stayed the same. Regions of similarity between the sequences will re-
sult in adiagonal row of dots, whereas urious matches give rise to a badkground d single
dots. A standard filtering technique to reduce the noise is to apply a window along the di-
agonals and orly draw adat in the centre of the window if the sum of al dots in the window
exceals ome score threshold.

One problem isthat the optimal threshold for drawing adat is hard to guessa priori. Poor
choice of threshold may result in da-plots either too full of noise or ladking the relevant di-
agonals. This can be frustrating, since danging the threshald usually requires recdculation
of the entire dot-plot, which often is very time consuming. Estimating the threshold by prob-
abili stic methods [McLadlan, 1971 [McLadlan, 1983 [McLadlan and Boswell, 1985
[Reich and Meiske, 1987 [Argos, 1987 can be of use for finding the gproximate border
region ketween signal and nase, bu still usualy requires recdculation d the dot-matrix at
different score levels. Inspeding the dot-plot at different thresholdsis very informative since
it gives a better picture of the strength of a diagonal relative to the noise and aher [Staden,
1987. Dotter was creaed to make this interadive asped of dot-plots more powerful than in
previous implementations.

Improvements on the dasdgcd single-bit dot-plot (where dots are ather on a off) have
been to encode the score of adoat by colours [Maizel and Lenk, 1981 [Reisner and Buchdltz,
1989 [Zuker, 1997 or by lines of varying thickness[Argos, 1987. However, nore of these

programs can plot more than 16 dfferent colours or shapes, and since they can na be modi-
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fied dynamicdly to aher threshalds, they do nd eliminate the neeal for recdculation if an-
other stringency rendering isrequired.

Modern graphics hardware offers new passhiliti es for addresang this problem. Dotter
allows the user to set score thresholds dynamicdly after the dot-matrix has been cdculated,
using the X-windows s/stem for changing screen colours on &hit displays. Thisisdore by a
mouse-controlled "Greyramp” tod which lets the user modify two score thresholds which
can either be used as a strict “all or nothing” cutoff, or as a smooth rendering of many differ-
ent score levels at once. Dots soring below the first threshold are invisible and dots soring
above the seand threshold get the maximum intensity while dots <oring between the
thresholds are rendered with an intensity propartional to their score. Employing 128 dffer-
ent greyscde @lours ensures a smoath range of intensity values.

Computationally, the main problem with da-plots is that the exeaution time is propar-
tional to the product of the lengths of the sequences, which makes long sequences very time
consuming. This problem has been attadked by heuristic gpproadies [Peason and Lipman,
198§ [Schwartz et al., 1997 and trees combined with heuristics [Lefevre and Ikeda, 1994.
Such techniques can give improvements in spead of severa orders of magnitude, at the ast
of generating anat entirely corred dot-matrix. For long sequences, where an overview of the
strongest matches is of main interest, such approximations may be accetable, bu for de-
tailed analysis of wegk simil arities the full matrix still needsto be cdculated. We reagnise
the usefulness of such fast methods and have therefore equipped Dotter with the aility to
also read in matches produced by the BLAST suite [Altschul et al., 1990. Displaying un-
gapped matches from BLAST is aso informative since it shows the extent of high-scoring
segments.

Dotter is a versatile tod for dot-matrix comparisons of DNA and protein sequences. It
can produce daot-plots for DNA vs. DNA, protein vs. protein, and DNA vs. Protein. For
DNA, it can draw the reverse amplement diagonals in the same dot-matrix as the forward
ones. For DNA vs. protein, it translates the DNA sequencein the threeforward frames and
draws them all in the same dot-matrix. All modes fedure tods to insped the sequence

alignment of any diagonal.
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5.3 Methods

Generating the dot-matrix
Here, the dot-matrix will not simply contain a zero or a one (one bit) for ead da as in the
traditional dot-plot, bu a value between 0 and 255(8 hits = one byte). The dot-matrix thus
contains <cores, averaged over a chosen window-span, bu we prefer not to cdl it a "score
matrix" to avoid confusion with the well-known pairwise score matrices, such as PAM120
and BLOSUMG62. The dot-matrix neads only to be cdculated orcefor a given window-span.

For maximum speal, we precdculate score vedors for every possble symbad in the verti-
cd sequence dong the horizontal sequence [Karreman, 1992. For DNA, this requires 4+1
score vedors (1 extra for unknovn symbals), and for protein 20+2+1 (20 amino adds, 2 for
ambiguity symbals and 1for unknonns). This makes exeaution faster since the few score
vedors only have to be cdculated orce and are later added to and removed from the sliding
window-sums. The window-sums are cdculated for conseautive windows along the diagonal
in a sliding manner by simply adding the next score and subtrading the last score inside the
window. Instead of cadculating the windowv-sums for one diagonal at a time however, we
keegp a horizontal vedor of all window-sums and add and subtrad the precdculated score
vedaors row by row.

The following pseudacode outlines the dgorithm. The score vedors are asumed to be

initi ali sed with the scores from the pairwise score matrix used.

integers N, I/l Length of horizontal sequence
M, /I Length of verticd sequence
a, /I Size of aphabet
W Il Span o sliding window

vectors  scoreVedl.o+1][1.N], // Thescorevedors
newsum[1..N], /l Window-sum vedor 1
oldsum[1.N], /l Window-sum vedor 2
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zeroVed1..N], I/l Vedor of zeros

symbVed1l.M] /I Symbadsin verticd sequence

pointers addVec Il Pointer to scoreVecto be alded
delVecg I/ Pointer to scoreVecto be subtraded
tmp /[ Temporary pointer

fori « 1toNdo
{

tmp — oldsum
oldsum < newsum
newsum — tmp

addVec — scoreVedsymbVedi]]
if i >W then delVec — scoreVedsymbVedi-W]]
elsedelVec — zeroVec

newsum[1l] — addVedl1]
forj « 2toW do

newsum([j] — oldsum[j-1] + addVed]]
forj « W+1toM do

{
newsum[j] — oldsum[j-1] + addVedj] - delVedj-W]
if newsum([j] >0andi>W then
dot-matrix[i-W/2][j-W/2] ~ newsum[j]/W

It is worth nding that the main operations are dl vedor additions and subtradions, which
would make the program M times faster on an architedure dlowing simultaneous vedor op-
erations. The dowve dgorithm gives a performance of 5.7 million dds per second ona DEC
Alpha AXP 3000700. This means that a cmsmid sequence of 40.000 lasepairs can be mm-
pared against itself in abou 4.5 minutes. Other programs have reported speeds of 0.0005
[Pustell and Kafatos, 1983, 0.1[McLadlan, 1983, 0.005[Argos, 1987 and 0.08[Karre-
man, 1992 million dds/second, abeit on slower hardware. The only program we could
benchmark on the same hardware & Dotter was DIAGON [Staden, 1982 which runs at 0.46
million dds/second.

The total memory usage of Dotter is (a+4)N + 2M plus the dot-matrix itself (1 byte/dat).

The memory usage of the dot-matrix is not O(NM) since if NM is large, we only ke a
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compressed matrix. Dotter caculates the cmmpresson fador based ona user-settable option
S, the maximum memory usage of the dot-matrix (default 0.5 Mb). If the product NM is
greder than S, we let eat pixel represent a TXT region d the full matrix, where T is the
smallest integer that satisfies NM/T? < S. Although all the values in the full matrix are ca-
culated, oy the maximum value in ead TxT square is kept [Pustell and Kafatos, 1987.
This processincreases the badkground nase, bu this is readily compensated for by raising
the threshalds in the Greyramp tod (seebelow). If either N or M is greaer than the number
of horizontal or verticd pixels of the screen, scroll bars will appea to let the user pan
through the dot-matrix.

By default, Dotter sets the window-span to the length of the expeded Maximal Segment
Pair (MSP), which is cdculated for the given sequences and score matrix the foll owing way.
Karlin and Altschul showed that for two sequences of length n and m, the MSP score M(nm)
has a distribution approximated by P(M(nm) - (In nm)/A > x) = 1 - exp{-Ke”**}, and provided
amethodfor solving K and A [Karlin and Altschul, 199Q. The mode of this distribution, a
the expected MSP scoreis then (In nm+ In K)/A. The expeded score per residuein an MSP
iIsR =% g;Sj; q; = pip; exp{AS;}, where p; and g are the symbad frequencies in the se-
guences. By dividing the expeded M SP score with the expeded score per residue we obtain

asimple gproximationto the expeded MSPIlength:

Innm+InK
A
Z pipjeASijSu'

For typicd sequences and score matrices sich as BLOSUMG62 for protein and {match =
+5; mismatch = -4} for DNA, this usually gives a window-span of abou 25 residues. If the
above method gives an undesired window-span or fails because A is undefined for the dho-
sen scoring scheme, it can also be set manualy. Because we ae interested in locd similari-
ties we set n and mto a constant value of 100. This makes the noise density independent of

the sequencelengths.
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Dotter can also runin batch mode. In bah interadive and batch mode, the dot-matrix and
all used parameters can be saved to file and ke inspeded later. The &ility to load da-
matrices from file dso makes it passble to generate dot-matrices with ather programs and
read them in Dotter for interadive inspedion. Seethe World Wide Web addressbelow for

detail s of the format.

Visualising the dot-matrix with the Greyramp tool

The Greyramp tod was designed to enhance the visualisation of greyscae images, particu-
larly images with a delicately balanced mix of noise and signal. The simplest form of dis-
playing the score of a dot as a greyscde is to let the intensity be diredly propattional to the
value of the dot. The Greyramp tod provides two additional feaures: A min cutoff score,
below which all dots get minimum intensity, and a max cutoff score, above which all dots get
maximum intensity. For dots soring between min and max, the dat intensity is linealy pro-
portional to the score. The score shown in the Greyramp tod is the score per residue, i.e. the
total score of the gsliding window divided by the window-span, multiplied by a scding fador
to use the pixel intensity range 0-255 ogimally. By setting this sde fador to 2565R,
where R is the expeded score per residue in an MSP (see &owe), we placethe expeded
noise level at afifth (51.2 of the intensity range and thereby make the significance of the
pixel intensities roughly the same for different scoring schemes. By starting the Greyramp
tod with min=40 and max=100, the top d the naise will be just visible, and al scores above
twicethe expeded significant level will be & maximum intensity. Empiricdly this gives rea-
sonable starting points.

The min and max cutoffs can be danged dynamicdly and can be controlled independ-
ently by point-and-drag adions with the mouse on the littl e triangles sen in figure 5.1. By
dragging the littl e box in the middle between min and max they are modified simultaneously
whil e kegping the diff erence between them constant. Minimum intensity is usually white and
maximum bladk, bu this can be reversed by the "swap" function. For any setting of the min

and max thresholds, the rendered da-matrix can be printed ou on a postscript printer.
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Dotter changes the greyscdes on the screen by modifying the colourmap cdls of 8-bit X-
windows displays, which are the most common. Sincethe lourmap cdls are not needed on
24-bit graphics, Dotter will not work on such displays. Dotter uses 128 colourmap cdls,

which may be shared by simultaneous Dotter jobs on the same display.
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Figure 5.1a. Dot-matrix analysis of the C. elegans cosmid (ZK1307,EMBL 247358 with
Dotter. The entire cosmid is compared to itself, with the forward and reverse diredion d-
agonals superimposed. Only half the dot-matrix is cdculated since the other half is an iden-
ticd mirror image. Fedures that can be seen at this level are an inverted repea at 4000
6000, a region containing a multitude of small tandem dired and inverted repeds at 6700
9500and a dugicaed gene repea at 2500028000. The dignment in bah dredions at the

position d the aosdhair is $rown in the Alignment tod window in the middle.




ZK1307 thorizontald ws ZK1307 {verticall., UWindowsize: 25
6800 6900 7000 7100 7200 7300 7400 7800

6200 covvvvvea by b v b v b e v by a |

505

S
s Tt e e e e e 2 2 2 2 Tttt
st e et et tetetetal st e et tet e nte!
S R
e e et St 2 N N
T IR
e
Tt ta ettt ol ateuletels
e et et et et e el et ete!
o S o N T
ettt e e e e et 2t et e e e e
S
A
R R RIS
e et et e e e e 2 2 2 2 Tttt e e e e e
ol e Tl et o Tt e tat et e tu s teta ettt et te Tet e tat et e Tut e tetetatetele!
ST
TR
L%
D T ettt e e e L T e et e e e e 2 L T Tttt e e e ek ;
AT BT I IR AT AT A APAT AAA ARG AAPIIIIFIIFIIIII I AT FIAFFIIA L]
;

<
et

<

<

e
S
S
et

<,
>
>
7
<,
>
>
>
<,
>
>
>
<,
>
>
7
<,
>
>
5%
Sttt

<
.

<

by
25
2505

ZK1207 (horizontal? wvs ZK1307 {verticaly, Windowsize: 25

6800 6900 7000 7100 7200 7300 7400 7500

6200 covvvvvea by b v b v b e v by a |

NS KA N "

%

< AR N
DD BD Y

SRS ,01{3}4

Vvl B

£K1307 thorizontaly wve ZK1307 {verticall., Windowsize: 25
6800 6300 7000 7100 7200 7300 7400 7500

6200 PR T T T TS S S T T T T A S A A T Y S A A A AR O OO

Figure 5.1b-c. (b) Zoomed in detall of (a) in atandem reped region d abou 100 10 bpre-
peds between 6700and 8100. The Greyramp Tod is used to view the dot-matrix at different
stringencies. The pixel values are 50 times the average residue-score in the window, meaning
that a 100% identicd match would score 250, given the scoring scheme of +5 for matches
and -4 for mismatches. Any dot scoring below the min threshold of 10 will be invisible, das
above the max threshald of 70 will be mmpletely bladk, and ddsin between will be drawn in
a greyscde propational to their score. (c) If the rendering thresholds are moved upto 70
130, it becomes clea that every 4 of the 10 bprepeds have stronger similarity with ead
other, suggesting a super-structure repea unit of 40 bp. (d) Moving the thresholdsupto 130
190shows only the 40 bpreped structure in the forward dredion and orly faint inverted d-
agonals, also with a pitch of 40 bp. The cdculation d (a) took 170semnds and d (b), (€)
and (d), which are diff erent renderings of one daot-matrix, 0.1secnds.
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The crosshair and Alignment tool

A crosshair can be moved either with the mouse or cursor keys aroundthe dot-plot. The e-
tent of adiagonal can be foundeither by reading the cordinates next to the aosshair or from
therulersonthe axes. The sequence dignment of adiagonal can be displayed by moving the
crosdhair onto it and launching the Alignment tod from Dotter's main menu (right mouse
button). The Alignment tod displays a residue by residue dignment of the two sequences
correspondng to the diagonal around the adosshair. Identicd matches are highlighted in
bright blue and conservative substitutions in dark blue. If both sequences are DNA, two
alignments are passble: of the original sequences and d the reverse complement of the hori-
zontal sequence to the verticd sequence The two aignments can be shown simultaneously
asin figure 5.1. If the horizontal sequenceis DNA and the verticd is protein, the threefor-
ward frames are translated and superimpaosed in the dot-matrix, keeguing the maximum value
in ea pixel as described abowve for compressed matrices. The only way of telling which
frame caused a diagonal isto use the Alignment todl, which dsplays all threereading frames
aligned to the protein sequence (figure 5.2).

If the nature of some segmentsin ore or both of the sequences is aready known, Dotter
can enhance the analysis by displaying such segments as coloured baxes along the border of
the dot-plot, asin figure 5.3. The mloured segments e in the border are read in from a
smple data file with ore line per segment. The format is: sequence (1=horizontal,
2=verticd), start, end, colour, annaation. Seethe World Wide Web addressbelow for more
detail s. In combination with the adosshair, the mloured baxes are eay to relate to a particu-

lar diagonal.
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Figure 5.2. Dotter plot of DNA vs. protein with gene predictions from ACEDB. Shown here
isastretch of genomic DNA from the C. elegans cosmid ZK637 (EMBL 211115 compared
to the protein glutathione reductase from E. coli (Swisgrot PO6715. The gene prediction
(ZK637.10 was made in ACEDB, bu some exons have only very we&k hamology. Matches
found ty BLAST/MSRcrunch (chapter 4) are superimposed in the dot-plot asred lines. The
match at exon 3was too wedk to be reported by BLAST/MSRerunch, bt it is visible in the
dot-plot. Also, the BLAST match at the end d exon 5 was extended past an insertion,
whereas the dot-plot shows the crred diagonal. The Alignment tod shows the dignment of
the threetrandlated forward frames of ZK637 with GSHR_ECOLI at the end d exon 5(see
crosshair paosition). Frame 2 contains the match missed by BLAST. The cdculationtook 0.6
semnds.
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Figure 5.3. Analysis of a highly repetitive protein with symbadlic domain annaation. The
protein UNC-22, a twitchin (PIR S0757) from C. elegans is compared to itself. Pixel val-
ues are 50 times the average residue-score in the window. The @lours of the segments are:
green = fibronedin type Ill domain (FN3); red = immunaoglobdin damain (1G); Blue = ki-
nase domain. It isclea that all the FN3 damains are much more dosely related to ead ather
than the IG domains, and that the FN3-FN3-IG cassettes between 1000and 3000are more
closely related than the other ones. The cdculationtook 3seconds.
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Zoomingin

It is posgble to zoom in to any regionin a @mpressed dd-matrix by dragging with the mid-
dle mouse button to delimit aredangle, or with exad coordinates via adialogue window. A
new Dotter job will then be spawned for the seleded region orly. The parent Dotter job will
not be superseded bu will remain intad on the screen. The two da-plots will be independ-
ent of ead ather so that either can be kill ed withou aff eding the other one. Since d simul-
taneous Dotter jobs share the same wlourmaps, any Greyramp tod will control the greyscde

rendering of al adive dot-plots.

Displaying high-scoring segments

Calculating the full dot-matrix, as described above, has two drawbadks: it is dow for very
long sequences, and it does not display the maximum high-scoring extent of the diagonals.
Sometimes it isinformative to try to extend adiagonal in bah dredions until the total score
doesn't increase further. The ungapped aignment giving the maximum score is cdled a
high-scoring segment pair (HSP. The BLAST programs [Altschul et al., 1990 seach for
HSPsin afast, heuristic fashion. Instead of replicating the BLAST algorithm, Dotter simply
reads in HSPs reported by BLAST and daws them in the dot-plot as in figure 5.2, similarly
to PLFASTA [Peason and Lipman, 1988 for FASTA output. Here it is acamplished via
the BLAST output viewer Blixem (chapter 3), which constructs a multiple dignment of
HSPsreported by BLAST and dsplays it graphicdly in a scrollable window. The alvantage
of thisis that Blixem first can give an owverview of all sequences that match a given qery.
The most interesting homologies can then be explored in much finer detail by cadling up
Dotter "on the fly". Blixem hands the HSPs over to Dotter, which can display the HSFs in
two dfferent ways: by greyscde acording the total HSP score, or by monochrome red lines
which can be superimposed ower the full dot-matrix. It is also pcssble to superimpose four

diff erent shades of red to reflea the score of the HSP.

Using Dotter for gene prediction
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The genomic database ACEDB [Durbin and Thierry-Mieg, 1999 allows interadive gene
modelling, with full display of relevant feaures sich as lice sites, open reading frames,
segments of high coding potential, sequence homology, etc. If the gene in guestion hes ho-
mologous quences, the multiple dignment of the homologues can be viewed by cdling up
Blixem from ACEDB, which also passes on the tentative gene prediction coordinates. For a
more detail ed analysis of how the homology fits with the gene prediction, the mordinates of
the predicted gene ae dso passed onfrom Blixem to Dotter, which then displays the dot-plot
comparison between the genomic DNA where the gene was predicted and the homologous
protein (figure 5.2). Having the gene prediction dsplayed in the dot-plot significantly aids
the adility to accept weakly conserved exons, and to rejed ones that are inconsistent with the

homology.

Using Dotter to assist genomic sequencing

Dotter can also be useful in the sequencing process If sequencing is dore by a ‘shotgun’ ap-
proad, the reads have to be assembled into ore wntiguous Lquence by looking for overlap-
ping ends of contigs. In cases where the assembly algorithm fail sto find owerlaps, or when it
joins contigs incorredly because of repeds, Dotter can be auseful tod to find which contigs
shoud be merged. It will produce amosaic dot-plot as shown in figure 5.4, if the inpu files
contain multi ple sequence antries in Fasta format. At the start of ead subsequence, which
would correspondto the cnsensus quence of a ontig, a green separator line and the name

of the subsequenceisdrawn. These fegures are inherited if aregioniszoomed in.
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Figure 5.4. Example of how Dotter can be used to asgst the fragment assembly of a msmid
sequence. Inthis case, contigs from two cosmids that were initi aly assembled independently
are analysed for overlaps.

95



5.4 Application

Sequenced cosmids from the C. elegans genome sequencing projed [Wilson et al., 1994 are
routinely compared to themselves with Dotter for analysis of the extent and reture of dired
and inverted DNA repeds. Such repeds are interspersed throughou the genome, and there
are many different reaurring families [Naderio et al., 199. For example, the C. elegans
cosmid ZK1307 (figure 5.1) contains sveral repea families: 33+4 copies of a 40-mer, 22
copies of a35-mer, 21 copies of a15-mer and 2copies of a 123-mer which contain 5 copies
of an 11mer in the midde. Naderio et a. previously described the first 3 of these repea
families and nramed them RcC9, Rc35 and RcD1, respedively. The 40 bprepea RcC9 [La
Volpe et al., 1989, between 6750and 8050,shown in detall in figure 5.1b-d is espeaally
interesting sinceit has aless $rongly conserved suburit of 10 bpwhich itself is palindromic,
giving aminimal reped unit in aternate orientations of only 5 bp -TTC-. The smaller reped
units are however much less conserved than the 40 bpreped. At very low stringency the
dot-plot hence shows 10 bpspacel dagonalsin bah arientations (figure 5.1b). Asthe strin-
gency is raised (figure 5.1c-d), the 10 bp spacel dagonals fade awvay, leaving only the
strongest conserved 40 bprepeds in the dot-plot.

For arrays of tandem repeds guch as this, Dotter makes it very easy to find the start and
end d the repetitive unit and the number of repeds, which is espedally important for con-
structing high-quality multiple dignments. As ill ustrated in figure 5.1, it is often far from
trivial to determine the length of the main repea unit, since multiples or fradions thereof are
plausible units too. With the Greyramp and Alignment tods, this becomes a relatively easy
task.

The nedl for a dot-plot program that can compare DNA to protein sequences was also
prompted by the C. elegans genome projed, where most primary protein hamology analysis
iscaried ou by comparing DNA to protein. Thereason for doing thisis that using predicted
coding segments may miss homologies if the gene prediction was incorred. Database
seaching is usualy dore with the program Blastx, in conjunction with the filtering program

MSRerunch (chapter 4) to increase sensitivity and seledivity. The DNA-protein HSPs are
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then aligned in the X-windows viewer Blixem. Integration d Dotter into ACEDB and
Blixem hence made it natural to cary over the DNA vs. protein phlosophy to Dotter, as
shown in figure 5.2. One muld envisage using a different colour for eat translated frame,
but given that red homologies are normally confined to a single frame, and that the frame
can easly be determined with the Alignment todl, we foundthe best solution was to leare
them in the standard greyscde mlours. The exons and introns of the gene prediction are
shown just below the dot-plot border.

Figure 5.3 shows a self-comparison d the protein UNC-22 a twitchin, a large muscle
protein which probably interads with myosin [Benian et al., 1989 [Benian et al., 1993. It
consists of repeaed fibronedin type Il (FN3) and immunaglobuin (IG) domains and ore
kinase domain. At the N- and C-termini, five tandemly repeaed |G domains are present,
while the interior contains repeaed "cassettes” of usually two FN3 and ore IG domain. With
the mloured segment boxes, it is easy to seehow the simil arity levels vary for the different
domains. For instance while the FN3 and IG domains in the N-terminal portion d the ca-
sette reped region are very similar, they are lessconserved towards the ends. Espeaally the
IG domains are very poaly conserved except in the midde of the castte region. The five
N-termina 1G domains are more similar to ead ather than to ather ones, whereas for the five
C-terminal 1G domains thisis nat the cae. The dot-plotsin figure 5.2 and 3were generated
using the score matrix BLOSUMG62 [Henikoff and Henikoff, 1993. Dotter can read an arbi-

trary score matrix from file.

5.5 Discussion

Dotter is anew type of dot-plot program which is well suited to hande demanding homol ogy
analysis tasks invalving weg and dfficult to assess matches in bah traditional protein o
DNA comparisons and in more complex situations when genomic DNA is compared to pro-
teins or DNA. Its main strength is that the dot-matrix only has to be cdculated orce, after

which the stringency thresholds are varied dynamicdly, avoiding tedious reiteration d the
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dot-matrix cdculation. Thisis particularly useful when no ogimal stringency exists, for in-
stanceif adiagona can orly be seen when the badkground nase is also visible. Such dago-
nals may still be biologicdly significant if they make good sense with ather diagonals and/or
if they contain important key residues. In cases like this, it is desirable to view the dot-plot
under many different stringency condtions and ke ale to change them in a scrolli ng fashion.

The program XSauci [Nedde and Ward, 1993 aso uses colourmaps for dynamic thresh-
old control, for avariant of dot-plots cdled "correlationimages’, which transforms diagonals
to haizonta lines. XSauci uses greyscdes diff erently than Dotter however, in that the pixel
intensity refleds the length of a match instead of the score, and it employs only one thresh-
old.

Theintegration d Dotter into the multiple dignment viewer for BLAST matches, Blixem,
makes a very powerful combination. With the ald-on MSRcrunch, BLAST usually picks up
at least one locd match to hamologous squences, bu may missweg matches or matches to
repeaed damains. Dotter can then be cdled up dredly from Blixem for a particular protein
to show the true extent of the homology. This g/stem provides very efficient and comfort-
able sequence homology analysis, with a minimal risk of overlooking simil arities or assess-
ing them incorredly.

Alignment agorithms based on d/namic programming are apopuar method d pairwise
sequence simil arity analysis which can be very sensitive if the gap weights are set corredly.
However, for wegk simil arities the dignment is often very vulnerable to small changesin the
gap weights, and dten orly a narrow range of parameters gives the @rred alignment [Argos
and Vingron, 1990 [Vingron and Waterman, 1994. Dot-plots do nd suffer from this prob-
lem, since no attempt is made to string matching segments together with gaps in between.
Severa users have asked if it would be passble to generate agapped ai gnment by dynamic
programming from Dotter. Sincethis would nd improve over the standard implementations
of dynamic programming, we have not included this fegure. One might envisage however,
that the user could seled a number of diagonas, which are cnsidered relevant. These seg-
ments could then be strung together in an alignment, posshbly using dynamic programming to

fill i n the gaps, but allowing interactive antrol of the dignment path [Redhid et al., 1989.
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Dotter is avail able by anonymous FTP from ftp.sanger.acuk in the diredory /pub/datter,
by World Wide Web on Htp://www.sanger.acuk/daotter.html or by sending E-mall to
esr@sanger.acuk. ACEDB is avalable by anorymous FTP from ftp.sanger.acuk in
/publacalb. Most of this chapter has previously been published [Sonrhammer and Durbin,
1994.
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6. Efetch: a database retrieval tool

6.1 Summary

Sequence simil arity data is gored in ACEDB as links to entries in external sequence data-
bases. These links are pased onto the anaysis tods Blixem, Dotter and Belvu, which neal
to retrieve the sequence or anndation information from the external database. Although
ACEDB can store data from other databases internally, it is often preferable to orly store the
links to minimise the load. Moreover, a methodto retrieve thisinformation is aways nealed
when the analysis todls are run stand-alone. To this end, an indexed sequence database re-
trieval tod cdled Efetch was developed. It is a general purpose program which suppats a

wide range of database formats and ouput formats.

6.2 Introduction

ACEDB and the todls of the sequence simil arity analysis workbench store and examine data-
base seach results, and reed to accessthe entries in the searcched databases in an efficient
way. As aglue between the viewers and the databases, a general-purpose database retrieval
todl, Efetch, was developed. It is based ona standard indexing system, which many EMBL
databases are released with.

Efetch serves svera purposes. It can either be used from the command line, in scripts, or
be cdled from other programs via ashell pipe. The main usage is to retrieve the sequence or
annaation d single sequence atries in databases sich as Swisgrot, EMBL and TREMBL,
but it can also be used to retrieve multiple dignments of from protein family databases gich
as Pfam (chapter 7) and Prodam [Sonntemmer and Kahn, 1994, or family annaation from
Prosite [Bairoch et al., 1999. Efetch suppats the flatfile format of all maor sequence data-

bases and can produceoutput in a number of formats.
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When the workbench todls are cdled from ACEDB, the sequence data and annadation can
either be retrieved via Efetch, o be stored internally in ACEDB. However, internal storage
means dugicaion d data, and slower operation d other ACEDB tasks. Therefore, for large
projeds, it is usually preferable to orly store the names in ACEDB, so that the sequence -
try can be retrieved only when it is neaded. To generate the Blixem alignment of a genomic
sequence and hamologues, al that neals to be stored internally in ACEDB is thus the names

(or accesson numbers) and pasitional coordinates of the BLAST matches.

6.3 Results

Efetch has been used extensively at the Sanger Centre and at the Genome Sequencing Center
in St. Louis, and at other ingtitutes that have enough resources to maintain their own copies
of the sequence databases. Below follows more detail ed descriptions of the different modes

of Efetch usage.

Command line syntax

For ordinary command li ne usage, the syntax is:

efetch [options] database:entry

Eadh database neals to be stored in a separate diredory. There ae two methods to link that
diredory to a database prefix. Thefirst methodis to set a predefined environment variable to
the diredory. This is available for al common catabases such as Swisgprot, EMBL, Gen-
bank, PIR, Prosite, etc.. The seand method, which is general and can be used for any data-
base, is based on adding the prefix and dredory to the environment variable
EFETCH_PREFIX. For example, to link the prefix mydb to the diredory /mydbdr, the

syntax would be:
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setenv EFETCH_PREFIX "mydb./mydbdr/;”

By default, mydb is assumed to be in Fasta format. If it isnat, but in ‘flatfile’ format, e.g.
EMBL, this must be indicated by using “mydDb(flat):” instead of “mydb:” in the prefix defini-
tion. Any number of “prefix:dir;” entries can be alded to EFETCH_PREFIX. A prefix can
be upto 30charaderslong.

Efetch can retrieve records using either entryname or accesson nunber. When using the
accesson nunber, the option -amust be given. By giving no arguments, or the option -h, the

syntax and al options are li sted.

Output formats

The output format is controlled by the options on the owommand line. There ae four main
types of output: 1. The whole entry asin the flat file (default). 2. The sequenceonly, in the
flat file format (which may contain column formatting and residue numbers). 3. In Fasta
format (One line headers garting with “>* followed by raw sequence). 4.0nly the sequence,

on oreline. Thisis used to make parsing trivial when Efetch is caled from other programs.

Blixem requirements

If Blixem does not get the sequences passed from MSRerunch in the segbl format, or from
ACEDB, it will resort to cdling Efetch orcefor ead unique sequence. As shown in figure
6.1, cdling up annaation for a matching sequenceis dore by simply doule dicking on the
match. Efetch is then asked to retrieve the aanaation which appeas in a separate window.
This can be dore in threeways: 1. By cdling a locdly instaled Efetch. 2.By starting a
WWW browser with a URL to the Sanger Centre Efetch server (seebelow). 3.If Blixem is
running within an ACEDB, that contains the annaation, ACEDB objed can be displayed.
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Figure 6.1. The ACEDB/BIlixem environment is linked to external databases, providing se-
guencedata and annaation, via Efetch. The example shows a Blixem alignment of glutathi-
one reductases to ZK637.10. The annaation d GSHR_ECOLI was retrieved by clicking on
it (reversed line in Blixem), which cdls Efetch and dsplays the entry in a separate window,
labelled ‘efetch’. In this case, the 100% conserved histidine & paosition 32304in ZK637
aligns with residue 439in GSHR_ECOLI, which is annaated as the adive site residue, and
thus drongly suppats that ZK637.10would be aglutathione reductase. When Blixem is
passed sequence names only, it also cdls Efetch to retrieve the sequence data.
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Dotter requirements

When Dotter is cdl ed from Blixem, the sequences are passed onto Dotter. If Blixem is run-
ning on seqbl data, however, it only has incomplete database sequences, correspondng to the
matching segments. It will then attempt to cdl Efetch to retrieve the entire sequence If this
falls, Dotter will produce adotplot of the matching segment only, and give a ¢ea warning of

this.

Belvu requirements

The multiple dignment viewer Belvu (chapter 8), is linked to annaation retrieval the same
way as Blixem is; doule dicking on a sequencewill efetchit. The dignments displayed by
Belvu may be Efetched too, if they are from Prodam or Pfam (chapter 7), which can be in-
dexed for Efetch. When Belvu is cdled from ACEDB, alignments can either be stored inter-

nally in the database, or be fetched from an external database.

Efetch via World Wide Web

When Blixem and Belvu cdl Efetch, the databases need to be installed locdly. If thisis not
the cae, the Sanger Centre WWW Efetch server can be used via the internet (URL:
http://www.sanger.ac.uk/cgi-bin/seg-query?segname or .../seg-query_acc?accesson). Instead
of the usual Efetch window, aweb browser will then be spawned with the gpropriate URL.
Even for sites with Efetch install ed, this can be of use, since the WWW browser can foll ow
references to ather sequence databases and Medline éstrads. Locd Efetching is however
much faster. The Efetch WWW server currently uses the NCBI server at

http://www3.ncbi.nim.nih.gov/PubMed for linking to Medline éstrads.

Index files

The index system conforms to the standards proposed by the EMBL data library [Fuchs and
Stoehr, 1993. This g/stem is used onthe EMBL CD-ROM distributions and in the Staden
padkage [Staden, 199Q. All index files for one database must be stored in the same direc-
tory. Theindex files used by Efetch are shown in figure 6.2. The main entry index, entry-
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nam.idx, contains off sets and dvision numbers for ead entry. The divison nunber points
to a particular flatfile a coded in the file divisionlkp. This way the database can consist of
many divisonsin dfferent files. The acceson number index acnum.trg points to records in
a‘hit file’ acnum.hit, which in turn pants to the main entry index. The number of different
entries dharing one acceson nunber is gored in the acium.trg record, and panters to all
these entries are stored conseautively in the hit file. Efetch seaches the acceson number
and entry name indices by a binary seach. If the query is not unique in the database, a list of
the entries that start with the query string is returned.

The tods for creaing the indices are extensions to Staden's indexing programs [Staden
and Dea, 1993. Currently these formats are suppated for indexing: Genbank, EMBL,
Swisgrot, PIR, Prosite (.doc and .dat) and Prodam, Pfam and any database in Fasta format.

New formats can easily be incorporated.

Compatibility with other retrieval software

If other retrieval systems than Efetch are drealy instal ed locdly, that do nd use the flat dis-
tribution fil es, installi ng Efetch would mean a dugdicaion d the databases. The GCG Fetch
[Devereux et al., 1984, Yank [White and FitzHugh, 199 and Getz [Etzold and Argos,
1993 retrieval programs are examples of this. In such cases, Efetch can be enulated with a
script that cdls the other program when Blixem and Dotter cdls Efetch. A script for GCG is

avail able.

Availability
Efetch and the index making programs are avail able & ftp.sanger.acukin
/pulM SRerunch/efetch tar.Z.
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amum.trg aaqum.hit entrynam.idx
Header Header Header
Nr of hits (4) Record . in entry name
acum.hit record(4) L entrynam.idx  (4) anndaton df set (4)
Target string Reoord . in sequenceoffset (4)
3 division rr. 2
Nr of hits (4) entrynam.idx ~ (4) | (2)
amum.hit re(Drd(4) ------ entry name
Target string anndaton df set (4)
sequence offset (4)
"""" division . 2
flatfile 1 ivdsionlkp entry name
d Header sequenceoffset (4)
SQ sequence p division r ()]
division rr. @I
/! < filename of flatfilel|| |7
filename of flatfil €2
SQ SGQLEI'ICE ......
1l
flatfile 2
I D entryname Header: | Field Type bytes
S filesize unsigned int 4
Q sequence Nr of records unsigned int 4
// Reoord size unsigned short | 2
database name | char 20
ID entryname database relesse | char 10
database date char 4
SQ sequence freespace 256
1l

Figure 6.2. The system of indices used by Efetch. The numbers within bradets are the
number of bytes a field contains. When no number is given the size is variable, and is de-
rived from the record size in the header.

10¢€



Part 2. Pfam: a Comprehensive Database of Protein Domain
Families



7. Construction and maintenance of Pfam

7.1 Summary

Databases of multi ple sequence dignments are avaluable ad to protein sequence dassfica
tion and analysis. One of the main chall enges when constructing such a database is to si-
multaneously satisfy the conflicting demands of completeness on ore hand and quality of
alignment and damain definitions on the other. The latter properties are best dedt with by
manual approaches, while cmpletenessin pradise is only amenable to automatic methodks.
Here we present a database based on hdden Markov model profiles (HMMs) which com-
bines high quality and completeness

Our database, Pfam, consists of parts A and B. Pfam-A is curated and contains well
charaderised protein damain families with high-quality alignments, which are maintained by
using manually chedked seed ai gnments and HMMs to find and aign all members. Pfam-B
contains sequence famili es that were generated automaticaly by applying the Domainer algo-
rithm to cluster and align the remaining protein sequences after removal of Pfam-A domains.

Using Pfam, many novel family memberships in knowvn proteins were identified, includ-
ing new kazal, Fibronedin type Ill, and resporse regulator recever domains. Pfam-A fami-
lies have permanent accesson numbers and form a library of HMMs avail able for seaching

and automatic annaiation d new protein sequences.

7.2 Introduction

Protein sequence databases auch as Swisgrot [Bairoch and Apweiller, 1994 and PIR
[George et al., 199§ are beaoming increasingly large and urmanageable, mainly as a result
of the growing number of genome sequencing projeds. However, many of the newly added
proteins are new members of existing protein families. Typicdly between 40% and 60% of

the proteins found ty genomic sequencing show significant sequence similarity to proteins
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with known function, and wsually alarge fradion d the rest show similarity with eat ather
[Koonin et al., 1994 Casari et al., 1995 Hodgkin et al., 1995. For classficaion d newly
found poteins, as well as orderly management of already known sequences, it would there-
fore be alvantageous to organise known sequences in families and use multiple dignment
based approadhes. This requires a system for maintaining a wmprehensive set of protein
clusters with multi ple sequence di gnments.

The problem bregs down into two parts: defining the dusters, i.e. alist of members for
eadt family, and bulding multiple dignments of the members. Previous approades to con-
struct comprehensive family databases have ather concentrated onaligning short conserved
regions [Gribskov et al., 1988 Attwoodet al., 1996 Pietrokovski et al., 1994, often starting
from the manually constructed clusters in Prosite [Bairoch et al., 1994, or full-domain
alignments using either clusters that were derived manually from PIR [George et al., 1994 or
automaticdly [Sonnhammer and Kahn, 1994. Anisaue here is whether to aim for conserved
regions only, or whole-domain alignments. Using short conserved motifs, either in the form
of a pattern ar an alignment, can indicae when a protein contains a known damain. Motif
matches are often useful to indicate functional sites. However, they usually do nd give a
clea picture of the domain boundries in the query sequence They may aso ladk sensitivity
when compared to whole-domain approaches, since information in lessconserved regions is
ignored. The whole-domain approad therefore seems preferable for detail ed family-based
sequence analysis snceit offers the potential for the most sensitive and informative domain
annotation.

To cope with the large number of families, the existing family databases made heary use
of automatic methods to construct the multiple dignments. Almost withou exception, a
manually constructed alignment would have been preferred, bu maintaining a comprehen-
sive mlledion d hand-built alignments is not feasible. If the dustering is dore & a high
level of similarity, such as 50% identity, the dignment can be generated relatively reliably
with automatic methods, bu this will fragment true families and compromise the speed and
sensitivity of seaching. To avoid this, high-quality alignments of large superfamilies are

needed, which frequently require manual approades.



Apart from the multiple dignment construction problem, a fully automatic goproach also
has to provide a ¢ustering and, to work for multi-domain proteins, define domain bound:-
ries. For instance the Domainer algorithm [Sonnrammer and Kahn, 1994 which performs
the dustering of domain families based onall versus all Blastp matching, is afully automatic
approad that we have used. We ae most familiar with its drawbadks and kelieve that other
automated sequence dustering approadhes dare similar drawbadks. The dustering level of
Domainer depends on the score level of acceted pairwise Blastp matches. Domain baders
are inferred by analysing the extent of the Blast matches and from N- and C-termina ends.
The main problem with Domainer is that it does not scde well. As the sequence database
grows, thiswill have several manifestations: 1) The mmputing time increases in the order of
N2 2) Either the dustering level must go up @ therisk of false family fusions will i ncrease.
3) The domain boundries beaome lessreli able due to more noise in the Blastp data. 4) The
quality of the dignment drops as more members are alded. Further drawbadks of Domainer
arethat it is nsitive to incorred data, and that it is a one-off processthat does not alow in-
cremental updates but must be cmmpletely rerun at ead source database update. Thisis not
only very costly computationally, but aso means that the families are voléatil e, due to the heu-
ristic charader of the dgorithm, and can na be permanently referenced from other databases.
It isnot well -suited for clasgficaion, sincethe familiesladk family-level annaation.

Presently avail able fully automatic methods are thus not suitable for a high-quality family-
based clasgfication system. Could a wmbination d manual and automatic gpproadies be a
solution? The question rere is redly how much manual work has to be dore to adhieve a
comprehensive database. This depends on the distribution d protein family sizes. Based on
sequence simil arity, it is clea that the universe of proteins is dominated by arelatively small
number of common families [Green et al., 1993. The same type of analysis on the structural
level reveds that there ae afew families of very frequently occurring folds [Murzin et al.,
1995, and it has been estimated that a third of al proteins adopts one of nine ‘superfolds
[Orengo et al., 1994. Thisled usto believe that a semi-manua approach initially applied to
the largest families could cgpture asubstantial fradion o all proteins. For pradicd reasons

however, it is usually not posshble to buld correa alignments lely based onthe sequence
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data from members dharing a wmmon fold, since often there is essentially no sequence
simil arity at thislevel. The structural information required to produce a orred alignment is
available only for afradion d proteins. It therefore makes more sense to perform the dus-
tering at the superfamily or family level, where @mmon ancestry and sequence simil arity are
reasonably clea.

A major stumbling block of manual approades is the problem of kegping the dignments
up to date with new releases of protein sequences. A robust and efficient updating schemeis
required to ensure stability of the database. These requirements are met in Pfam by using
two alignments: a high quality seed alignment, which changes only little or not at all be-
tween releases, and a full alignment, which is built by automaticaly aligning all members to
a hidden Markov model based profile (HMM) derived from the seed aignment. The method
that generates the best full alignment may vary dightly for different families, so the parame-
ters used are stored for reproducibility. This lit i nto seed/full isthe main nowelty of Pfam’'s
approadh. If a seed aignment is unable to produce aa HMM which can find and properly
align all members, it isimproved and the gathering processis iterated urtil a satisfadory re-
sult isadhieved.

The seal and full alignments, acompanied by anndation and crossreferences to ather
family and structure databases and to the literature, and the HMMs, are what make up Pfam-
A. Ead family has a permanent accesson number and can thus be referenced from other
databases. We strived to include every family with more than 50 members in Pfam-A. All
sequence domains nat yet in Pfam-A were then clustered and aligned automaticdly by the
Domainer program into Pfam-B. Together, Pfam-A and Pfam-B provide a omplete duster-
ing of al protein sequences. The quality of the Pfam-B alignments is generally not sufficient
to construct useful HMMs. The main puposes of Pfam-B are instead to function as a re-
pository of homology information and a buffer of yet uncharaderised protein families. As
these families become larger they will benefit more from being incorporated into Pfam-A.

Our goal isto progressvely introducethe largest Pfam-B families into Pfam-A.
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This chapter describes how Pfam was constructed and how it is maintained, and presents
results from applying the Pfam HMM library to analyse protein families in the Swisgrot

protein database.

7.3 Methods

7.3.1 Pfam-A

HMMs

Hidden Markov model based profiles (HMMs) have been used extensively bath for the mn-
struction d Pfam, and for deteding matches to Pfam families in database sequences. Al-
though hidden Markov models are agenera probabili stic modelli ng technique, we will use
HMM in this chapter to mean a spedfic form of model which describes the sequence @nser-
vationin afamily. This type of HMM consists of alinea chain of match, delete and insert
states as shown in figure 7.1 [Krogh et al., 1994, Eddy, 1996. The match state contains
probabiliti es for amino adds in a given column, whil e the transition probabiliti es to and from
insert and cHlete states refled the propensity to insert a residue or skip ore & a given pasi-
tion. The HMM parameters can either be estimated dredly from a multiple dignment, or
iteratively by an Expedation-Maximisation procedure from unaligned sequences. A protein
sequence ca be digned to an HMM using dynamic programming to find its most probable
path through the states. The logarithm of this probability over the probability of a randam

model gives the score of the match, usually expressed in hits (logarithm base 2).
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. . G
alignment: A
A

A

Figure 7.1. Schematic representation d the hidden Markov model used for the families in
Pfam-A. This example shows an HMM correspondng to the miniature dignment on top.
Circles represent states (M match; D delete; | insert) and arrows transitions between them.
Probabiliti es for ead residue (only some ae shown) are stored in ead match state. The
residue probabiliti es in the insert states are set to the residue frequencies in Swisgrot (f(X)).

Score matrix based profiles [Gribskov et al., 1987 are similar and might also have been
used throughou. However, there ae reasons to believe that HMMs are asomewhat superior
approach to matrix based profiles [Krogh et al., 1994. A pradicd reason for chocsing
HMMs was the suitability to the task of the HMM ER padkage [Eddy, 1995, which includes
the programs hmmis for finding multi ple non-overlapping complete domains in a target se-

guence, and hmmifs for finding multi ple non-overlapping partial and/or full domains.

Seed and full alignments
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The phil osophy behind Pfam-A is to construct a seed alignment for ead family, from a non
redunchnt representative set of full length damain sequences trusted to belong to the family.
The quality of ead seal alignment was controlled by manual chedking. From the seed
alignment, an HMM was built, which then was used to find rew members and to generate the
alignment of all deteded members. The process of seed alignment and member gathering
was iterated as outlined in figure 7.2 if the initial seed was unsatisfadory. The HMMs were
not bult from the dl-member alignment since this may contain incomplete or incorred se-
guences which may affed the HMM adversely. The full alignments were never edited; if
they were unaccetable, either the seed alignment was improved o the method to generate

the full alignment from the seed was changed.

Seed alignment construction

The initial members of a seed were mlleded from one of several sources: Swisgrot, Prosite,
structural aignments [Overington, 1992, Prodam, Blast results, repedas found ty Dotter
(chapter 5) or pulished aignments. Families were dhosen onan ad hoc basis, with a bias
towards families with many members. If the source provided a cmplete dignment of the
seal members, this was used, bu usualy an aignment had to be built and compared to
known salient fedures 2uch as adive site residues or structurally important residues. Of the
automated alignment methods used (Clustalw [Thompson et al., 1994, Clustalv [Higgns et
al., 1993, HMM training [Eddy, 19950), Clustalw most often produced the best alignment.
In afew cases, manual editing of the seed alignment was necessary. Any sequence that was
suspeded to contain an error such as truncaion, frameshift or incorred splicing was not in-
cluded in the seed alignment, to avoid adding noise to the HMM. Thisisimportant since up
to 5% of the sequences in Swisgrot may contain such errors (T. Gibson, personal communi-

caion).
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Start with representative set of known members I

<
Make seed alignment*
Sedl alignment ok®?
Save sead
alignment < |
Build HMM from seed alignment
. Add a remove
Seach Swisgrot members
insed
No
Found all members?
|
) o Modify
Make full alignment by aligning all ali gnment
members to HMM method
No
Full ali gnment ok?? 'msgr;’j"e
Save full
alignment < v

Finish: Quality control, annotate,
link to ather databases

Figure 7.2. The procedure to construct the dignments and HMM for a Pfam-A family.
Ynitial seed alignments are taken either from a published alignment or are made by one of
the methods described in the text. “By ‘ok’ we mean that known conserved feaures are @r-
redly aigned and that the overall aignment has sifficiently high information content to
separate known pasiti ves from negatives.
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HMM construction

From ead seed alignment an HMM was built using the hmmb program. Although care was
taken to asaure that the seed members did na include very similar sequences, one of two df-
ferent weighting schemes [Gerstein et al., 1994 [Eddy et al., 1995 was applied to minimise
any potential bias towards a subgroup.

To avoid owerfitting and to make the HMM more general, amino aad frequency priors
were normally derived acording to an ad hoc pseudocount method [Tatusov et al., 1994
using the BLOSUM®62 substitution matrix. However, for some families (e.g. EGF, ef-hand,
glohin, ig), the less pedfic Laplace(‘ plus one’) priors gave better results, and were therefore

used.

Full alignment construction
Eadch HMM thus constructed was then compared to all sequencesin Swisgprot. This was ei-
ther dore diredly with the seach programs hmmis or hmmifs, or by converting the HMM to a
GCG profile [Devereux et al., 1984 in order to be ale to use the very fast Bioccdl erator
hardware from Compugen [Esterman, 1999. These programs al perform variants of dy-
namic programming: the programs bic_profileseach onthe Bioccdlerator and hmmfs use a
fully locd agorithm, while hmmis is locd in the query sequence but matches the entire
HMM. A further difference is that bic_profileseach orly reports the highest score, while
hmmils and hmmfsreport al scores above athreshold, with co-ordinates. Although the Bioc-
cdlerator is abou 50 times faster than a workstation, the result has to be post-processed with
hmmfs or hmmls to extrad the cordinates of all matches. This was dore by retrieving the
entire sequence of al proteins that match aceording to hic_profil eseach with the Efetch pro-
gram (chapter 6) into a mini-database, which was then seached with hmmfs or hmmls.

If alist of known members of afamily was avail able, the seach result was compared to it
to make sure that no knavn members were missd inadvertently. If the sead alignment is
very small, ore cax na exped to find al members at once In such cases, seleded newly

foundmembers were incorporated in a new seal alignment, and the searcch was iterated. For
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the families where the initial seed alignment was derived from structural superpositions, the
new HMM was constructed with a modified training algorithm that constrains the known
structural alignment, allowing only the sequences of unknown structure to be redigned.

By extrading all matching sequence fragments and aigning them to the HMM with the
program hmma, a full alignment is creaed. Depending on the nature of the family, either
hmmfs or hmmls will give more acarate matching segments. Hmmfs occasionally bregs a
domain artificialy into two o more fragments if unexpededly large insertions or gaps are
encourtered. Hmmls does nat do this, bu may penalise partial matches (to fragments) so
much that they are not foundat all. Usually hmmfs is used, but in some caes hmmls was
preferred. The method wsed for constructing the full alignment and the score autoffs used
were recorded for ead family. The default score autoff was 20 kts, bu this was adjusted for

some famili es as described below.

Quality Control

Once the seal and full aignments of a family have been constructed, a number of quality
controls were performed. False positives and regatives relative to a reference dustering,
usually from Prosite, were examined. Since Prosite describes motifs, the dusterings can nd
always agree ompletely. It is made sure that neither the seed na full alignment overlaps by
even a single residue with any other family. Both the dignments and the aandation are
cheded for format errors.

A problem with Pfam’s grategy is that there is no intrinsic protedion against one protein
scoring high with two HMMs, if its squencelies ‘in between' the two families. This typi-
cdly happens when two families are treaed as sparate, although they are known to be re-
lated. One cae of this are the EGF domains and the related EGF-like domains foundin
laminins, where the laminin EGF-like modues are 20-30 residues longer than nama EGF
domains and have aght instead of six conserved cysteines, possbly forming a fourth dsul-
phide bond When training an HMM on a aosssedion d many EGF domains, this HMM
will typicdly give ahigh score to laminin EGF-like domains. However, it was possble to

train atight EGF HMM where the dignment was very strict abou feaures that are diff erent
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from laminin EGF-like domains, such as the exad spadng between some nserved cys
teines. ThisHMM would orly recognise nonlaminin EGF domains. Pfam-A is chedked for
any overlaps between families and if this is found, either the seed alignment is modified o

the score aitoffs are raised slightly.

Format

The Pfam format for the dignments is for ead sequence segment: name/start-end foll owed
by the padded sequence on ore line. The name is the Swisgrot aconym and the start and
end are the a-ordinates of the first and last residues of the sequence segment. In the release
flat file the Swisgprot accesson nunber is added to the end d eat sequenceline. The an-
notation foll ows the Swisgrot flatfile format closely; ead family in Pfam-A has a perma-
nent referencedle acceson number (Pfxxxxx), an ID name and adefinitionline. An exam-
ple of annaation and alignment is shown in figure 7.3. Thefield labelsin figure 7.3A foll ow
the Swisgrot syntax [Bairoch and Apweller, 1994, with the aldition d AU (aignment
author), SE (seed membership source), AL (seal alignment method), GA (gathering method
to find al members) and AM (alignment method d al membersto HMM).
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ID response_reg

AC PF00072

DE Response regulator receiver domain

AU Sonnhammer ELL

SE Prodom

AL Clustalw

GA Bic_raw 25 hmmls 25

AM hmma -gR

RA Pao, G.M., Saier, M.H.

RL J. Mol. Evol. 40:136-154(1995).

DR SCOP; 3chy; fa;

CC This domain receives the signal from the sensor partner in
CC bacterial two-component systems. It is usually found N-terminal
CC to a DNA binding effector domain.

Figure 7.3. Example of the Pfam-A family resporse_reg (PFO0072 with annaation (A) and
alignment (B) (only part shown).
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Figure 7.3b.
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| Q01473632 a.a.
(49) PD00094
(130) PF00072 Response regulator receiver

| P43565 1770 a.a.
(2) PD09674
(2) PD09675
(786) PF00069 Protein kinase
(130) PF00072 Response regulator receiver

| P042752813 a.a.
(61) PF00007 Cystine-knot donai n
(50) PF00092 von Willebrand factor A domain
(25) PF00093 von Willebrand factor C domain
(15) PF00094 von Willebrand factor D domain

| P24014 1480 a.a.

(61) PFO0007 Cystine-knot domain
(676) PF00008 EGF-like domain
(4) PD03946

(41) PF00054 Laminin G domain

Figure 7.3c. The Pfam domain arganisation o the KFD3_YEAST and the midde domain of
RCAC_FREDI, where are novel member domains of the resporse regulator recaver domain
family (seetext). Two ather examples of moduar proteins are shown. This hematic repre-
sentation is provided for ead protein in Pfam in the release file swisPfam. The whole se-
guence is represented with ‘=" and the Pfam domains with ‘- on the lines below. The ®l-
umns of the domain lines are: Pfam ID, nr. of domains, schematic, nr. of members in the
family, Pfam accesson rr., description (Pfam-A families only) and start and end co-ordinates
of the segments (not shown here).
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Figure 7.3d. Example of a Pfam-B family produced by Domainer. This family contains the
DNA binding effeador domain of RCAC_FREDI.



7.3.2 Pfam-B

To cluster al protein sequences nat covered by Pfam-A, the Domainer program [Sonnham-
mer and Kahn, 1994, version 1.6,was run. Domainer uses pairwise homology data reported
from Blastp [Altschul et al., 1997 to construct aligned families. Blastp was only run onthe
part of Swisgrot that was not present in Pfam-A. In release 1.0 d Pfam this was 81% of
Swisgrot 33. These sequences were prepared by extrading all sequence sedions larger than
30 residues that were not covered in Pfam-A into separate entries. A protein with a Pfam-A
domain in the centre that has long flanking regions on either side, will thus generate two en-
tries. By doing this, Domainer will consider ead sedion as an independent sequence, and
the boundary to the Pfam-A segment will be used as ared domain boundry. All sequences
known to be fragments were omitted since these would induce false domain boundries in
Domainer.

The Domainer process was further improved by filtering the Blastp ouput with
MSRcrunch (chapter 4) to remove biased composition matches, trim off overlapping ends of
conseadtive Blast matches, and to reduce redundancy. As can be seen in figure 7.4, the
growth of Homologous Sequence Sets (HSS), is pradicdly linea with the number of ho-
mologous Sequence Pairs (HSPs) processed, while runnng Domainer on al of Swisgrot
gives rise to large plateaux in areas of large redundancy [Sonntemmer and Kahn, 1994.
Although Pfam 1.0is based onrelease 33 d Swisgrot, which contains more than twice &
many sequences as release 21, which Prodam 21 was based on, the number of HSPs was
slightly reduced. Withou reductionin redundancy by Pfam-A and M SRcrunch a quadrupling
would have been expeded. The time consumption for processng the HSFs into HSSs was
26.3 houws on ore workstation. Performing the Blastp al versus all comparison took a total
of 184.6 houws, bu the dapsed time was reduced by running on a number of workstations in

paralel. Thesetimings ow that it is clealy feasible to rerun the processperiodicaly.
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Figure 7.4. Construction d Pfam-B by Domainer. Plot of Domainer run onSwisgrot 33,
excluding sequences in Pfam-A. Domainer groups the pairwise matches (HSFs) into stadks
of matches (HSSy) if different pairs share sequence regions. 46293subsequences gave rise
to 392207HSPs, which resulted in 98551HSSsin 11929 amili es after subsequent clustering
by Domainer. When Domainer is run onthe entire Swisgrot, much time is gent on poc-
essng redundant pairs generated by large families, generating long horizontal plateaux in the
plot (See[Sonnhammer and Kahn, 1994, figure 3). In contrast, the Pfam plot is virtualy
linea, since the most redundant families are dready in Pfam and was thus removed before
running Domainer. The sharp increase of the aurve’s dope a the endis caused by adding all
full-length sequences as pseudo-matches after all the heterogeneous matches.
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The Pfam-B alignments are released together with Pfam-A in ore flat file. The format is
esentidly the same, bu eadh Pfam-B cluster is asdgned a volatile acceson number
(PDxxxxx), which is only valid for a particular release. Information sparse dignments that
Domainer sometimes produces are avoided by excluding any alignment where more than

25% of theresidues are gaps. In Pfam 1.0this eliminated 34 ou of 11963alignments.

Incremental updating

Pfam was designed with easy updating in mind. When new sequences are released, they are
compared to the existing models and if they score @owe the aitoff they are aittomaticdly
added to the full alignment. Normally the seed alignment is not altered, except for updating
of correded seed sequences. However, if new sequences give rise to problems, such as
strong crossreadion ketween families, the seeds may have to be improved to become more
spedfic for the respedive families. Once Pfam-A is brought up to date, Pfam-B is regener-
ated onthe rest of Swisgrot as described abowve.

7.4 Results

We have mnstructed and made avail able a omprehensive library of protein damain families
as described in the Methods dion. Together with the HMM techndogy, this can provide
an advance over traditional database seaching in sequence analysis for classficaion pu-
poses. Figure 7.5A ill ustrates the propartions of Swissrot that are wvered by Pfam-A and
Pfam-B. A third of all Swisgrot proteins have one or more domain in Pfam-A, and afifth of
all residues are digned in a Pfam-A family. Pfam-B is roughly twice the size of Pfam-A,
leaving only 22% of all Swisgrot proteins withou any segment in Pfam at all. Pfam is
avallable via aorymous FTP a ftp.sanger.acuk and genomewustl.edu in
/publdatabases/Pfam. There ae two data files: pfam, which lists al the Pfam families with
annaation and alignment, and swis$fam, which contains the Pfam domain organisation for

eathh Swisgrot entry in Pfam. There ae dso World Wide Web servers on
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http://www.sanger.ac.uk/Pfam and htp://genome.wustl.edw/Pfam which allow browsing and
HMM seaching against Pfam-A with a query sequence Table 7.1 summarises the families
currently in Pfam-A and the sizes of the seed and full alignments. On average, the full
alignments have four times as many members as the seed alignments. The structure of 60%
of the Pfam-A familiesis known. These families are aossreferenced to the structural class-
ficaion catabase SCOP [Murzin et al., 1995 from the Pfam WWW servers (seesedion 8.3.

The main use of Pfam is as a tod to identify and classfy domains in protein sequences.
We gplied it to Wormpep 10, a database of 4874 pedicted proteins from genomic se-
guencing of C. elegans [Hodgkin et al., 1995. The 2973 proteins for which noinformative
similarity has been found wing the standard Blast/MSRcrunch approadh (chapter 4) were
seached for Pfam matches. As sgnificance aitoffs, the previously recorded cutoffs that ex-
clude negatives for ead Pfam family were used. 211Pfam meatches were foundin 144 wn-
annaated sequences. Adding these to the dready annaated C. elegans predicted proteins
yields a dasgficdion rate of abou 42%. As e in figure 7.58, arealy haf that amourt,
21%, is covered by matches to the Pfam-A HMM library.
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Table 7.1. The families included in relesse 1.0 d Pfam-A. Since the seed alignments are
smaller than the full alignments, quelity control and maintenance become feasible tasks.

Pfam ID Acces Description HMM Sed Sed Full Full
sion r. Length members aa  members aa

7tm_1 PFO0001 7 transmembrane receptor (Rho- 271 64 17169 530 140214
dopsin family)

tm_2 PFO0002 7 transmembrane receptor (Secre- 366 15 5339 36 12620
tin family)

7tm_3 PFO0003 7 transmembrane receptor (me- 830 8 6421 12 9682
tabotropic glutamate family)

AAA PFO0004  ATPases Associated with various 189 42 7990 79 15111
cellular Activities (AAA)

ABC_tran PFO0005  ABC transporters 192 63 11913 330 64017

ATP-synt_A PFO0119 ATPsynthase A chain 175 30 4827 79 12304

ATP-synt_C PFO0137  ATP synthase suburit C 79 25 1884 62 4636

ATP-synt_ab PFO0006  ATP synthase apha and beta 428 47 16741 183 61617
suburits

c2 PFO0168 C2 domain 92 34 2965 101 8856

COX1 PFO0115  Cytochrome C oxidase suburit | 113 27 3016 80 8782

COX2 PFO0116  Cytochrome C oxidase suburit Il 234 36 8151 114 22075

COesterase PF00135 Carboxylesterases 589 27 14433 62 29042

Cys-protease PFO0112  Cysteine proteases 246 36 7974 95 18000

Cys_knot PFO0007  Cystine-knot domain 88 28 2320 61 5108

DAG_PE-bind PFO0130  Phorbol esters/ diacylglycerol 50 34 1677 108 5347
binding domain

DNA_methylase PF00145  C-5 cytosine-specific DNA meth- 353 31 10697 57 15915
ylases

DNA_pol PF0O0136 DNA polymerasefamily B 845 37 29538 51 33451

E1-E2_ATPase PFO0122  E1-E2 ATPases 683 24 14568 117 62885

EGF PFO0008  EGF-like domain 30 75 2627 676 22710

FGF PFO0167  Fibroblast growth factors 136 10 1305 39 5087

GATase PFO0117  Glutamine amidotransferases 201 39 7468 69 13051
classl|

GTP_EFTU PFO0009  Elongation fador Tu family 513 63 26793 184 75117
(contains ATP/GTP binding P-
loop)

HLH PFO0010  Helix-loop-helix DNA-binding 55 35 1882 133 7187
domain

HSP20 PFO0011  Heat shock hsp20 poteins 113 52 5630 132 13855

HSF70 PFO0012  Heat shock hsp70 poteins 625 34 20365 171 84638

HTH_1 PFO0126 Baderial regulatory helix-loop- 143 65 9235 101 14331
helix proteins, lysR family

HTH_2 PFO0165 Baderial regulatory helix-loop- 87 42 3639 65 5655
helix proteins, araC family

KH-domain PF00013  KH domain family of RNA bind- 50 20 984 51 2542
ing proteins

Kunitz_BPTI PF0O0014  Kunitz/Bovine pancrestic trypsin 51 44 2258 79 4062
inhibitor domain

MCPsignal PF00015 Methyl-acapting chemotaxis 61 10 612 24 1468
protein (MCP) signaling domain

MHC_| PF00129 Classl| Histocompatibility anti- 181 25 4465 151 26724
gen, domainsalphaland 2

NADHdh PF00146  NADH dehydrogenases 332 25 7837 61 16402

PGK PFO0162  Phosphoglycerate kinases 425 25 10369 51 20893

PH PF00169  PH (pleckstrin homology) domain 104 41 4426 77 8256

Pribosyltran PFO0156  Purine/pyrimidine phosphoribosyl 203 26 4857 45 8355
transferases

RIP PFO0161  Ribosome inadivating proteins 222 19 4014 37 6529

RuBisCO_large PFO0016  Ribulose bisphosphate carboxy- 506 17 8131 311 135100
lase, large chain

RuBisCO_small PFO0101  Ribulose bisphosphate carboxy- 126 49 5569 107 12325
lase, small chain

S12 PF00164 Ribosomal protein S12 142 23 2913 60 7238

A PFO0163  Ribosomal protein S4 211 19 3698 54 10542

SH2 PFO0017  Src Homology domain 2 81 58 4564 150 11759

SH3 PF00018  Src Homology domain 3 57 62 3500 161 9285

STphosphatase PF00149  Ser/Thr protein phosphatases 295 17 4956 88 24549

TGF-beta PF0O0019  Transforming growth fador beta 108 16 1636 79 7837
like domain

TIM PFO0121  Triosephosphate isomerase 257 20 5024 42 9781

TNFR_c6 PF00020 TNFR/NGFR cysteine-rich region 41 51 1942 91 3464



UPAR_LY6
Y_phosphatase
Zn_clus

adin
adh_short

adh_zinc
aldedh
alpha-amylase

aminotran
ank

apple
arf

asp
bzIP

beta-ladamase
cNMP_binding
cadherin
cellulase
connexin
copper-bind

cpnl0

cpn60

crystall

cyclin

cystatin
cytochrome_b_C

cytochrome _b_N

cytochrome_c
dsrm

efhand
enolase
fer2

ferd

ferd_NifH

fibrinogen_C

filament
fnl

fn2

fn3
gln-synt
globin
gluts
gpdh

heme_1

hemopexin
hexapep

histone

homeobox
hormone

hormone2

hormone3
hormone_rec

PFO0021
PF00102
PFO0172

PFO0022
PF00106

PF00107
PFO0171
PF00128

PFO0155
PF00023
PF00024
PF00025

PF00026
PF00170

PFO0144
PFO0027
PF00028
PFO0150
PF00029
PFO0127

PF00166
PF00118
PFO0030
PF00134
PFO0031
PF00032

PFO0033

PFO0034
PFO0035

PFO0036
PFO0113
PFOO111

PFO0037

PF00142

PFO0147

PFO0038
PFO0039
PFO0040
PFO0041
PF00120
PFO0042
PFO0043
PFO0044

PFO0173

PFO0045
PFO0132

PFO0125

PFO0046
PF00103

PF00123

PFO0159
PF00104

u-PAR/Ly-6 domain
Protein-tyrosine phosphatase
Fungal Zn(2)-Cys(6) binuclear
cluster domain

Actins

Alcohol/other dehydrogenases,
short chain type

Zinc-binding dehydrogenases
Aldehyde dehydrogenases

Alpha anylases (family of glyco-
syl hydrolases)
Aminotransferases class|

Ank repeat

Apple domain

Arf family (contains ATP/GTP
binding P-loop)

Eukaryotic aspartyl proteases
Basic region plusleucine Zpper
transcription fadors
Beta-ladamases

Cyclic nucleotide-binding domain
Cadherin

Cellulases (glycosyl hydrolases)
Connexin

Copper binding proteins, plasto-
cyanin/azurin family
Chaperonins 10 Kd suburit
Chaperonins 60 Kd suburit
Crystallins beta and gamma
Cyclins

Cystatin domain

Cytochrome b(C-
terminal)/b6/petD

Cytochrome b(N-
terminal)/b6/petB

Cytochromec

Double-stranded RNA binding
motif

EF hand

Enolases

2Fe-2Siron-sulfur cluster binding
domains

4Fe-4Sferredoxins and related
iron-sulfur cluster binding do-
mains.

4Fe-4Siron sulfur cluster binding
proteins, NifH/frxC family
Fibrinogen beta and gamma
chains, C-terminal globular do-
main

Intermediate filament proteins
Fibronectin type | domain
Fibronectin type Il domain
Fibronectin type Ill domain
Glutamine synthetase

Globin

Glutathione S-transferases.
glyceraldehyde 3-phosphate dehy-
drogenases

Heme-binding domain in cyto-
chrome b5 and oxidoreductases
Hemopexin

Baderia transferase hexapeptide
(four repeats)

Core histones H2A, H2B, H3 and
H4

Homeobox domain

Protein hormones (family of so-
matotropin, proladin and others)
Peptide hormones (family of glu-
cagon, GIP, secretin, VIP)
Pancreatic hormone peptides
Ligand-binding domain of nuclear

144
242
41

379
193

387
484
471

433
28
86

184

341
65

319
123
104
333
250
129

96
527

273
108
107
215

113
70

29
445
89

64

280

255

352

42
84
376
152
205
352

79

207
29

125

60
227

28

36
165

13
38

24
52

45
34
54

29
83

16
21

58
16

86

18

60

16

17

36
21
17
109
35
62
61
23

16

14
61

30

64
17

29

15
32

1713
9010
1161

8997
9931

15999
15794
23611

11778
2338
1344
3816

8585
1396

10288
3797
5769
8721
3590
3268

2740
16761
3061
12580
5124
999

1853

5395
1063

2493
5231
1580

3734

4334

4005

11459
802
700

9219
11836
8876
12034
7672

1238

2682
1768

3427

3703
3631

810

541
5180

18
122
54

160
186

129
69
114
63
305

16
43

170

175
22

739

88

156

49

37
82

178

385
111

110

53
127

2343
20901
2159

50267
35727

46025
31826
50162

25487
8577
1344
7778

21847
5948

13654
8247
16875
11688
9005
6261

5426
43948
8479
19839
8928
12724

31806

16925
1470

21258
15893
7581

9529

12324

4166

41235
1849
1540

39385

24502

97276

28092

37611

4271

7120
2376

20412

22470
22870

3068

1909
20548
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ig
i18

ins
interferon
kazal

ketoagyl-synt
kringle
laminin_B
laminin_EGF

laminin_G
laminin_Nterm
Idh
Idl_recept_a

Idl_recept_b
lectin_c

lectin_legA
lectin_legB
lig_chan
lipase
lipocdin
lys
metalthio

mito_car
myosin_head

neur
neur_chan

notch
oxidored_fad

oxidored_molyb
oxidored_ritro
p450
peroxidase
phodlip
photoRC

pilin

pkinase

pou
pro_isomerase
pyr_redox

ras

recA
response_reg
rhv

rnaseA

rnaseH

mm

rvp
rvt

serpin

PFO0047
PFO0048

PFO0049
PF00143
PFO0050

PF00109
PFO0051
PF00052
PFO0053

PFO0054
PFO0055
PFO0056
PFO0057

PFO0058
PFO0059
PF00138
PFO0139
PFO0060
PFO0151
PFO0061
PFO0062
PFO0131

PFO0153
PFO0063

PFO0064

PFO0065

PFO0066
PFO0175

PFO0174
PF00148
PFO0067
PFO0141
PFO0068
PFO0124
PFO0114
PFO0069
PFO0157
PFO0160
PFO0070
PFO0071
PFO0154
PFO0072
PFO0073
PFO0074
PFO0075
PFO0076

PFO0077
PFO0078

PFO0079

hormone receptors

|G superfamily

Small cytokines (inte-
crine/chemokine), interleukin-8
like

Insulin/IGFH/Relaxin family
Interferon alpha and keta domains
Kazal-type serine protease in-
hibitor domain

Beta-ketoacyl synthases
Kringle domain

Laminin B (Domain 1V)
Laminin EGF-like (Domains IlI
andV)

Laminin G domain

Laminin N-terminal (Domain V1)
L-ladtate dehydrogenases
Low-density lipoprotein receptor
domain classA

Low-density lipoprotein receptor
domain classB

Lectin C-type domain short and
long forms

Legume lectins alpha domain
Legume lectins beta domain
Ligand-gated ionic channels
Lipases

lipocdins

C-type lysozymes and alpha-
ladabulmin

Metall othioneins

Mitochondrial carier proteins
Myosin head (motor domain)
(contains ATP/GTP binding P-
loop)

Neuraminidases
Neurotransmitter-gated ion-
channel

Notch

FAD/NAD-binding domainin
oxidoreductases

Molybdopterin hinding domain in
oxidoreductases
Oxidoreductases, nitrogenase
component 1 and other families
Cytochrome P450

Peroxidases

Phospholipase A2
Photosynthetic readion center
protein

Pilins (bacerial filaments)
Protein kinase

Pou domain - N-terminal to ho-
meobox domain

Peptidyl-prolyl cis-trans isomer-
ases

Pyridine nucleotide-disulphide
oxidoreductases class|

Ras family (contains ATP/GTP
binding P-loop)

recA baderial DNA recombina
tion proteins

Response regulator receiver do-
main

picornavirus capsid proteins
Pancrestic ribonucleases
RNase H

RNA recognition motif. (aka
RRM, RBD, or RNP domain)
Retroviral aspartyl proteases
Reverse transcriptase (RNA-
dependent DNA polymerase)
Serpins (serine protease inhibi-

47
70

88
190
60

442

148
53

151
264
335

44

48
128

49
196
914
486
156
128

74

303
703

402

401

42
123

452
457
471
431
128
323
160
247

78
181
496
192
337
115
306
128
157

72

113
238

391

65

44
17
53

11
25

72

26

30
43

23
44
25
25
11
16
21
21

32
21

10
56

15

31

64

37
27

23
10
28
23
61
31
55
108
30
31
70

34
50

43

4376
2216

3042
3190
2708

4648
1970
1225
3641

3858
2133
9437
1720

1007
4995
1192
4634
9296
7284
8210
2607
1313

9243
14297

2729

23023

378
6534

6291
13123
28850
8336
4439
8043
3397
18184
756
4550
10665
11753
10244
6256
27428
3608
4131
4979

3497
11031

16190

1280

132
47
155
46
126

15
134

61
128
43
40
30

115
72

62

62
52

55

145

24
101

35

79

204

122
73

56
786
47
50
43
213
74
130
117
71
87
279

82
147

105

86496
4426

8765
8834
7814

18969
9931
1749
6707

6097
2376
23842
3914

2651
15425
2054
6241
23453
8355
15945
8468
3807

17310
29811

20320

58059

930
11788

14281
23287
92743
17313
13886
22068
6250
191228
3359
7966
19820
40953
22012
14711
28207
8635
11403
19961

8106
31069

34597



tors)

sigma54 PF00158  Sigma-54 transcription factors 323 41 12923 56 16115

sigma70 PF0O0140 Sigma-70fadors 236 33 7288 61 13547

sodcu PFO0080  Copper/zinc superoxide dismu- 161 29 4411 68 9262
tases (SODC)

sodfe PF00081  Iron/manganese superoxide dis- 207 28 5508 69 12029
mutases (SODM)

subtilase PFO0082  Subtilase family of serine prote- 334 43 13142 91 25086
ases

sugar_tr PFO0083  Sugar (and other) transporters 484 51 23055 107 47894

sushi PFO0084  Sushi domain 55 80 4575 346 19872

tRNA-synt_1 PFO0133  tRNA synthetases classl 750 19 12728 35 22935

tRNA-synt_2 PFO0152  tRNA synthetases classl! 363 20 6731 29 10442

thiolase PFO0108  Thiolases 405 24 9375 25 9799

thiored PFO0085  Thioredoxins 113 52 5600 103 10850

thyroglobulin_1 PF0O0086  Thyroglobulin type-1 repeat 50 22 1011 49 2303

toxin PFO0087  Snaketoxins 69 48 3015 172 10570

trefoil PFO0088  Trefoil (P-type) domain 43 28 1190 39 1678

trypsin PFO0089  Trypsin 230 65 14779 246 56153

tsp_1 PFO0090  Thrombospondin type 1 domain 52 32 1556 91 4439

tubdin PFO0091  Tubuin 445 26 11230 197 78792

vwa PFO0092  von Willebrand fador type A 181 37 6634 50 9024
domain

vwc PF00093  von Willebrand factor type C 69 17 1000 25 1498
domain

vwd PF00094  von Willebrand factor type D 370 6 2133 15 4130
domain

wap PFO0095  WAP-type (Whey Acidic Protein) 51 18 821 19 861
'four-disulfide corée

wnt PFO0110  wnt family of developmental 329 15 4765 105 19453
signaling proteins

zf-C2H2 PFO0096  Zinc finger, C2H2 type 23 165 3622 1452 31083

zf-C3HC4 PFO0097  Zinc finger, C3HCA4 type 40 52 2120 69 2796

zf-C4 PFO0105  Zinc finger, C4 type (two do- 77 27 2059 139 10500
mains)

zf-CCHC PFO0098  Zinc finger, CCHC class 18 122 2196 188 3384

Zn-protease PFO0099  Zinc-binding metall oprotease 16 45 656 152 2274
domain

zona_pellucida PF0O0100 Zona pellucida-like domain 290 11 2936 26 6914

Total 38622 6300 1149475 22306 3561430
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Sequences

unique In Pfam-A
0,
2204 17%

In Pfam-A
and
Pfam-B
13%
In Pfam-B
48%
Seqguences
In Pfam-A

Pfam-A
79%

Residues

unique
In Pfam-A

33%

19%

In Pfam-B
48%

Residues

In Pfam-A
9%

Not in
Pfam-A
91%

Figure 7.5. A. Propation d Swisgrot 33 in Pfam, based onsequences and residues. The
portion d unique sequences is dightly overestimated due to the exclusion d fragments and
sequences orter than 30residues from Pfam-B. B. Propation d Wormpep 10,comprising
4874 pedicted C. elegans proteins that is covered by Pfam matches.
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An interesting case of family merging which ill ustrates the level of clustering in Pfam is
shown in figure 7.6. Here two families that were previously not considered related could be
merged. One family is the glycoprotein hamones (Prosite: PDOC00234, and the other is a
family of conredive tisuue growth fador-like and C-terminal domains in extracdlular pro-
teins[Bork, 1993. None of these references mention the other family. After we had ndiced
this family-merger, which gives a good quality aignment (figure 7.6), we leaned that the
structure of a glycoprotein hamone had recently been determined to be a gstine-knat fold
[Lapthorn et al., 1994, which is the fold adopted by TGF-[32 [Schlunegger and Gruetter,
1993, NGF [McDonald et al., 1997 and PDGF-B [Oefner et al., 1993. The link between
these growth fadors and the family had aready been made [Bork, 1993, bu ironicdly the
sequences of TGF-132, NGF and PDGF-B share so few sequence feaures with the glycopro-
tein hamones and the other growth fadors and extracdlular C-termina domains that they

could na beincluded in the Pfam family.

APMU_PI G 1062 ...VNVTNL. . ... ... FQLKNSCL. . . .. DYEFRDI VLDCPDGSTLPYRYRHI TACSCLD. PC 1145
CE10_CH CK 281 CTKIKKsSPSPVRF. . ...... T TYABCSSVKKYRPKYC. GSCV......... DGR ........... QSCRCNY. NC 354
CGHB_HUMAN 29 ... . RVL! LPALPQWV. . . .. SCQ:A LC 113
CGHB_PAPAN 29 .. ATHAA. ... . RVLQAVLPRVPQWV. . . . . SCRCA. . LC 113
CTGF_HUMAN 256 i SKPEKF. . . .....ELSBCTSMKIYRAKFC. GVCT. . ....... DGR ...... . DCEVMKKI I KTCACHY. NC 329
CTGF_MOUSE 255 Ki ... ELSECTSVKIYRAKFC.GVCT. . .......DGR ........... PHR'I'I'I'LPVEFKCPDGEI IMKKNMVFI KTCACHY. NC 328
CYR6_MOUSE 284 CSKIKKsSPEPVRF. . ......TYAGCSSVKKYRPKYC. GSCV......... DGR ...... . QSCKCNY. NC 357
FSHB_BOVI N 21 IR .. ). . R L K ABDSL .. KC 105
FSHB_HORSE 3 . . KIQKT. . ... CAHHA . KC 87
FSHB_HUMAN 21 ... . . . KIOKT. . ... SCAHHA . KC 105
FSHB_PI G 21 . . NI OKT. . ... SCAHHA . KC 105
FSHB_RAT 22 . . . . NTQKV. . . . . CA .KC 106
FSHB_SHEEP 21 ... . . . NI QKA. .. .. CAHHA . KC 105
GTH1_CORAU 32 . . . . RSQGA. . . .. 5 ANP. .. KC 113
GTHL_ONCKE 32 . . . . 5 .. KC 113
GTHL_ONCVA 32 . .. LNYQSTW.BRSQGV. . . . 5 .. KC 113
GTH1_THUOB 8 . . .. PVYI SHD. . . EQKI CP .. AC 82
GTH2_ONCKE 29 ... . . . PVFKSPFSTVYQHV. . . . . : .. LC 113
GTH2_ONCMVA 29 ... . . . PVFRSPFSTVYQHV. . . . . \ .. LC 113
GTHB_MURCI 6 ... P . . PSYKSPLSTVYQRV. . . . . - .. LC 90
GTHB_ONCTS 29 ... QIVSL. . . ..... EKEGCPTCLVIIRAPI CSGHCVIEKE. . PVFKSPFSTVYQHV. . . . . DVR .. LC 113
LSHB_COTJA 56 CRRIN. .. VIVAV. .. ..... EKEECPQCVAVTIRIACGGYCRIRE. . PVYRSPLGBPPCSS. . . . . RC 140
LSHB_EQUAS 29 .. 2 .. 3 CP .PC 113
LSHB_HUMAN 29 . ATEAW. ... P . QW. . ... 3 CP . PC 113
LSHB_MELGA 48 ... ﬁl 444444 X .. PVYRSPLGRPPQSS. . . . . : SCP .RC 132
LSHB_PI G 29 .. ATEAA. .. ... .. P . 3 CP . PC 113
LSHB_SHEEP 29 ... - P .. RVLPVI LPBMVPQRV. . . . . 3 CP Na\lj .PC 113
MUB1_XENLA 301 L. q . . X .. TYDTI DNKWTKCR. . . . . KA PRKAHLV/ TSCKCT. . SC 391
MUC2_HUMAN 2170 CSTVP...VITEM........ .. L. - LTHIYTHI Em VC 2254
MJUC5_ HUVAN 917 CA ... .. . YTEVEECGCMGr RC 1004
MUCL_RAT 732 CSAIP. .. .. . MFCAGSCGIFA. . \QDLDHGCS. . . . . YTHI ESCLCQG VC 816
MJCS_BOVIN 471 L. - \GECKKTI . . QLKNSCL. . . .. NYEYREI DLDCPDGGTI PYRYRHI | TCSCLD. | C 554
NDP_HUMAN 39 B 3 r sSEPLVSFSTVLKQPFr ssc ) 'YRYI LSCHCE. . EC 131
NDP_MOUSE 37 B 3 r SEPLVSFSTVLKQPFr ssc ) KgYRYI LSCHCE. . EC 129
NOV_CHI CK 258 Cl .EYENCTSVQEYKPRYC. GLCN. . . ..... . DGR ........... | NTCVCHG. NC 331
NOV_COTJA 260 Cl RTKKsMKAVRF. . ......EYKNCTSVQIYKPRYC. GLCN. . .......DGR .......... | NTCVCHG. NC 333
NOV_HUMAN 264 CLRIKKsL | GTCTCHT. NC 337
SLI T_DROME 1409 Q .. ... TENDCRSRQPEKYAKCVGGCGN. . . . . .......... . VRKCCCTK. KC 1479
TSHB_BOVI N 22 C LY : | SCKCG . KC 108
TSHB_HUMAN 22 C R . nG(LFLPKYALSQD\/ - 3 SCKCG. . KC 108
TSHB_ONCMY 22 ... YALEYE. . ...... CDF NVKELAGPRFLI QRG. . . . . ) SCHCG. . TC 108
TSHB_PI G 22 C O YMVHY. L NGKLFLPKYALSQDV. . . . . 3 | SCKCG. . KC 108
TSHB_RAT 22 C CYMWAL L g]& i NGKLFLPKYALSQDV. . . . . SCKCG. . KC 108
VWF_HUMVAN 2724 CNDI T ARLOQW.L .. KA. . MYSI Bl NDVQDQCS. . . . . < HEVL! CKCSPr KC 2811

Figure 7.6. The full aignment of Pfam:Cys_kna (accesson rr PFO007). This family clus-
ters the two previously described subfamilies CTGF-like (Conredive Tisaue Growth Fador)
and glycoprotein hamones in ore single superfamily. The similarity has recently been
structurally confirmed.
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During the construction d Pfam, a number of strong matches were found that despite
good sequence simil arity had na been classfied as true members before. The dignment in
figure 7.3B and C contain two examples of this. Thisdomain is usually foundas a single N-
termina domain in resporse regulators of two-comporent systems, where it receves a signal
by phosphaylation by a sensor moleaule. The signal is then usually transduced to a C-
terminal DNA binding transcription fador which turns on the expresson d a set of down-
strean genes. Sometimes the recaver domain is not combined with any other domains on
the same dhain, a is combined with aher types of modues, such as kinase domains. The
cyanobaderia protein rcaC (Swisgrot: RCAC_FREDI Q01473, was previously foundto
have adupicaed recever domain [Sonnremmer and Kahn, 1994. We now report a third
recever-like domain between the two previously described ores. Most of the conserved
feaures are still clealy recognisable in this third damain, athough it has diverged further
from the other two damains. The other novel annaationin figure 7.38 and C is in the yeast
protein KFD3_YEAST (Swisgrot P43565, which was foundas ORF YFL033c by genomic
sequencing of S. cerevisiae chromosome VI [Murakami et al., 1995. As einfigure 7.3C,
this protein has a protein kinase domain (split up in two matches) and ore recever domain.
In the original analysis, it was only described as “protein kinase”. It further shares domains
with the protein CEK1_SCHPO (Swisgrot P3893§, in the families Pfam-B_9674 and
Pfam-B_9675,which in addition also contains one protein kinase domain, bu lads the re-
caver domain.

Another example is the finding of a new fibronedin type lll (FN3) domain [Bazan, 1990
in a mammalian glycohydrolase. FN3 domains have drealy been foundin many baderial
glycohydrolases [Little et al., 1994 [Bork and Dodlittle, 1993, bu since this domain com-
bination was foundto be limited to the baderial kingdom it was assumed that horizontal
gene transfer had taken placefrom animal proteins with a wmpletely different function. We
have deteded an FN3 damain in the C-termina part of human, dog and mouse alpha-I-
iduronidase  (Swisgrot IDUA_HUMAN P35475 IDUA_CANFA Q01634 and
IDUA_MOUSE P48441]) (seefigure 7.7A). The dosest homologue is 3-xylosidase from the

baderium Thermoanaerobacter saccharolyticum, which ladks the FN3 damain. The discov-
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ery of an animal glycohydrolase linked to an FN3 damain raises questions abou the conclu-
sionthat all FN3 damains in baderia glycohydrolases have aisen by horizontal transfer of
the FN3 damain from an animal source The dternative scenario is that some ancestral gly-
cohydrolases also possessed FN3 damains.

We have dso deteded previously undescribed Kazal-type protease inhibitor domains [Ka-
zal et al., 1948 in human and rat organic anion transporters (Swisprot OATP_HUMAN
PA6721 and OATP_RAT P46720, and in rat prostaglandin transporter (Swisgrot
PGT_RAT Q00910, as shown infigure 7.8. Asfar aswe know, thisisthefirst time aKaza
domain has been described in transmembrane proteins. From the hydrophobcity profile of
these transporters [Kanai et al., 1999, it is clea that the predicted Kazal domain liesin are-
gion of abou 90 residues between transmembrane helices 9 and 1Q This region was pre-
dicted to protrude on the outside of the membrane by the program TopPred 1l [Claros and
vonHeijne, 1994 for bath PGT and OATP. This suppats the existence of a disulphide-rich

globuar Kazal domain, which may well be important for substrate binding.
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A

7LES_DROVI 1917 S. YAPI PPLQUEI EL. NAYGNTEAWPGT. . . . . Pl SSLTEEC. @SLREQ . .. ....... LQFN. . VAGNHT. . QVRLAPL QPKIIRY! . ....GAPI 1997
APU_THETY 1165 P. TAP. V. LQQPG . ESS NWSPSA. . . DDVAIFGYElYK. SSSETGPf .. ... ... I KL AT. . VSDSVY. . .

AXOL_RAT 914 PrRPP. GNI SWIF. . E KV\[PWpI r I\ES GY Y Q\DLHPTptI hi tsknW EI P. . VPEDI G. . HALVQ RT

CHI T_STRLI 142 P. SAP. GTPTASNI . \ KNYDV. LR.. .DGA. . ......... T. . VIGIT. . .. MIDNGLT

CPSF_CHICK 491 P. DPP. Q8 SV. l"‘ Pf TGYL R KKKGSNRW. ...... nKLNFE. . VFPDT. . . STKM

CPSF_CHI CK 784 P. GPP. QA . WGSNA Kd. d S QK. ADTRTME. .. ...... WFTVL. . EHSRPT. . VSEL

FAS2_SCHAM 530 P. SAV. L KNYA . KQDSQGW . . . .. ... EDALN. . RT LENLKP

FINC_BOVIN 689 P. WA TSE! I SSF LPSTAT. . SVNI PDLL]

FINC_BOVIN 780 P. DAR. PDP LPETAN. . SVILSI

FINC_BOVIN 1511 |.DKP. S DV. CONSI'S . ... SS ATT. APKNGPGp ~ . VGPDQT. . EMIIl EGL
GUNB_CELFI 651 P. TTP. GIPVATGV. TTVGAS o NI LRDLTI
12B_HUMAN 235 P. DPP. KNLQUKPLKNSRQVE | DKWSATVI

DUR_CANFA 547 P. GPV. TRLRALP EEWEDERY - G RKP VESPESAVISCEVRVR AVDYVAY - pCPFS ©
8P < U U asimess W VFSPDTGAVSGSYRVR. ALDYWAT . . pGPFS 6
R_HUVAN 9 P. EAP. FDLSVI YRe GANDFVWTENTSH qKKYVRVLVAD KL . QRKLQPAAWY

| TB4_HUVAN 1127 L. GAP. ON . . . s .. DSKVP. . . SVELTNLYPYCDYE!
1 TB4_HUMAN 1581 P. DTP. TRLVFSAL. GP S 5 Q . . | PNPAQX . SVWVEDLLPNHSYVF|
KECK_HUMAN 436 Q TEP. PKVREEGR . KKGDS. . . VRRTEGF .

KEKS5_CHI CK 444 SWE . VKSPTN.

KMLC_CHI CK 60 TCRST.

P.
P.
KSEK_MOUSE 441 P. | VRTAAr
LAR_DROME 322 P. SG I T™M
MPSF_CHI CK 371 P. DAPVKI ¢
NCA1_BOVI N 509 P. AKEASMegl
NRCA_CHI CK 928 P. I PANES. . SLI LKNLNY!
PHB_ALCFA 344 G ATATA. . ..
PTP1_DROVE 123 P. VNDNTF. .
PTPB_HUVAN 554 P. | SSETS. .
PTPK_MOUSE 290 P. AVNAP. . .
TENA _CHI CK 593 V. VPGNQT. .
TI E1_HUMAN 446 P. . VDPSE. . .
TIE2_HUVAN 444 L. WOHI Q. . VTNEI .
TI E2_HUVAN 639 P. DQND«/kI KNATI i
UFO_HUVAN 327 L.
0 100 200 300 400 500 600 700
sy ey
IDUA_HUMAN: — Glycohydrolase H FN3  |—

Figure 7.7. A. Seleded members of the family Pfam:fn3 (accesson rr. PFO004). B. The
domain oganisation d iduronidase from human and dag (IDUA_HUMAN and
IDUA_CANFA), the first examples of a mammalian glycohydrolase combined with a fibro-
nedin type lll domain.
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AGRI _CHI CK 154 AS. ... ... ... CS. ... Gva. ESI DY CD

AGRI _RAT 165 CLCPTT.......... CF. ... GAp. DGTVg DY CQ

FSA HUVAN 116 PD.......... CS. ... Nt wKGPV DAKTY A

FSA PI G 116 PD.......... CS. ... N t wWKGPVCCGLDCKTYI A

FSA RAT 116 PD.......... CS. ... N t wWKGPVCCLDCEKTY A

FSA_SHEEP 109 PD.......... CS. ... N t wWKGPVCCGLDCEKTY A

| AC1_BOVI N 14 EA ........ CT....RE NPl CDSAAKTYSI

| AC2_BOVI N 7 CAEFKDP. .. ... KVYCT RE. NPHCGSNGET Y( A

| ACA PI G 7 CNVYRSH. .. ... LFFCT RQ . MDPI CGINGKSY. |

| ACS_PI G 12 CDVYRSH. .. ... LFFCT RE. . MDPI CGTNGKSYANPCI

| AC_NVACFA 33 CARYQLPG. ....... RD. . ENPVCGIDM TYP! A : KL

| OV7_CHI CK 94 CSPYLQVVRDGNt MVA( Rl .. LKPVCGSDSFTYDNECA . . . . CAYNA. EH. . . . ... HTNISKLBDGEC 150
| OVO_ABUPI 8 CSDHPKP. . ...... CE. . KPLCG YDNKCSF. . . . CNAW. DS. ... ... FGKC 56

| OVO_ALECH 6 CSEYPKP........ ACT LE. . NRPLCG YGNKCNE. . . . CNAW. ES. . ... .. FCKC 54
| PSG_VULVU 68 CTEYSDM ........ (o1) MD. . YRPLCG NYSNKCI E. . . . CNAW. RS. ... ... R FLAKHGEC 115
| PST_ANGAN 12 CCEMSAMHA. . .. ... C MN. . FAPVCGIDGNTYPNECSL. . . . CFQRQ NT. ... ... KTDI LI TKDDRC 61
| PST_BOVI N 9 CTNEVNG. . ....... C Rl . . YNPVCGIDGVTYSNECLL. . . . CMENK. ER. . . . . .. PVLEQKSGPC 56

| PST_PI G 9 CTSEVSG. . ....... CP. ... Kl..¥NPVCGIDd TYS ....CSENK. KR. ... ... PVLEQKSGPC 56

| PST_SHEEP 9 CTNEVNG. . ....... CB....Rl..YNPVCGIDGVTYANECLL. . . .CVENK. ER. .. .. .. QTRVLI QKSGPC 56
A HOVAN i ) C !F-Vo‘e‘“'e" ACLA X G N W‘ .V'&A:
OATP RA 439 CNTRCS CS N 'F'V.‘e‘l‘"" “ ACLA GCKKFV N ll W
PEGO_P CEHM PD....... CS.... KR .. I"V.'ew .W-.Im N 'CiE VKDG 86
PSGL_MU CHDAVAG. . . ... ... CP. ... R ..YDPVCGIDA TYANECVE. .. . CFENR KR . ... .. P RKGGPC 80

QR1L_COTJA 466 Cl A ACPs. . t KD. . YKRVCGIDNRTYDGTCQLFGTKCQLEG KM . . . . .. GRQ MGAC 521

SC1_RAT 424 ET........ CRp. . aKl . . LDQACGIDNQT Y. CHLFATKCMLEG KK. . . . . .. GHQLQ FGAC 479

SPRC_BOVI N 93 LTS . CPap. i GE. .EEKVCS F CHEFATKCTLEG KK. . . . . .. GHK | GPC 149

SPRC_CAEEL 74 I SK. ... ... CPel dgDP. . CANNNQTFTSL CDLYRERCL CKR. KSkecskaf NAK LCGEC 135

SPRC_MOUSE 92 LTS . CPap. i GE. . EEKVCSND F CHEFATKCTLEG KK. . . . . .. GHK | GPC 148

SPRC_XENLA 90 ST. ..., CRt s. vGE. . EEKI CGID Yl CHEFATKCTLEG KK. . . . . .. GHK | GPC 146

Figure 7.8. Alignment of Pfam:kazal (accesson rr. PFO005(, showing the novel members
OATP_HUMAN, OATP_RAT and PGT_RAT, organic anionand prostaglandin transporters.

To what extent are proteins moduar? With Pfam, we can address this problem with
higher acarracy than before. Of the proteinsin Swisgrot 33 containing at least one Pfam-A
domain, 1®%6 have two o more domains. This is only a lower boundsince (1) nat all do-
mains are present in Pfam-A, (2) HMMs are not perfedly sensitive and (3) it is based on
proteins in Swisgrot, which probably is biased towards sngle-domain proteins. We have
dore the same analysis on Wormpep 10, which shoud represent a relatively unbiased set of
proteins. 28% of the proteins that matched Pfam-A families, matched two or more domains.
We eped that this number is higher for the nematode C. elegans than it would be for single
cdl organisms. The distributions of both Pfam-A and Wormpep data ae shown in figure
7.9.
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Figure 7.9. Distribution d the number of domains found r protein. A. All proteins in
Pfam-A. B. Wormpep 10 poteins that match Pfam-A. The number of proteins with two or
more domainsis 17% for al proteinsin Pfam-A and 28% among Wormpep 10 poteins.



7.5 Discussion

We have presented a database which combines high-quality alignment information with
high coverage of known protein sequences. The level of clustering in Pfam-A is largely a
result of the sort of alignments we amed at: full-domain aignments. If subfamilies are too
diverse, aligning them together will produce apoa aignment with poa discriminative
power. The dusters are thus on alevel which gives maximum cluster sizes withou disrupt-
ing the dignment. In many Pfam-A families the overall sequence similarity is discernible,
but not very strong. Clustering at a higher similarity level, like PIRALN [George et al.,
1994 where the average family only has 6.7 members (seetable 7.2) would give dignments
of very tight subfamilies where littl e evolutionary information is contained. This would d-
minish the alvantages of multiple dignment based search methods like HMMs by rendering
them less engitive to reagnising distant members. In Pfam, related subfamilies are gener-
ally merged into ore family to achieve & diverse dusters as possble withou compromising
alignment quality.

We have dhosen aflat structure of families for Pfam, rather than a hierarchy of clusters.
Maintaining a hierarchy of clealy related families would have the advantage of more fine-
grained clasdfication. The aurrent clustering of Pfam will often na permit functional infer-
ence of a match, since proteins with a @mmon structural origin bu diverged functions may
be bunded in ore family. However, there were anumber of reasons not to choase hierarchi-
cd clustering. Creding the hierarchy of clusters for ead family remains a hard and labour-
intense problem, for which noefficient and robust algorithm is known to us. Subgroups of
one superfamily would dften be very similar to ead aher, which would significantly in-
crease the cmplexity of maintaining the families in a nonoverlapping manner. Further-
more, using subgroups for similarity seaching will i ncrease the search time substantially but
preliminary experiments siggest that no significant incresse in sengitivity is gained by

seaching with subfamilies (data not shown).
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Table 7.2. Comparison d databases that contain protein family clusters and multiple dign-
ments. ‘[Murvai et al., 199§, [Gribskov et al, 1989, ][Seto et al., 1990Q.

Pfam-A Pfam-B ProDom PIRALN BLOCKS PRINTS
1.0 1.0 280 110 130 10.0
Alignment Manual, Clustal,
construction HMM Domainer Domainer Pileup Motif SOPMA
Source data- Swisgrot 33 Swisgrot 33 Swisgrot PIR 48 Swisgrot 32 OWL 26
base 28
Nr. clusters 175 11929 8031 2059 872 500
Nr. sequences 15,604 31,931 23,048 11,367 18,593 16,231
Nr. residues 3,560,959 8,957,230 6,632274  4,376550 1,858812 1,634,436
Average
alignment 297 180 154 354 32 18
width
Average
cluster size 127 5.7 33 6.5 19 37
Cross Swisgrot, Pro- Swisgrot Swisgrot PIR Swisgrot, Prosite,
referenced to site, SCOP, Prosite Blocks, Shase',
Medline Gribskov?,
Kanehisa®

It isinteresting to compare Pfam clusters to thase in Prosite. Although often very similar,
they sometimes differ substantially. The reason is that Prosite dusters are usualy con-
structed with a different goal in mind, i.e. describing very short motifs important for func-
tion. Prosite dusters therefore tend to include & many members as possble withou de-
stroying the pattern. The level of Prosite dustering thus depends on hav well a pattern can
be developed, which in turn depends on the nservation charaderistics throughou the fam-
ily. In some caes, several Prosite families are merged together into ore Pfam family. For
instance Pfam:lipocdin contains the members of both Prosite:PDOC00187 (lipocdin) and
PDOC00188 (Cytosolic fatty-add hinding proteins). In other cases Pfam extends Prosite
families with new members, e.g. Pfam:Cys_kna contains both Prosite:PDOC00234(Glyco-
protein hamones beta chain) and cystine knot domains from mainly growth fadors and ex-
tracdlular proteins (figure 7.5). Prosite families are often overlapping in the sense that one
family corresponds to most members, but additional subfamilies are needed to find all mem-

bers of divergent subfamilies. For example, there ae four Prosite patterns for protein kinases



(PDOC00100, PDOC00212,PDOC00213 and PDOC00629, bu only one Pfam HMM is
needed. On the other hand, families that share only a tiny motif of only a few residues, like
e.g. the P-loop[Saraste et al., 1990 (defined in Prosite PDOC00017as [AG]xxxxGK[ST]),
are not merged in Pfam if there is no inter-family similarity beyond the common motif. Of-
ten such patterns are in any case too short to dscriminate true matches from false, as is the
case for the P-loop. Pfam-A 1.0 contains ome 35 families that are asent from Prosite, pcs-
sibly because no dscriminative pattern could be found.Some of these families are airrently
being added to Prosite & ‘matrix’ entriesinstead of patterns [Bairoch et al., 1994.

The protein family databases Prints [Attwood and Bed, 1994 and Blocks [Henikoff and
Henikoff, 1994 are both based ona set of short ungapped blocks of aligned residues to de-
scribe eab family. Whil e the Blocks alignments were generated automaticaly for all Prosite
families, Prints was constructed using a more manual approad to define the family clusters,
similar to the Pfam member gathering step (seefigure 7.1). Hence Prints aso contains many
clusters that are ather absent from Prosite, or have adifferent clustering level. The ungap-
ped bock approach has the alvantage that robust and fast methods can be used bah to ds-
cover conserved regions within a family and to seach a database for more members [Neu-
wald and Green, 1994. By not allowing gaps, hard to align regions that could easily cause
misalignments are avoided. However, gaps also accur in conserved regions, and nd all ow-
ing them may cause ather misalignments or truncaion d the domain. The principal pradi-
cd difference from Pfam’'s approach is that PRINTS and BLOCKS contain short conserved
regions, whereas Pfam alignments represent complete domains, fadlit ating automated anno-
tation.

Prodam is a protein family database that was entirely generated by the Domainer program
[Sonnhammer and Kahn, 1994 purely from pairwise sequence homology data with no hu-
man knowledge to guide dustering or domain boundyry definition. It is useful as a cdalogue
of comprehensive low-quality alignments, bu the quality of the dignments and clusters is
generally too low to produceinformation-rich HMMs. Unfortunately, the quality isinversely

propational to the number of family members and very poar for short domain families. For
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instance, nealy all zinc finger domains were lost due to the aude ‘edge trimming’ of domain
boundxries.

There ae anumber of other databases that contain valuable aspeds of protein family clas-
sification bu were excluded from the cmparison in table 7.2 for a variety of reasons. For
instance, Shase [Murvai et al., 199 and the matrix entries in Prosite [Bairoch et al., 1994
do nd provide multiple dignments for the families. The structural clustering in FSSP[Holm
and Sander, 19964 could in theory be cmbined with the structure-sequence dignments in
HSSP[Schneider and Sander, 1994 to produce aprotein family clustering with multiple
alignments, bu since this is not explicitly provided, and since awide doice of different
clustering levels are suppied, we have not attempted to generate this. The Conserved Re-
gions database [Worley et al., 1993, is only indiredly accessble via the Beauty Blast server
on WWW and nd as a omplete digned family database. The MBCRR [Smith and Smith,
199Q and Taylor's [Taylor, 199Q databases were nat included since they were based on
relatively small datasets and have not been updited for many yeas.

The seal/full aignment strategy of Pfam was intended make updates easy; our aim is to
make anew Pfam release for eat new release of Swisgrot. To make Pfam an integral part
of the analysis processof genomic sequencing projed, toadls to store and dsplay matches to
Pfam families are aurrently being added to ACEDB [Durbin and Thierry-Mieg, 199. This
will alow inspedion d HMM matches aligned to Pfam seal alignments and significantly
improve large scde dassficaion d proteins.

Our results suggest that Pfam is valuable for genomic sequence analysis. The improve-
ment in protein anndation relative to a human expert annaator using an integrated analysis
workbench based on mirwise similarities is more than just an increase in percentage anno-
tated proteins. It avoids many problems inherent to single sequence database seaching, such
as over-reliance on the annaation d the highest-scoring match and misannaation caused by
multidomain proteins. Pfam thus sgnificantly reduces the task of annaators, and relps es-

tabli sh a @herent nomenclature.

141



7.6 Acknowledgements

Many thanks to Sean Eddy for his extensive help and advice during this projed, We thank
C. Chothia and M. Gerstein for providing the structural aignment of the globin family, E.
Birney for the RNA reaognition motif alignment and Peg Bork for helpful discussons onthe

Fibronedin type lll and cystine knot domains.

142



8. Tools for analysis of protein sequences and families

8.1 Summary

Presented in this chapter are anumber of graphica tods for protein sequence analysis us-
ing the Pfam colledion d Protein families. A multiple dignment viewer for X-windows,
Belvu, was developed, which can show the match of a query sequence digned to a Pfam
alignment. It is a general purpose tod with flexible mlouring schemes based on conserva-
tion a residue types, and hes smple aliting capabiliti es.

Belvu was integrated with the ACEDB via the PEPmap, which was devel oped as a generd
purpose protein sequence fedure display todl. It has built-in sequence and hydrophobcity
profile displays, and generic columns for any type of fedure that can be displayed as a seg-
ment. The PEPmap is linked to Blixem for analysis of BLAST matches, to Dotter for dot-
plot analysis, and to the Pfam World Wide Web server for family browsing.

The Pfam web server also suppats HMM seaching of a query against al Pfam families,

and danain analysis of all Swisgrot proteinsin Pfam.

8.2 Introduction

The ACEDB DNAmap forms the basis for the graphicd genomic sequence analysis work-
bench described in part 1. Although the DNAmap was primarily designed for DNA sequence
analysis, it can aso be used for protein analysis. For protein hanology analysis, this relies
on seaching protein databases with Blastx, which translates the DNA query. In many cases,
it would be better to use aprotein sequence map display instead of the DNAmap. For in-
stance, patterns or feaures in the protein sequence may be split by introns and therefore go
undeteded o be difficult to visualise. Also, a number of similarity seaching programs, par-
ticularly those based on dynamic programming, do nd work well on translated DNA inter-
rupted by introns.
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Furthermore, using the protein instead of the DNA sequenceis often more sensitive, since
the level of the badkground nase is lower. Blastp therefore finds more relevant simil arities
than Blastx. Also, most avail able profil e-based seach programs can orly be gplied to pro-
tein queries. To compare aprotein alignment to a DNA sequence requires mecdhanisms for
handling introns and frameshifts. Such programs are starting to appea [Birney et al., 1994,
but are not in mainstream use yet.

We are particularly interested in profil e-based methods, since they allow us to exploit the
Pfam colledion d protein damain families for genomic dasdgficaion (see tapter 7).
Seaching a query against a database of pre-built multiple dignments has the alvantages of
improved damain identificaion, which asgsts the aindation pocess and dten increased
sensiti vity.

To use Pfam efficiently for genomic analysis, tods for both pairwise and multiple dign-
ment based analysis were integrated into ACEDB. To this end, a new ACEDB display, the
PEPmap, was developed, which functions as an overview map and a launch pad for more
spedalised tods. These include Blixem, for analysis of Blast matches, Dotter, for dot-plot
anaysis, and Belvu, for inspedion d matches to multiple dignments.

Belvu was developed as a stand-alone multiple dignment viewer. Although a number of
such viewers and editors exist [Parry-Smith and Attwood, 1991 De Rijk and Wadhter, 1993
Smith et al., 1994, the particular demands for integration with ACEDB and dsplay capa-
biliti es motivated the development of a new program. Belvu is also an essential tod for the
construction and maintenance of Pfam. Many of its fedures, such as the smple edliting
commands, were incorporated in particular for the needs of Pfam.

For occasional Pfam users, a World Wide Web server has been set up. This allows the
user to browse documentation and alignments of all Pfam families. Similarity seaching
against the HMMs (hidden Markov models) of al Pfam-A familiesis provided, and the Pfam
domain organisation d al Swisgrot proteinsin Pfam can belooked up. Sincethe Pfam web
server ads as a central resource for the Pfam documentation, and provides links to ather
WWW resources, we have linked Pfam matches displayed in the PEPmap to the crre-

spondng family page on the Pfam web server. This way the workbench for analysing intrin-
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sic and extrinsic properties of amino add sequences is also integrated with external informa-

tion resources.

8.3 A graphical genomic sequence analysis workbench for Pfam

The comporents of the workbench, and hav they are cuped together is shown in figure 8.1.
Blixem and Dotter have been described in chapters 3 and 5,and will not be treaed in detail
here. Dotter can be used either to analyse the simil arity to a particular database match, o to
make aself-comparison dd-plot of the proteinin question.

When Belvu is cdled from the PEPmap, previously stored matches to Pfam are alded to
the Pfam alignment. (It isalso passbleto cdl Belvu from ACEDB with the dignment only.)
Similarly, the Pfam web server may also use Belvu to display ether the dignment only, or
with a matching query segment. The link from Belvu to Medline éstrads is only possble
for sequences from a database that is linked to Medline, such as Swisgrot, PIR or
EMBL/Genbank. If thisis the cae, a WWW browser can be cdled upwith the sequence

entry, which in turnislinked to Medline dstrads at http://www3.ncbi.nim.nih.gov/PubMed.
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Figure 8.1. Overview of the mmporents in the protein sequence analysis workbench.
Rounded corners sgnifies agraphicd analysistod. Underlined componrents were devel oped

as part of thiswork.
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BELVU

The genera layout of Belvu is shown in figure 8.2. On the left are four columns, containing
sequence name, start and end coordinates, and (optionally) score to an HMM or profile. By
clicking on a residue, its pasition in the sequence is displayed onthe blue status bar at the
top. The row that was clicked also becomes highlighted, and all rows of the same protein
become highlighted in the leftmost column. The number of rows (matches) of the picked
sequences is displayed onthe status bar. If a sequenceis highlighted, a aosshair can be adi-
vated by pressng the midde mouse button, and draggng to the left and the right can be used
to locate aposition in the sequence The dignment is centred at the last position d the
crosshair when the mouse button is lifted. Doube dicking on a sequence will cdl Efetch
(chapter 6) to retrieve its database andation, either as a read-only text window, or in a
WWW browser.

Belvu's main menu is adivated under X-windows by pressng the right mouse button
anywhere in the window, except on the buttons at the top, which are separate pull-down
menus. The main menu contains general items such as save, print and exit. The pull-down
menu ‘Edit’ contains commands for removing rows or columns, and hes functions for mak-
ing the dignment nonredundant to a user-settable level of identity, removing sequences be-
low a cetain score, and to remove outliers. The dignment can be sorted by name or by score

(if scores are used).



t| Picked: Column 37: PIP4_BOVINABES-7d4l R = 694 (2 matches)

t53x102y  —=m== 20 30 40 50 G0 To--

PSEE_BOVIN (6182|6592 92,4 | TAAEEMLSG. .. .. .KROGTFLIRESS, ,QRGC, , . YACSHVIG, .. .. . OTEHCVIY R
{ 111.8|HIRERLLTE vcietGAPDGSFLYRESET . FVED. . TTLSFWRNG. .. ... KVEHCRIH

N 103, 4 |AAEHMLH - R FROGAFLYRERHIMEEH Il AT S Roe GBI - 1 KHCRY
PIPS_HUMAN [532 |517 [120,0 | TSREKLLUEY cmetGGKOGTE “‘RESET, FEND, , , YTLSFWRSG, . .. . . RVAHCRIR !
PIPS_HUMAN [646 | 720 [105. 8 | GEREDMLME. . . . . 1PROGAF < RKREG.SD. 5. . . YAITFRARG. . . ... KWEHCRIN | Colouring by averaze
PTHE_HUMAN | a| 79 (115, 3 |LBRETLLKG. ... REVHGESFLAIPSRK , HOGD, . . FSLSHRVGD, . . . .. OWTHIRIC | BELOSUMEZ =core.

PTHE_HUMAN | &| 81 |127,0|VEREMLLLT. ... .RGVOGSFLARPSKS. NEGD., . . FTLSYRRNG, . .. .. AVTHIKIOD !

SEMS_CAEEL | 60 (136 |126,9 |NBREVLLKKF, , , . TROGHFLVRACES, SPGE. . . FEISYRFAD, . ., . . , SVAHFKYL | Similar residues according
SHC_HUMAN |3758|449| 94,4 |REAEALLAL, .. ... .. MGDFLYRESTT.TPGO. . . YWLTGLOSG. . . ... OPKH, LLL | to BLOSUMEZ are coloured
SRCI_DROME [162 |244 (133, 7 |KERDKLLLAE, , ,  ENPRGTFLVRPSEH, NENG, . . YBLSUKOWED2Re , Y HVEHYRI K | 2= the most conserved one,
SRC1_®EMLA |146 | 228 [137,6 |RERERLLLSL , . , . ENPRETFLVRESET, TKGA, . . YCLSYSOYDARRE , LMVKHYKIR !
SRCZ_DROME (214 | 292 (105, 0 |ORBESELKD. . . . . GDOKEGCFWWRKSS, L TEBL, . . YTLSUHTKVP, @, . SHYEHYHIK | He: 3,0 [ Cven
SRK1_SPOLA [122 (199 (137, 2 |VEREKMLNQS, . , . FNOVESFLIROSET . TRGD. . . FELSVKDAD, . ., . . , RVRHYRMR [ Poas

SRK4_SPOLA (122199 (141, 2 |VBREKALMMP, , , , FNNLGSFLIRDSHT, TEGD, . . FSLSYROID, . . . . . RVRHYRIK Mid: 1,65 [] LIGHTELUE
STAZ_HUMAN 537 [516 | 61,9 |0YWTSELLN, .. ... EPOGTFLLRFSHS,ETGG, . . IFIAHVIRGOAGS, PRIENTAPF Low: 0,5 [ GRAY
STA4_MOUSE 570|646 | 58,8 |KEKERLLLK. ... . DKMPETFLLRFSES. HLGG. . . IFFTWVOOS, .. ... ENGEVRFH P

STAS_HUMAN |589|670| 55,9 |QEAHDLLIN, . ... .KPOGTFLLRFSOS,EIGG, .. ITIAWKFDSPe, , . , RNLWHLKP
STK_HYDAT |126|203 [134.7 |AEREKRLMVR. . . . GLPSETFLIRKAET. AVGH. . .FSLSWRDGD. .. ... SVEHYRYR
SYK_HUMAN | 15| 92 |102,0|EEREDYLVOG, , . . GMSOELYLLRASRN, YLGG. . . FALSWAHGR. . .. .. KAHHYTIE
SYK_HUMAN |168|244 (109, 4 |EESEQTVLIG, . . . SKTHGKFLIRARM, . NMGS, . . YALCLLHEG, . . . . , KVLHYRID
TEC_HUMAN |247 [330(101.9 |SKREQLLRS. . ... EDKEGGFMVRDSS. . OFGL. . . YTWSLYTKF GzEgsSGFRHYHIK
TRK_HUMAN |150 [231 |122. 6 [NOREHELRD, . . . . ESKEGAFIVRDSK . ,HLGS, . . rTISMFHGARTSterAIRHYEIK
VAV_HUMAN 571 |746| 78,1 |AGRESILAN, .. ...RSDGTFLVRERVK,DARE, . ,FAISIKYNV, . . . ., EVKHTWKT
VAY_MOUSE |671|745| 86.4 |AGREGILTN. ... ..RSDETYLYRERYK.DTAE. . . FAISIKYNV. .. ... EVRHIKIM
YES_XIPHE |153 (241 |1dé.1 [KBTERLLLLF, .., GNERGTFLIRESET.TKGA. .. YELSLROWDE tke , DNCKHYRIR
YKFL_CAEEL| 20(101| 94,32 |EDVFQLLDN, ... ..., HGDYMVRLSDOP, KEGERrsY ILSWMF NMKLDenSSYRHFVIN
ZA7O_HUMAN | 10| 87 | 95,2 |AEREEHLKLA, ., . GMADGLFLLRACLR, SLGG, , , ¥WLSLVHDV, , , . . ,RFHHFPIE

| I [

Ficked: Column 37: PIP4_BOVIN/G6G68-741 R = 694 (2 matches}

————— 20 30 40 50 0 F0--

TOREEMESG. ... .. KRDGBTFLIRESS. . AREC. . . BACSWVVDG. . .. .. OTREHCYIY
HIRERELTEYcietGAPTIRSFLYMRESET . FVED, . . FTLSFWRNG, .. . ., KWOHCRIH
AQREHHLMR IR ~rOGAFLVRE R HIEEH Sl A1 SFRoc I TRHCRY O
PTPE_HUMAN [532 |617 [120, 0 | TSRAEKELREY cmet GGKDGTELMRESET , FEND. , , MTLSFLRSG, . , . . . RVOHCRIR

PIPE_HUMAN | 646|720 |105. & | GEREDMLMR. . . . . IPROGAFLIRKREG. S0, 5. . . ¥ATTFRARG K¥RHCRIN Colouring by #identity.
PTME_HUMAN| 4| 79|115.3 |LDRETELKG. . . . .RGYHESFLARPSRK , NOBD. . . FSLSMRVGD. . . . . . OWTHIRIQ

PTME_HUMAN| 5| B1|127.0|VERENLLLT. .. .. RGVDBSFLARPSKS . NPGD. . . FTLEMRRNG AYTHIKIO

SEMS_CAEEL | 60136 |126,9 |NDREVLLKKF, , .. TVRDGHFLMRACES . SPGE. . . FSISMRFQD, . , . . . SVOHFKVL Max: 0,8 [ CvAN
SHC_HUMAN |378|449| 94,4 |[REAEALLAL. ... ....NGDFLWYRESTT,TPGY. . . FVLTGLASE, ., ... OPRH, LLL Mid: 0.6 [] LIGHTELUE
SRC1_OROME |162 |244 |133. 7 |KEADKELLAE. . . . ENPRGTFL¥RPSEH. NENG. . . ¥SLSMKOWEDz Re . YHYKHYRIK .

SRC1_XEMLA |14 (228|137, 6 |RERERLLLSL, ., ,ENPRGTFLMRESET , TKGA., . . ¥CLSMSDYDANRg , LNVKHYKIR Lows 0.4 [ GRAY
SRC2_DROME | 214 |292 | 105, 0 [URAESLLKA, . . . . GOKEGCRVMRKSS, , TKGL . . . MTLELHTKVP, O, , SHYKHYHIK

SRK1_SPOLA|122 139|137, 2 |VEREKHLNGS, , , . FNOVGSFLIRDSET . TRGD. . . FSLSWKDAL. . . . . . RYRHYRVR |

SRK4_SPOLA (122 (199|141, 3 |WVDREKQLMHMP. . LFHHLGSFLIRDSOT. TRGD. . .FSLSMRDID. .. ... RVRHERIK
STAZ_HUMAN (537 (616 | 61,9 |0vWTSELLN, ., . ., EFOGTFLLRFSDS,ETGG. . . ITTAHYIRGHAGS  PUTENTOPF
STR4_MOUSE (570 (646 | 58,8 |KEKERLLLK, .., ,OKMPRTFLLRFSES . HLGG, . , ITFTWVDAS, ., ., . .ENGEVRFH
STAS_HUMAM (589|670 [ 55,9 (QUAHDELIM, .., ., KPDGTFLLRFSOS,EIGG, .. ITIAWKFDSPe, .., RHLWNLKP
STK_HYDAT (126|203 |134.7 |AEREKRLMYE. . . .GLPSGTFLIRKAET . AYGEN. . . FSLEMRDGD. . ... . SVEHYRYVR
SYK_HUMAN 15( 92102, 0 |EEREDYLVAG, | . GMSOGLYLLRUSEN, YLGG. . . FALSMAHGE, | LKAHHYTIE
SYK_HUMAM (168 (2441109, 4 |[EESEQIVLIG, ., SKTHNGKFLIRARD, NMGS, . WALCLLHEG, ... .. K¥LHYRID
TEC_HUMAM 247 [330|101,9|SKAEQELRS, | . . .EDKEGGFMMRDSS, | QPGL. . , ¥ TVELYTKFGzEgsSGFRHYHIK
THEK_HUMAN 150 (231|122, 6 |HOREHELRA, | . . .ESKEGAFIMRDSE, HLGS. ., KTISUFMGARSteARTRHWLIK
WAV_HUMAN |671 |7d6 | 78,1 [AGAESILAN, LRSOGTELWRARYK, DAARE . , , FATSTKYNY, LEVEHTWKT
WAV_MOUSE |671|7d45( 86,4 [AGAEGILTH, LRSDGETYLMREORVEK ,DTAE, , ,FRISIKYHNY, | L EVEHIKIM
YES_®XIPHE |159|241 (146,11 ([KDTERLLLLP, ., . GHERGTFLIRESET,TKGA, ., FSLSLRDWDELK s, DNCEHYKIR

YRKFL_CAEEL [ 20(101| 94,3 |EDVFULLDN, ... .. .. NGDVYMRLSDP , KEGEpr =i ILSUMFNHK 1 DenSSYEHFYIN
ZATO_HUMAN [ 10| 87| 95.2 [AEREEHLEKLA. . . .GMADGLFLLREACLRE. SLGG. . .EvLSLVHDV. .. ... RFHHFPIE i

| I [ =

Figure 8.2a-b. The Belvu multiple dignment viewer, showing a the dignment of SH2 do-
mains. The emlumns are, from the left: sequence name, start of segment, end d segment and
score. Clicking on aresidue shows the sequence segment and the position d the picked resi-
due in the blue status bar at thetop. A. Residue @louring by conservation acerding to av-
erage BLOSUM®G62 scores. The mlours and cutoffs of the threelevels are controlled in the
‘Colour Codes window. B. Residue a@louring by conservation acording to pue percent
identity. Colouring by average BLOSUM®62 score enhances columns with similar residues.
An example of thisis column 50,which mainly contains phenylalanines and tyrosines.
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Picked: Column 37: PIPA_BOVIN/G6E-741 R = 694 (2 matches)
(63x102) === 20 30 40 50 0 70--
= = A [ vELLOW L [] vELLOW
PSSB_BOVIN 615 |692| 98.4 |TOAEEMLSG. . ... .RROGTFLIRESS. .ORGE. .. YADSYVVDG. . ... . OTRHEVIY
HIAERLLTEYE.EEEAPDRSFLVRESET . FVED. . . YTLSFLRNG. I R [ GREEN K [ GREEN
AQAEHMLM PROGAFLY N.EPNS_YRISF REG o M [] LIGHTRED M [ YELLOW
PIPE_HUMP«N 532|617 [120, 0 | TSREKLLOE Y em=tGEKOGTF LVRESET , FPND, , , YTLSFWRSG, . . .. . I
PIPS_HUMAN 646 | 720 [105. 8 | GEREDMLMR. . . . . IPROGAFLT 8.5 .. vRITFRARG. . ... N D [E] LIGHTRED F ] vELLOW
PTHE_HUMAM| 4| 79(115.3|LDAETLLEG. . ...RGYHGSFLA .MEGD. . .FSLSVRVGD. .....QWTHIRIG ¢ [ HIDELUE P O cran
PTNE_HUMAN| 6| &L|127.0|VEGENLLLT, ... REVDGSFLARPSKS. NRGD. . . FTLSVRRNG. . ... . BVTHIKID
SEME_CAEEL | 650|136 [126. 9 |NDREVLLEKE. . . . TVRDGHFLVROEES . SPGE, . . FSISVRFAD. . . . . . SVl 8 [ LIGHTRED 5 [ LIGHTRED
SHC_HUMAN |372|449| 94,4 |REREALLAL. . ... .. NGOFLYRESTT,TPGQ, .., Y¥LTGLOSG. . ... .0 LLL E [] LIGHTRED T [ LIGHTRED
SRCI_DROME |162|244 (133, 7 |KERDKLLLAE, . . . ENPRGTFLVRPSEH . NPNG. . . YSLSVEDWEDZRS . v HV & [ cvan W [ YELLOW
SRC1_XENLA |146|226 (1376 |RERERLLLSL . . . . ENPRGTFLVRESET.TKGA. . . YELSvSOYDAnRE . LHV
SRCZ_DROME | 214|292 (105, 0 |QRRESLLEQ, . . . . GDKEGCFYVVRKSS, . TKGL, . . YTLSLATEVE. Q. .S W [ GREEN v [ YELLOW
SRK1_SPOLA (122|199 [137. 2 |VEREKMLNAS. . . . FNOVGSFLIRDSET . TPGD, . . FSLSVKDAD. . . ... L
SRK4_SPOLA (122|199 [141. 3 |VDREKALMMP. . . . FNNLGSFLIRDSDT. TRGD. . . FSLSVROID. . . ... T[] vELLow v [ veLLoW
STAZ_HUMAN 537 |616 | &1.9 |HvVISLLLH, ... ..EPOGTFLLRFSDS. EIGE. .. ITIAHYIRGHHGS, PDIENIE!PF
STA4_MOUSE |570 |646 | 55.5 |KEEKERLLLE. . .. . DKMPGTFLLRFSES. HLGG. .. ITFTWVORS. . . .. . ENGEVRF : R
STAS_HUMAN [589 [670| 55,3 |QUAHDLLIN, ... .KPDGTFLLRFSDS. ETGE. ., ITIAN FDSPE.H.lHLwNL P it
STK_HYDAT |126 (203|134, 7 |AEAERRLMVE. . . . BLPSGTFLT RET AVEN, . . FSLSYRDGD, . . . . GREEN : HKR
SYK_HUMAN | 15| 92 |102.0 |EEREDYLYEG. . . . GHSOGLYLLROSRN. YLGE. . . FALSYA Glu.“‘la TIE SENNEN  : AFILMWLY
SYK_HUMAN |168|244 (109, 4 |EESEQIVLIG, . ., SKTHGRFLI n . HNGS. .. vALELLKEG. . , .. . KVL IID :
TEC_HUMAN |247 330|101, 9 |SKAEALLRS. . . . . EDKEGGFMVRDSS , | APGL , . . YTWSLYTRF GeEe=5EFRHYHT CYAN : GP
TRK_HUMAN [150|231 (122, 6 NQAEHLLRA. . . . . ESKEGAFTY] ﬁ.ILGS...YTISVFMGQiSteHRI 01 SRS : DENGST
WAV_HUMAN |671 |746| 78,1 |ABAESILAN, .. ... RSOGTFLVRORV. DARE. .. FRISIKYNY. . .. . , EVKHTVEL :
WAV MOUSE |671|745| 86.4 |AGAEGILTH. . . ... RSOGTYLYRARVE. OTAE. .. FAISTKYHYV. . . . . . EVKHIKIM MIDELUE : C
YES_XIPHE |159|241 146, L |KOTERLLLLF, .. GNERGTFLIRESET.TKEA, . . vSLSLROWDELKS. DNEKHYKIR
YKF1_CAEEL | 20101 | 94,3 |EDVFALLDN, . . ... . , NEDYVVREL SOF , KPGERRSYTL SMFNNE] nSSVRHFVIH ||
ZR7O_HUMAN | 10| 87| 95.2 |AEREERLELA. . . . GMADGLFLLROELR. SLGG. .. YWLSLVHEDY. . . .. . RFHHFRIE
I [

Ficksd: Column 37 PIP4_BOVIM-BE8-7dl R = 634 {2 matches}
(s3x102) 20 20 40 50 0 70—
A [ YELLOW L[] vELLOW
TOAEEMLSG, .. . ., KROGTFLIRESS, . UREC. . . YACSVWVDR, .. .. .DTRACVIY
HIAERLLTEY cictGAPDGSFLVRESET . FVE. . . YTLSFWRNG. . . . . . KVIHCRIH R [ GREEN o [ GREEM
ADAEHMLME PROGAF LY EKRHIE EHHlY AT SFRAED C N [T] LIGHTRED M [ YELLOW
_ . 0|TSAERLLAEY cme tEEKDGTF LVRESET ., FRND, . , YTLOFWRSE, , . . . . RVOHCRT
PIPE_HUMAN |646 (720|108, 8| GEREDMLMR, , , , . IPRDGAFLIRKREG. 5D, 5. , . YATTFRARE. . . . . . KVEHCRIN D[] LIGHTRED F ] vELLOW
PTHE_HOMAN [ 4| 73[115, 3 |LOAETLLKE. . | REVHESFLARPSRK . NOED. .  FSUSVRVED. . . ., QvTHIRID C [ MIDBLUE p [ CvAn
PTNB_HUMAN| &| 1 [127.0|VEREMLLLT. ... .RGYOGSFLARPSKS. NPGD. . . FTLSVRRNG. .. . .. AvTHIKIQ
SEMS_CAEEL | &0 (136 |126,9 |NDREVLLKKP. . . . TvRDGHFLVEQCES . SPGE. . . FSISVRFOD . . . . . . SYOHFKVL u [ LIGHTRED S [ LIGHTRED
SHC_HUMAM (375|449 | 94,4 |REAEALLGL. ... ... .NGDFLYRESTT.TPGA. . . YVLTGLASE. ... .. GPKH. LLL E [] LIGHTRED T [] LIGHTRED
SRCL_DROME 162|244 (133, 7 [KEADKLLLAE . . . . ENPRETFLYRFSEH . HEHNG. . . YSLSVKDWED gRe , YHVEHVRIK & O cvan W [ vELLOW
SRCL_XENLA (146|228 (137, 6 |REAERLLLSL . | | | ENPRETFLYRESET . TKGA. | , YCLSVGOYTAnRe , LNVEHVKTR
SRCZ_DROME 214|292 (105, 0 |QRAESLLKA, . . . . BDKEGCFWYRKSS, . TKEL. . . YTLSLHTKYFP, Q. , SHY HIE H [ GREEM v [ YELLOW
SRK1_GPOLA (122|193 (137, 2 [VEREKMUNOS . | | | FROVESFLIRDSET . TPG. . . FSLSVKOND, | . , . . RVR Ll
SRK4_SPOLA 122 (139|141 .3 |VDAEKQLMMP, . . . FNNLGSFLIRDSDT. TPED. . . FSLSVRDIN, . . . . . RVRHYRIK T [ verLow ¥ [ veLLow
STAZ_HUMAN [537 |616| 61,3 |0vWTSLLLN, ..., EPOGIFLLRFSDS. EIGG. ., ITIAHVIRGUAGS , PUTENIOPF
STA4_MOUSE (570|646 | 58,3 |KEKERLLLK. .. . DKMPGTFLLRFSES. HLGG. . . ITFTWVDAS. .. . . . ENGEVRFH c R
STAS_HUMAN |589 | 670 | 55,9 |00AHOLLIN, ... KPDGTFLLEFSDS.EIGG, . . ITIAWKFOSPe, . . . RHLWHLKP roups:
STK_HYDAT |126|203|134,7 |AEAEKRLMYR, , , . BLPSETFLIRKAET, AVGN. . .FSLSVROGD. ., . . .SVl GREEN t HKR
SYK_HUMAM | 15| 92 (102, 0 |EEAEDYLYOG. . . GMSOGLYLLRASRN . YLEG. .  FALSVAHGR. .. . . . KAHHYTIE CENION  « AFTLMVY
SYK_HUMAN (168|244 (103, 4 [EESEQTVLTG, | . . SKTNGKFLTRARD, . MNGS. . . YALCLLHER, ., . . , KVLHYRID :
TEC_HUMAN |247 |320|101.9|SKAEQLLRS. . . . . EDKEGGFMYRDSS. . OPGL . . . YTWSLYTKF GeEz=SGFRHYHIK CYAN : 6P
TRK_HUMAN |150 231|122, 6 |NQAEHLLRA. . . . . ESKEGAFIVRDSR, . HLGS. . . YTISVFMEARNSt=AAL RHYUIK ITGHTRED : TENGST
VAY_HUMAN |671 |746| 78.1 |AGAESILAN. . . .. .RSOGTFLYRORVK.DAAE. . . FATSIKYNY, . ... .EVKHTVKI :
VAV_MOUSE |71 |745| B6.d|AGAEGILTH, ... .,RSDETYLVRORVK.DTAE, . . FAISIKYNY, . ... . EVKHIEIM MIDEDUE - C
YES_XIPHE |159|241|146.1 |KOTERLLLLP. .. GNERGTFLIRESET.TKGA. .. YSLSLROLDECK: . INCKHYKIR
YKFI_CAEEL | 20(101| 94,3 |EDVFALLON, ... ..., NGOVVWYRLSDF, KPGERr =Y ILSYHF NNKLDanSSYRHFVIN | |
ZATO_HUMAN | 10| 87| 95,2 |AEAEEHLKLA. | | BMADBLFLLRACLR . SLEG. . . YWLSLWHDY, .. . . , RFHHFPIE
I I

Figure 8.2c-d. C. Colouring by residue type. The mlour of ead residue is controlled from
the ‘Colour Codes window, which also shows the arrently defined groups. D. Colouring
by residue type, where only residues more @nserved than a user-settable identity cutoff are
displayed (set to 20% here).



The dignment can be mloured acording to a number of different colour schemes, as
shown in figure 8.2. There ae two main types of colouring: by conservation a by amino
add residue type. Perhaps the simplest way of determining the cnservationis by cdculating
the fradion d rows that contain ead residue. There is an option to colour similar residues
acording to BLOSUMG62 [Henikoff and Henikoff, 1993, where the wlour of the highest
conservation daminates. This does nat always give the wanted result. For instance columns
that have four types of hydrophobc residues will be no more than 23% conserved, which
normally does not give ay colour. To cgpture clumns with a spread of similar residues,
Belvu cdculates the average pairwise score of al rows [Sander and Schneider, 199]. This
method nomally produces intuitive @nservation values, and is the default colouring mode.
Three onservation levels are suppated and the @lours and thresholds can be dhanged inter-
adively in the ‘Colour Codes tod. The threshdds for colouring by average score depends
on the score matrix used. For BLOSUMG62, average score aitoff levels of 0.5, 1.5and 3.0
are usually suitable.

If the dignment is incorred, or other fedgures than conservation are of interest, it is also
passble to colour residues by amino add type. Thisis particularly useful for analysing fixed
sequence patterns or the overal pattern of hydrophobc regions. Belvu has two bult-in col-
our schemes, ore of which was suggested elsewhere [Gibson et al., 1994. It is possble to
conceve an arbitrary colour scheme, saveit to file, and later load it into a new Belvu sesson.
All residue mlours can be seleded interadively in the ‘Colour Codes tod. Thereisaso a
fadlity to orly colour residues that are more mnserved than a user-settable aitoff.

For printing of the entire dignment for puldicaions, Belvu can make awrapped ali gnment
in a separate window, which only contains the dignment and a titlte. The aurrent colour
scheme is used, and locd sequence ®ordinates are drawn to the left and the right of eah
line. The user can control the width of the lines and give atitle. All alignmentsin chapters 7
and 9were printed this way.

Belvu as a standalone program that can read multiple dignments in the MSF, HMM ER
and Pfam formats. It is available by anonymous FTP at ftp.sanger.acuk in /publesr/belvu,

and online documentation is avail able & http://www.sanger.ac uk/~esr/Belvu.html. For im-
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proved efficiency in large scde sequence analysis projeds, Belvu has been couded to the
PEPmap dsplay in ACEDB.

The ACEDB PEPmap

ACEDB contains graphicd displays for genetic and plysicd maps, and for DNA sequence
fedures. The latter in particular contains alarge number of configurable wlumns, which can
display most types of data & generic segments in a wlumn. Segments from eat anaysis
method are displayed in a separate @lumn, and feaures such as colour and dawing method
to reflea the score (by width or off set) are configurable.

The PEPmap works essentially as the ACEDB DNAmap. It embodes the same generic
column phlosophy, bu also contains some protein-spedfic columns as well, such as hydro-
pholicity plots. The main reason to have aseparate PEPmap, apart from moduarity consid-
erations, is that many fedures in the amino add sequence ae difficult to dsplay when they
are split by introns. In this chapter, we show how two types of protein similarity data can be
stored in ACEDB and dsplayed in the PEPmap: Pairwise matches form BLAST, and HMM
matches to Pfam families.

Figure 8.3a shows how the PEPmap and the integrated analysis todls can be used to ana-
lyse anewly determined protein sequence The blue boxes (Blastp matches) and the green
boxes (Pfam HMM matches) have shortcut menus. By pressng the right mouse button ore
of these boxes, amenu gives a choice of Blixem, Dotter or Belvu (Pfam HMM matches only)
anaysis. Pfam matches are dso passed onto Blixem and Dotter, where they are drawn as
green baxes. Blixem and Dotter are normally linked in with the ACEDB exeautable, while
Belvu is pawned as a separate process It isimmaterial whether aviewing tod is external or
internal, as long as it does nat need to communicae with the ACEDB database, for which it
has to be internal. Blixem can thus be used to retrieve asequence aanaation with the inter-
nal ACEDB objed display, while Belvu can orly retrieve it from an external database using
Efetch. Using the analysis tods as external programs makes the system more moduar, and

more eaily maintainable, hovever. Datais passed from ACEDB to external programs via
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UNIX pipes. Blixem can also be cdled as an externa program, which has the alvantage of
all owing multi ple smultaneous sssons.

For proteins with matches to Pfam families, annaation and 3D structures can be accesd
via the Pfam WWW server (seebelow). Thisis aso an item on the shortcut menu onthe
(green) Pfam HMM match baxes in the PEPmap. Ead family has a page in the web server,
which islinked to ather databases such as Prosite and Medline for documentation, and to the
SCOP database [Murzin et al., 1995 for structura information. The SCOP WWW server
provides a hierarchicd clasgficaion d the protein fold, and 3dimensional views of the
structure using either static images from the Expasy WWW server [Appel et al., 1994 or
RasMol [Sayle et al., 1995. An example of thisis siownin figure 8.3b.

The PEPmap uses a set of generic software modues in ACEDB for drawing and control-
ling maps. The gpeaance of the wlumnsis controlled in two ways. An oljed of the dass
‘Method that is asociated with eat segment, determines in which column it is drawn, and
some general feaures of the segments, such as the mlour and the linking to analysis todls.
Eadh column can aso be mnfigured to some extent by clicking on the green haizontal bar at
the bottom of the wlumn, which brings up a configuration window (seefor example the hy-
drophobcity plot configuration window in figure 8.4). The genera layout of the PEPmap,
i.e. which columns are turned onand their relative order, is gored in a‘view’. The view is
controlled in the * Column Control’ window (seefigure 8.4). A particular view can be stored

and kere-used at alater stage.
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Figure 8.3a. The main graphicd tods of the analysis workbench are linked together. This

Picked: Column 2: ANDR_HUMAN/706-870
(33188} 10 20 30
7UPL_DROME | 343|503 | 0,0 |ELARRLLFSAVEWAKNIPFEPELCYT D@V ALLRLYLISE
AO4E_BOWIN|267 [430| 0.0 |RHMADATFISIVOWARRCMYFKELEY ADGMTLLENCWSE
ANDR_HUMAN | 706 |870 | 0.0 | ELGERALYHWKWAKALPGERHLHYDOEMAY I G SliMG

186|361 |59, 5 [YWRAKT LTWLVEWAKSF EVESHLT PEDAKRLFTHTAFS
CHR3_CAEEL |357 [549| 0,0 |RELNPLIOATIIEFAKSIDGFMNLPUETAIOLLKGSYFE
CHRO_CAEEL | 304 |464 | 0,0 |HEIDVDIKEVYNFWKEIPKENF INGNOKAVLLRKNAFF
DOHRZ_DROME (289 (451 | 0.0 |EKLTUMIONIIEFAKLIPGFMRLSQDDEILLLKT GSFE
E7BA_OROME 670|528 | 0,0 |ARVTPEWIRTVEFAKRYPEECOFTANOAL TLTKL GEFE |
EART_HUMAN | 441|593 | 0,0 |MSFTPAWREVYEFAKHIPEEROLSOHOAWTLLKAGTFE
EARZ_HUMAN | 204 |363 | 0,0 |ELAARLLFSTWEWARHE , FEPELPYAD@Y ALLRHSWSE
ECR_DROME |465|625| 0.0 |EITILTWALIVEFRKGLPAFTKIPUEDQITLLKACSSE
ERBA_AVIER |204 |362| 0.0 |KIITPALTRYWOFAKHLPHESELPCEDATILLKGECOME
ERR1_HUMAN | 327 |490| 0,0 |DLFDRETVWTISWAKSTPEESSLSL SOAMSVL S IIHE
ERRZ_HUMAN | 245|403 | 0,0 |DLADRELYFLISWAKHIPEFSHLTLGOEMSLLOSALME
ESTR_CHICK|342|512| 0,0 |HLADRELYHMINWAKRYPEFYOLT LHOGWHLLECALILE
FTF1_DROME |23€ 298| 0.0 |KYLDGHLFSOVOWARHTVFFKDLKYDOGMKLLEHSWSD

[

2,0

11

zf-C4

hormone_rec

example shows how the C. elegans protein C02B4.2 can be analysed in the ACEDB PEPmap
(top right), in Blixem and Dotter for pairwise protein comparison, and in Belvu for family

comparison. The PEPmap shows the sequence, hydrophobcity plot, Blastp matches (blue
boxes) and Pfam matches (green baxes). This protein matches the Pfam family of C4 type

zinc fingers in the N-terminal part, and the family of ligand kinding domains of hormone re-
ceptors in the C-terminal part.
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File Edit View Go Bookmarks Options Directory Window

mcmhn:Ihttp://www.sanqer.ac.uk/Pfamfbin/family?fam=szc4

i
Identification: zf-Cd
Accession number: PFO0105
Definition: Zince finger, Cd type (two domains)
Author: Sonnhammer ELL

alignment method of seed: Clustalw
Alignment method of all: hmma -gR

Source of seed members: Prosite

Gathering method: Bic raw 25 hmmfs 20

Database Reference: PROSITE; FPDOCOO03] ;

Database Referencse: SCOP; lhra; fa;

Comment : In nearly all cases, this is the DNa binding domain of a nuclear hormone receptor.
Comment : The aligment contains two Zine finger deomains that are too dissimilar

Comment : to be aligned with each other.

File  Display  Colours  Options  Export

|\fisws.‘.\ \L\lhule| |ZUUm .U"I‘ \Zuum Dut|

_ E —2.§.0
5100 {i zf-Cd
é 3"
ol
?200 % [
Ja00 <
g §

ELd Scale  |Hydrophobi | Blal PRam—hmm LS +PF am—hmm |

Figure 8.3b. The Pfam WWW server can ad as a link between the PEPmap and protein
structures, since the Pfam web pages are linked to the SCOP server. SCOP contains gruc-
tural classficationand provides 3D visuali sation using RasMol.
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Figure 8.4. Examplesof column configuration tods of the ACEDB PEPmap.
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Storing matchesto proteins and protein familiesin ACEDB

Proteins are objeds of the dass‘Protein’ in ACEDB, and can store homology information to
other proteins and protein families. Blast matches are stored under the ‘Pep_hamol’ tag,
which contains the score and extent of a match between two Protein oljeds (seefigure 8.53).
Matches to multiple dignments are stored under the ‘Align_hamol’ tag. Sincethese contain
gaps, the matching segments between the gaps also neal to be stored in addition to the start
and end coordinates (seefigure 8.5D).

The adual sequence of aproteinis gored in a separate dass’ Peptide’, which is linked to
the Protein oljeds. Correspondng Protein and Peptide objeds must have the same name.
The matching proteins do nd require an internaly stored peptide sequence for display in
Blixem: if it is not present, Blixem will try to Efetch it. Multiple dignments are stored as
‘Alignment’ objedsin ACEDB, and are passed onto Belvu in the Pfam format.

Matching query segments are gopended to Belvu's inpu stream, and any insertions in the
alignment are made by Belvu. We normally store the match coordinates relative to the Pfam
sed alignment, which have to be cadculated from the HMM match coordinates and the map-
ping between the HMM and the dignment it was derived from. Alternatively, ore could
store match coordinates relative to the HMM consensus in ACEDB. Althouwgh thiswould be
more @mmpad, it would require storing the HMM -alignment mapping in ACEDB, and the
alignment coordinates would have to be reconstructed every time Belvu was cdl ed.

Two UNIX scripts, hmmPfam and belvuMatch, were developed to automate the searching
of queries against Pfam and conwverting the output to .aceformat for inpu into ACEDB (see
figure 8.5. HmmPfam uses the HMM seaching programs in the HMM ER padage [Eddy,
1995]. ACEDB is avail able by anonymous FTP at ftp.sanger.acuk in /pubacealb. A data-
base mntaining Pfam and HMM matches to C. elegans proteinsis also avail able (seesedion
Pfamacebelow), which contains all the mentioned classmodels. The scripts hmmPfam and

belvuMatch are dso included.
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A
Protein : C02B4. 2
Pep_honol YKC8 CAEEL Bl astP 286.0 27 105 14 92
Pep_honol YKC8 CAEEL Bl astP 119.0 182 246 193 257
Pep_honol YKC8 CAEEL Bl astP 73.0 265 333 268 336
Pep_honol HNF4_HUMAN Bl astP 234.0 30 118 50 138
Pep_honol HNF4_HUMAN Bl astP 58.0 192 227 186 221
Pep_honol HNF4_HUMAN Bl astP 86.0 274 314 257 297
Pep_honol RRXA MOUSE Bl astP 244.0 30 111 139 220
Pep_honmol RRXA MOUSE Bl astP 56.0 182 213 271 302
Pep_honmol RRXA MOUSE Bl astP 61.0 276 311 354 389
Pep_honol AD4B BOVIN Bl astP 203.0 29 107 11 89
Pep_honol THAB XENLA Bl astP 105.0 29 62 59 92
Pep_honol THAB XENLA Bl astP 112.0 64 96 96 128

Protein C02B4. 2

Cor respondi ng_DNA C02B4. 2

DB searched Pfam 1.0

Align_homol hormone_rec Pfamhmi s 59.48 186 361 1 178 Segs 1 55\
1 5556 66 57 67 67 77 70 80 88 120 81 113 121 127 122 128 130 \

154 131 155 157 176 159 178

Protein C02B4. 2

Cor respondi ng_DNA C02B4. 2

DB searched Pfam 1.0

Align_homol zf-C4 Pfam hmfs 130.76 29 104 1 80 Segs 1 36 1 36 37 \
44 39 46 45 76 49 80

Figure 8.5. Examples of Blastp (A) and Pfam (B) matchesin .aceformat, ready to beread in
to ACEDB for display in the PEPmap. The tags (fields) of the Pep_hamol and Align_hamol
lines are: <matching objed> <method> <score> <guery start> <query end> <subjed start>
<subjed end>. Since Align_hamols are gapped alignments, this is followed by alist of all
the matching segments in the form <query start> <query end> <subjed start> <subjed end>.



8.4 Public access to Pfam

World Wide Web

There ae two Pfam web servers: at http://www.sanger.acuk/Pfam (Cambridge, UK), and
http://genome.wustl.edw/Pfam (St. Louis). All figures here ae taken from the Cambridge
server. Figure 8.6 shows the home page and an example of a family page. Clicking on
‘Browse families gives alist of the names and short descriptions of all families. Clicking on
afamily gives a page like in figure 8.6b,from which the full and seed alignments, and aher
information can be accesed. The dignments can either be displayed as text in the browser,
or be viewed in Belvu, which can be run either localy or at the Sanger Centre. To install
Belvu for locd use from the web server, a speda MIME type ‘x-belvu’ has to be defined.
(Instructions are provided onthe web page.)

Figure 8.7.ill ustrates how the server can be used for HMM seaching of a query sequence
versus the Pfam-A HMMs. At present, this fadlity is available on the Cambridge server
only. Setting the score aitoff and the seach methodto default will generaly only find clea
simil arities, that often could be foundwith ather methods. For more sensitive seaching, the
cutoff shoud be lowered to 15 o 10 lits or even less and bdh hmmls and rmmfs shoud be
tried. Note that the example in figure 8.7 contains two ‘half PH domains, which are only
found when the score aitoff is lowered below 7 hts, using the hmmfs program. These
matches would eat be marginal by themselves, bu the dignment indicates that a whole PH
domain indeed hes been split up by the SH2 and SH3 damains. The seach results are sum-
marised in atable and in a graphicd schematic. For ead match, links to the Pfam family
page and to the dignment of the match are provided. The dignment can be viewed either as
aparwise dignment of the query and the HMM consensus squencein ASCII format, or in
Belvu, with the matching segment ali gned in the Pfam seed ali gnment.

The Pfam web server also allows inspedion d the domain organisation d all proteinsin
Swisgrot that are part of Pfam. Ead protein is dored as a line-drawing schematic of the
segments correspondng to Pfam families, as iown in figure 8.8. Pfam-B segments are dso

included. Clicking on a Pfam-A family leads to the WWW page of that family, while dick-
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ing on a Pfam-B family displays that family as text in the browser. When Pfam alignments
are displayed in the browser, the sequence names are linked to these schematics, which
makes it relatively easy to get a picture of the moduarity of a particular family. All of these

pages are based onmarking up text retrieved by Efetch.

Anonymous FTP
A number of flat format and aher files pertaining to Pfam are available by anornymous FTP
at ftp.sanger.acukin /pulbydatabases/Pfam. All files are compressed by gzip.

The flat file ‘Pfam’ contains al annaation and seed and full alignments as ASCII text.
The Pfam format foll ows the Swisgrot syntax, with the aldition d AU (alignment author),
SE (seed membership source), AL (seed aignment method), GA (gathering method to find
all members) and AM (aignment method d all membersto HMM) fields. The format of the
multiple dignment is for ead sequence segment: name/start-end  dded sequence  Swis-
sprot accesson nunber, al on oreline.

The file ‘swisdPfam’ contains the schematic line-drawings of the Pfam domain organisa-
tion o all Swisgrot proteinsin Pfam.

The HMM files are released separately in binary HMMER format in the file
‘hmmPfam.tar’, which also contains a simple script to seach them using the Pfam default
cutoffs and seach programs. The HMM seach programs are avail able separately [Eddy,
1995].

For ACEDB curators that want to incorporate Pfam analysis in their system, a sample
ACEDB database is released in the file ‘Pfamacetar’. This contains al the Pfam families
stored internally and examples of proteins with Pfam matches from C. elegans. The ACEDB

exeautable mntainsafully functional version d the PEPmap



File Edit VYiew Go Bookmarks Options Directory Window Help

GoTo: | http: / fwww. sanger. ac. uk/Pfam/

Pfam Ho mepage

Release 1.0

HMM Search

Browse families - L

Browse Swissprot -

Current status

=-; Netscape: Plam description

File Edit Yiew Go Bookmarks Options Directory Window

GoTo: I http://www.sanger.ac.uk/Pfam/RELERSE_1.0/Cys_knot.html

View alignment of ALL members (61 seqs)

= in BELVU (jrunning locally on your own machine

* in BELVU |jrunning at the Sanger Centre|| (on display:_)
. your browser || Format: I MSF =

View alignment of SEED members(28 seqs)

= in BELVU (|running locally on your own machine
s in BELVU ||running at the Sanger Centre|| {on display:_)
Format: Pfam =]

Figure 8.6. The Pfam WWW server in Cambridge. A. The home page. B. An example of a
Pfam family page.
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A

File Edit Yiew Go Bookmarks Options Directory Window

=| Metscape. Pfam-A HMM search

Go To: Ihttp: //wwrw . sanger. ac. uk/Pfam/HMM_search. html

HMM search in Pfam-A

Search program:

hmmfs - lo
hmmls -
default -

Cl

Paste your query sequence here (raw sequence, no header):

MAGAASPCANGCCPRAPSDAEVVHLCRELEVG TVMTLFY SKKSQRPERE TFOWVELETRQT
TWERGADKIEGAIDIREIKEIRPGRTSRDFDRYQEDPAFRPDRSHCFV ILYGMEFRLE TL
SLOATSEDEVNMWIRGLTWLMEDTLOAATPLQ IERWLRKQFY SWDRNREDR [SARKDLENM
LEQYNYRVPNMRFLRERLTDLEQRTSDI TYGQFAQLYRSLMY SAQK TMDLPFLEASATLRA
GERPELCRYVSLPEFQQFLLEYQGELWAVDRLOVQEFMLEFLRDPLREIEEPY FFLDEFVT
FLFSEENS IWNSQLDEVCPDTMHNN PLEHYWISSSHNTY LTCDQFESSES SLEAYARCLREMG
CRCIELDCWDGPDGMPVIVHGHTLTTE IKFSDVLHT IKEHAFVASEY PVILEIEDHCS 1A
CQRNMAQY FKEVLGDILLTKPYDIAADGLPS PNOQLKRKE ILIKHREKLAEGSAY EEVPTS VI
YSENDISNS IENG ILYLEDPVNHEWY PHY FYL TS SEIVYSEETSSDOGNEDEEEPE EASG
STELHSNEEWFHGKLGAGRDGRHIAERLLTEY CIETGAPDGEFLVRESETFVGDY TLEFW

File Edit Yiew Go Bookmarks Options Directory Window Help

GoTo: | http: //www.sanger.ac.uk/Pfam-bin/HMM searchfocutoff=7&prog=hmmfss seg=MAGARSPCANGCC

Pfam HMM search results

hmm-f hmm-t

Figure 8.7. HMM seaching of a query sequence versus Pfam on the Pfam WWW server.
A. The query dialogue page. B. The results of an HMM seach. The table of matches at the
top is translated into the schematic & the bottom. Clicking on the *aignment’ lines returns
the pairwise dignment of the HMM consensus squence and the query. Clicking onthe ‘in

Belvu' part cdls Belvu with the matching query segment incorporated in the multiple dign-
ment of the Pfam sea.
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File Edit Yiew Go Bookmarks Options Directory Window

GoTo: I http: //www. sanger.ac.uk/Ffam/swiss_browse. html

Swissprot browsing in Pfam

Swrissprot release 33

Query the Pfam organisation of a Swiss—prot entry

Type entryname, e.g. VWF_HUMAN. (Right truncation is allowed)

Swrissprot [D: Submit.

or use accession number instead:

Swrissprot AC: _ Submit.

Do keyword search in Swiss—prot

This gives you indirect access to Pfam via Swissprot entries. (Right
truncation allowed, AND operator between keywords)

I I N 5o

File Edit Yiew Go Bookmarks Options Directory Window Help

Go To: I http: //www.sanger.ac.uk/Pfam-bin/swiss_ID

The Pfam domain organization of: VWF_HUMAN

>VWE_HUMAN | | PO4275 2813 a.a.

Cys_knot 1 —-- (61) PFO000T cCystine-knot demain 2724-2811

MatER 3 e e e (50) PFOO0SZ won Willebrand factor type & domain 1277-1453 1498-
vwWe 3 = = = (25) PFO0093 won Willebrand factor type € domain 2257-2325 2431-
v B (15) PFO00S%4 won Willebrand factor type D domain 1-344 352-703 8

The query is depicted with the *=" and the Pfam families with the " characters.

The columns are: Pfam family ID; Nr of matches; position of alignment; (Nt of members in family); Start—End coordinates.

1= I =

Tl e =

Figure 8.8. Swisgrot browsing on the Pfam WWW server. The domain organisation o all
proteins in Swisgrot that are part of Pfam can be inspeded schematicdly by entering their
name or accesson number. The blue lines are linked to WWW pages of the full Swisgrot
entry and the Pfam families.



8.5 Discussion

Belvu was primarily intended as an interadive tod. Its cgpability for printing alignments
relies on colour printing, and is relatively primitive compared to e.g. Alscript [Barton,
1993, which can use different fonts to highlight certain residues, and hes arange of options
for drawing consensus ®quences and histograms. Belvu can of course display pre-cdculated
consensus equences in the dignment, bu a more flexible system that can dsplay consen-
suses at different levels of conservation would be preferable.

The ACEDB PEPmap is currently an adequete platform for managing matches to database
sequences and families, and for launching the analysis tod's Blixem, Dotter and Belvu. The
PEPmMap as an analysis tod in its own right shoud be seen as a prototype which is dill under
development however. A number of improvements, such as flexible @louring and dynamic
scding of the anino add sequence, hyperlinking of boxes representing other objeds, and
general layout aspeds are aurrently being worked on. We ae dso investigating ways to link
to the PEPmap to ather external programs through a generic interface to make it a general
purpose display tool. Thiswould be more flexible and efficient than adding new agorithms
by hard coding them in the program. Any external program that can analyse aprotein se-
guence and produce segments containing a particular type of information could in principle
be engaged. For instance predictions of secondary structure or transmembrane helices

would be very useful todsto linkin.
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9. Analysis of protein domain families in C. elegans

9.1 Summary

The C. elegans genome sequencing projed has completed over half of this nematode’s 100
Mb genome. Proteins predicted in the finished sequence ae compiled and released in the
database Wormpep. Presented here is a comprehensive analysis of protein damain families
in Wormpep 11,which comprises 7299 poteins.

Common damains in Wormpep proteins were analysed by comparison to the Pfam coll ec-
tion d protein families, which is based on reaognition by hidden Markov models. This
identified a number of previously unannaated damains, and is a valuable complement to
manual classficaion.

To investigate new protein families, Wormpep was clustered using several methods,
which were mmpared to ead ather. Some of the new clusters were analysed in detail to as-
sign a putative function despite ladk of clea homol ogy.

Finally, the proteinsin the C. elegans are compared to proteinsin the human, S. cerevisiae

and H. influenzae genomes.

9.2 Introduction

Complete genome sequencing produces data that opens up many new areas of investigation.
One of them is the analysis of all the proteins encoded in a genome. Knowing the cmplete
set of proteins isimportant for studies of protein evolution and function, and for comparison
of the proteins present in dfferent organisms. This chapter addresses perhaps the most im-
mediately interesting aspeds of genome-scde protein sequence anaysis. the systematic

functional clasgfication and charaderisation d protein families.
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Functional classficaion exploits the pre-existing annaation d homologous protein se-
guences with a known function. To cary over the aanaation from other proteins, the simi-
larity shoud be analysed by careful manual inspedion, which for genome-scde projeds
preferably shoud be asgsted by an integrated analysis/gene prediction workbench. This is
important both for efficiency reasons and becaise the sequence similarity may influence the
gene prediction (seepart 1 o thisthesis).

A different approadc, which is not as comprehensive but is generally less ambiguous re-
garding the extent of homologous domains, is to seach a database of pre-assembled multiple
alignments of protein families. An example of such a database is Pfam, described in chapter
7. These families may aso provide amore genera level of annaation. This approach has
been employed here to classfy the proteins predicted so far in the C. elegans genome.

It isaprinciple of protein evolution that new protein functions can arise by the dudicaion
of a gene and subsequent speaalisation d the ‘daughters’. In these cases of course the de-
tail ed functions are different, although the mechanisms may be the same. In fad, the mgor-
ity of proteins in higher eukaryotic genomes, and 3650 percent in prokaryotes [Brenner et
al., 1995 Koonn et al., 1999 have dealy recgnisable ‘siblings' that are products of gene
dudicaion. Such hanologues are cdled paralogues, while proteins in dfferent organisms
that diverged dwe to spedation, and which namally have identicd functions, are cdled
orthologues.

To study groups of similar proteins within a genome, they first need to be dustered into
families of paralogues. Many clustering methods are known (see eg. [Romesburg, 1989),
but only a few are gpropriate for protein sequences. Additional complexity for clustering
proteinsis caused by sequences that contain more than ore protein damain, hence belonging
to more than ore family, and the ladk of certainty in defining the relationships [States, Harris
and Hunter, 1993. At present, no clustering algorithm can solve dl these problems withou
compromise. A choice has to be made between using a simple dgorithm which ignores the
nature of protein sequences, and ore that tries to resolve the problems, bu has other side-
effeds. The doicedepends onthe set of proteins (prokaryotic proteins ssldom contain mul-

tiple domains) and what the purpose of the dustering is. If it is mainly to get an ideaof the
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number of clusters, particularly in prokaryotes, a simple dustering method might give the
best approximation. To cluster a set of proteins from a higher eukaryote, with the am to use
multiple dignments of the dusters, a method that explicitly takes multi ple domain proteins
into acourt is necessary, such as the HHS [Hunter et al., 1993 or the Domainer [Sonn-
hammer and Kahn, 1994 algorithms. This chapter presents results from the dustering of C.
elegans proteins with Domainer.

Over half the C. elegans genome has been sequenced. The predicted protein sequences
are periodicdly compiled and released in the database Wormpep, which is introduced in the
first sedion. Wormpep is then analysed for content of known damains in Pfam, and is clus-
tered in two ways, completely or only regions not matching Pfam. The paralogue dusters are
then seached for homology with ather proteins, and some of the largest clusters that appea
to be unique to C. elegans are analysed in further detail. In some caes, this resulted in a
tentative functional assgnment. Finally, Wormpep is compared to the complete genomes of
Saccharomyces cerevisiae and Hemophilus influenzae, and to a set of human proteins, to in-
vestigate the amourt of conservation throughou the three kingdoms baderia, fungi and ani-
malia, and to examine how useful knowledge of the C. elegans genome will be for under-

standing human biology.

9.3 Wormpep - a database of predicted C. elegans proteins

All proteins predicted in the sequence produced by the C. elegans genome sequencing projed
are released a regular intervals as the Wormpep database, which is avalable &
ftp.sanger.acuk in /pulbdatabases/wormpep. The data is also available in EMBL and Gen-
bank, as cosmid DNA sequences, and in Swisgrot and PIR as proteins. However, Wormpep
has a number of advantages. The protein predictions are more up to date, sincethey are ex-
traded dredly from the latest version & ACEDB. During this processa number of quality
control chedks are caried ou to remove aroneous predictions. For example, genes that span

two cosmids are mrredly represented in ACEDB, bu nat in the EMBL/Genbank sequence
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entries, which makes it difficult to extrad the cmplete protein sequence. A few proteinsin
Wormpep may still be fragments if they span two cosmids of which orly one has been se-
guenced, a two cosmids that were sequenced in dfferent sequencing centres, since the
working ACEDB databases in Cambridge and St. Louis are nat diredly linked to ead ather.
The C. edegans World Wide Web server  (http://www.sanger.acuk;
http://genome.wustl.edwgsc) is the most up to date source of sequence data, but only on the
DNA level.

Currently, Wormpep is released in Fasta format, which contains one line of annaation for
ead protein, and the sequence The anndation line cntains two compulsory fields: entry
name (cosmid name.number) and Wormpep accesson nunber, and threeoptiona fields: lo-
cus, functional annaation and a reference to the correspondng Swisgrot entry. The func-
tional annaation is extraded from the “Brief_identificaion” field in ACEDB, which is the
functional annaation derived from the homologues.  This field is exported to
EMBL/Genbank with a “similar to” prefix. Inthe annaation process no dstinction is made
between functional inference from orthologues, i.e. when the predse function is known with
high confidence, and inference from paralogues, when only genera properties can be pre-
dicted, such as “transporter”, or “dehydrogenase”. 2868(3%%0) of the 7299 poteinsin re-
lease 11 are functionally annatated.

The growth of Wormpep since 1993is plotted in figure 9.1. It has grown exporentialy
due to the increase in sequencing throughpu, but will tall off as the sequencing projed will
move into less gene rich areas towards the end. These aeas are harder to sequence due to
repetitive DNA elements and scarcity of cosmid clones, and the overall throughpu rate is
also scheduled to slow down. The distribution o protein lengths in Wormpep is very
skewed, as a1 if figure 9.2. The mean length is 450, while the median isonly 342. Thisis
due to a small number of very long proteins. 19 pedicted proteins have more than 3000
amino add residues. The largest protein so far is KO7E12.1, with 13055residues. It con-
tains ome 10 fibronedin type 3 damains, 6 immunaglobuin superfamily domains (cdl-

adhesion moleaule-like), 1 epiderma growth fador-like domain, 3 vonWill ebrand fador



type A domains, and some 60 repeds of a new type. Such multiple domain giants are nealy
always extracdl ular proteins that often have arole in cdl-cdl binding.

The acaragy of the gene predictions in Wormpep depends on the amourt of evidence
available. Genes for which ESTs have been sequenced can be mnsidered experimentally
verified in the regions that match, and genes with strong similarity to ather proteins are usu-
aly close to 100% corred. For genes that ladk these extrinsic pieces of evidence one must
rely on the intrinsic properties in the DNA sequence, such as coding patential and splicing
signals, for the entire prediction. The program used, Genefinder [P. Green, unpultished],
generally predicts most of the exons in the middle of genes corredly. Exons at the start and
end dten contain weeker signals, however, and are frequently mispredicted. Occasiondly,
close neighbouing genes may be fused, and single genes with long introns may be frag-
mented. Abou one third o the genes have & least one EST match, and ower half are similar
to proteins from C. elegans or other organisms, so lessthan helf of the predictions in Worm-

pep relied solely onintrinsic properties.

16€



15000

10000

5000 /

Figure9.1. Previous and projeded growth of Wormpep.

1500

1000

nr. of proteins

A

o

o
|

o o o o o o o o o o
o o o o (=] o o o o o
— [92] Te] N~ [ — ™ Te] N~ (2]

— - — i -

length (amino acids)

Figure9.2. Length dstribution d Wormpep entries.

2100
2300
2500
2700
2900
>3000



9.4 Classification of Wormpep entries by Pfam

All proteins in Wormpep have been annaiated manually, using the analysis workbench de-
scribed in part 1. This anndation is not always easy to use for summary purposes, becaise
the nomenclature used is variable, and it is not aways complete. For example, over 20% of
the aikaryotic protein kinases found ty Pfam did nd have the word ‘kinase’ in the annaa
tion. Abou half of these ladked annaation completely, whil e the other half had ather anno-
tations, such as ‘recetor’ or ‘cdl division control protein’. Guanylate g/clases aso match
the protein kinase family.

A more systematic goproadh, which is convenient for summarising the families, is using
the Pfam database (chapter 7). We cmpared all Wormpep 11 sequences to all Pfam fami-
lies, using as sgnificance aitoffs Pfam’'s previously recorded family-spedfic cutoffs that
proved to exclude negatives. All protein damains with more than 5 examples are listed in
table 9.1. Many of the most frequent domains are multiply repeded in single proteins. For
example, 38laminin type EGF domains are spreal in orly 5 proteins, and the 184 ank repeds
in oy 40 poteins. A few common C. elegans families are nat listed in table 9.1 because the
were not part of Pfam 1.0. These include DEAD/DEAH box helicases, annexin danains and

coll agens.

Table 9.1. The most frequent Pfam domains (n > 5) occurring in Wormpep 11, comprising
abou half of the proteinsin C. elegans. The number of domainsis smewhat overestimated
for some families due to multi ple fragment matches, and kecause multiple dternative splic-
ing products were included the number of proteins may be slightly too high.

Nr.of  Nr.of Pfam Pfam annaation
domains proteins accesson

216 202 PFO0069 Protein kinase

184 40 PF00023 Ank repea

160 67 PF00096 Zinc finger, C2H2 type

158 37 PFO0008 EGF-like domain

120 21 PF00041 Fibronedin typelll domain

115 26 PF00047 1G superfamily

81 21 PFO0090 Thrombospondn type 1 damain

74 48 PFO0076 RNA reaognition motif. (akaRRM, RBD, or RNP domain)
71 64 PFO0001 7 transmembrane receptor (Rhodogsin family)
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PFO0057
PFO0065
PF00105
PFO0014
PFO0046
PFO0005
PFO0028
PF00102
PFO0053
PFO0099
PF00149
PFO0036
PFO0013
PFO0059
PFO0018
PF00106
PFO0097
PF00125
PF00104
PFO0067
PFO0010
PF00168
PFO0153
PFO0017
PFO0071
PFO0092
PFO0083
PFO0043
PFO0135
PFO0078
PFO0054
PFO0084
PFO0004
PFO0085
PFO0130
PFO0038
PF00169
PFO0060
PFO0063
PFO0012
PFO0050
PFO0170
PFO0011
PFO0091
PF00122
PFO0058
PFO0025
PFO0112
PF00160

Low-density lipoprotein receptor domain classA
Neurotransmitter-gated ion-channel

Zinc finger, C4 type (two damains)

Kunitz/Bovine pancredic trypsin inhibitor domain
Homeobax domain

ABC transporters

Cadherin

Protein-tyrosine phosphatase

Laminin EGF-like (Domains Il and V)
Zinc-binding metall oprotease domain

Ser/Thr protein phasphatases

EF hand

KH domain family of RNA binding proteins
Ledin C-type domain short and long forms

Src Homology domain 3

Alcohd/other dehydrogenases, short chain type
Zinc finger, C3HCA4 type

Core histonesH2A, H2B, H3 and H4
Ligand-binding domain of nuclea hormone receptors
Cytochrome P450

Helix-loop-helix DNA-binding domain

C2 damain

Mitochondial carier proteins

Src Homology domain 2

Ras family (contains ATP/GTP binding P-loop)
von Will ebrand fador type A domain

Sugar (and aher) transporters

Glutathione S-transferases.

Carboxylesterases

Reverse transcriptase (RNA-dependent DNA polymerase)
Laminin G domain

Sushi domain

ATPases Associated with various cdlular Activities (AAA)
Thioredoxins

Phorba esters/ diacylglycerol binding domain
Intermediate fil ament proteins

PH (pledkstrin hamology) domain

Ligand-gated ionic channels

Myosin head (motor domain)

Hea shock hsp70 poteins

Kazal-type serine protease inhibitor domain

Basic region dus leucine zipper transcription fadors
Hea shock hsp20 poteins

Tubdin

E1-E2 ATPases

Low-density lipoprotein receptor domain classB
Arf family (contains ATP/GTP binding P-loop)
Cysteine proteases

Peptidyl-prolyl cis-transisomerases
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PF00155 Aminotransferases class|
PF00171 Aldehyde dehydrogenases
PFO0137 ATP synthase suburit C
PFO0066 Notch

(o) e)INer RN e}
N WO O

To look spedficdly for novel Pfam classficaions, the 4431 poteins in Wormpep 11 for
which no informative similarity has been found wsing the standard Blast/MSRcrunch ap-
proach [Sonnfammer & Durbin, 1994 were seached for Pfam matches. As sgnificance
cutoffs, the previously recorded cutoffs that exclude negatives for eadn Pfam family were
used. Table 9.2 lists the 416 matches to 238 peviously unanndated C. elegans sequences.
A number of these matches had very high scores, indicaing that they would probably have
been found ty Blast too, bu had been missed due to human error. We have found empiri-
cdly that most matches found ty Pfam but not by Blast have scores below approximately 35
bits. Roughly half of the matches ored lower than this, thus representing genuinely novel
clasgficaions that are likely to have been missed because of the similarity to any one other
protein was tooweg. The matches above this sore ae more likely to have been missed duwe
to mistakes, such as adding the annaation to the wrong field in ACEDB, or nat inspeding
Blastp matches, which are more sensitive than Blastx since the dignments are not disrupted

by introns.

Table9.2. Novel Wormpep classficaions found ty Pfam-A.

Pfam family accession C. elegansprotein (score)
number and description
PF000017 transmembrane | B02447(27.9) B05636(24.8) CO1F1.4(68.0) CO2H7.2(64.3)
receptor (Rhodopsin family) | C26F1.6(89.4) C30B5.5(92.6) D10142(24.2) F10D7.1(24.5)
F36D4.4(52.6) R11F4.2(63.7) TO7F8.2(24.4) T14C1.1(55.7)
T19F4.1(30.0) ZK4186(62.7) ZK4187(27.9) C54A12.2(33.1)
F21C10.9(80.4) F47D12.1(93.9) F55E10.7(52.1) ZK1307.7(85.6)
PFO00027 transmembrane | B02862(26.9)

receptor (Seaetin family)
PFO0004ATPases Asoci- | F54B3.3(75.5)
ated with various cdlular

Activities (AAA)

PFOO005ABC transporters | C56E6.1(90.6) F43E2.4(45.9) C05D10.3(226.7)

PFO0137ATP synthase R10E11.8(146.6)

subunit C

PF00168C2 damain 2xFO07A5.5(67.3-82.9) KO7G5.3(30.7) T12A2.4(20.5) 3xT12A7.1(22.6-

86.1)
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PF00135Carboxylesterases

2xC01B10.4(26.4-36.0) 2xC01B10.10(40.4-53.0)

PF00130Phorbadl esters/
diagylglycerol binding do-
main

2xF13B9.5(46.3-86.4) F42A9.1A(29.0) F42A9.1B(53.8)

PFO0122E1-E2 ATPases

W09C2.3(53.8)

PFOO0O08EGF-like domain

2xC37C3.7(76.3-3437) C54D1.5(17.9) FO9ES.2(18.4) F35D2.3(17.0)
F58B3.8(17.6) F58G4.4(20.8) KOBA9.3(25.5) K07D8.2(26.1)
R05G6.9(22.3) 5xR13F6.4(24.2-30.6) 5xZK 7831(18.2-27.1)
13xF28E10.2(17.4-30.4) FAOF11.4(25.5) F55G1.13(17.3)

PFO001QHeli x-loop-helix
DNA-binding domain

7xC17C3.7(17.8-30.1) C17C3.8(26.4) C43H6.8(25.5) F31A3.2(60.0)
F31A3.4(31.8) F48D6.3(31.8) TO1E8.2(66.9) C17C3.10(43.5)
C28C12.8(26.4) C44C10.8(62.7) F46G10.6(54.3)

PF00011Hea shock hsp20
proteins

F43D9.4(76.1)

PF00012Hea shock hsp70
proteins

F43E2.8(88.4) T24H7.2(12760)

PF00013KH domain fam-
ily of RNA binding proteins

C56G2.1(2141)

PF00014Kunitz/Bovine
pancredic trypsin inhibitor
domain

B02225(44.0) C37C3.5(38.1) 3xC37C3.6(80.4-92.5) 8xT22F7.3(53.9-
1034)

PFO0169PH (pledkstrin
homology) domain

5xF38B7.3(41.8-100.3) F41F3.2(34.9) K10B2.5(33.9) F52D10.6(44.1)
ZK124810(40.8)

PF00017Src Homology T27F7.2(34.8) T06C10.3(28.1)

domain 2

PF00018Src Homology B03366(34.5) F32A5.6(92.0) F35A5.8(67.1) FA9E2.3(40.2)
domain 3 K11E4.4(35.4) FO9E10.8(60.8)

PFOO02QTNFR/NGFR T02C5.1(51.6)

cysteine-rich region

PFO0102Protein-tyrosine CO7E3.4(35.7)

phosphatase

PF00022Actins F42C5.9(77.3)

PFO0023Ank reped M60.7(86.8) 4xC01H6.2(28.4-40.7) 2xC18H2.1(38.4-39.2)

C18H2.3(49.5) 2xCA43H6.3(39.5-40.4) 2xK04C2.4(36.1-37.0)
2xC18F10.7(33.1-40.5)

PF00028Cadherin B00343(41.8)

PF00134Cyclins 2xR02F2.1(27.7-41.8) T12C9.4(29.6)
PF000374Fe-4Sferredox- | C25F6.3(56.9)

ins and related iron-sulfur

cluster binding domains.

PF00147Fibrinogen beta D10093(23.7)

and gamma chains, C-
terminal globular domain

PF0004 XFibronedin type C36B1.2(70.4) 2xK09E2.4(33.5-73.7) 2xR0O7E4.2(28.6-50.7)
Il domain T22E5.3(36.7) ZC374.2(45.2) 3xZK617.1B(34.3-40.3)
PF00043Glutathione S 31xC25H3.7(39.4-97.1)

transferases.

PF00125Core histones F17E9.12(25.4) F17E9.13(69.5) W05B10.1(206.9)

H2A, H2B, H3 and H4

PF00046Homeobax do- K03A11.3(120.6) WO5E10.3(109.3)

main

PF00104Ligand-binding
domain of nuclea hormone
receptors

C25B8.6(33.8) F16H9.2(43.3) F25E5.6(32.3) T07C5.2(38.5)
T07C5.3(50.3) TO7C5.5(25.8) ZK4181(40.5)

PFO00471G superfamily

C18F3.3(45.0) C37C3.5(23.9) C53B7.1(27.6) 2xF48C5.1(15.0-17.3)
KO9E2.4(16.0) 3xT02C5.3(15.9-30.2) C18A11.7(22.8) F21C10.7(18.1)
3xK02E10.8(15.9-22.2) 4xZK617.1B(17.8-25.4)
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PFO0052Laminin B (Do-
main V)

15xC54D1.5(15.7-34.8)

PFO0053Laminin EGF-like
(Domains|ll and V)

C54D1.5(104:6)

PFO0054Laminin G do-
main

10xF41G3.12(39.5-80.9)

PFO0O55Laminin N- C54D1.5(76.2)
terminal (Domain V1)
PFO0057Low-density lipo- | F44C4.1(335.9)

protein receptor domain
classA

PFO0059L edin C-type
domain short and long
forms

B02186(30.6) 2xB02188(81.5-94.0) 2xB02862(69.6-100.1)
C25G4.1(81.7) 2xF09G8.8(55.0-56.1) F52E1.2(35.1) KO2F3.5(84.5)
MO2F4.7(50.6) 2xTO5A7.2(44.9-53.9) T19E7.1(55.2) ZK666.7(1135)
ZK11932(30.5)

PFO0061li pocdins

ZK7425(84.8)

PF00153Mitochondrial
carier proteins

K01C8.7(29.4) KO2F3.2(189.3)

PFO0065Neurotransmitter- | C35C5.5(2420) 2xF17E9.7(1383-236.7) F17E9.8(100.7)
gated ion-channel
PF00067Cytochrome P450 | KO9A11.3(93.2)

PFO0069Protein kinase

B04963(417.6) C25H3.1(3206) D20241(87.8) EEED8.9(65.0)
F22D6.5(73.0) F35C8.1(176.4) F35C8.2(1194) F35C8.3(74.1)
F54H5.2(192.7) K10D3.5(90.0) R13F6.7(34.9) R13H9.5(2405)
R13H9.6(70.4) W03A5.1(79.9) C36B1.10(186.9) F59E12.2(150.6)
T06C10.3(2045) WO7A12.4(1964) ZK617.18(32.1)

PF0016QPeptidyl-prolyl
cis-trans isomerases

D10092(2742)

PF00071Ras family

C35C5.4(312.9) F43D9.2(265.7)

PFOO075RNase H

ZK12906(200.3)

PFOO07B8RNA reagnition
motif. (aka RRM, RBD, or
RNP domain)

M18.7(53.5) CO1F6.5(26.5) EEEDS.1(26.0) KO8F4.2(27.1)
T04A8.6(27.9) T11G6.8(68.3) W04D2.6(66.4) C26E6.9A(56.9)
FO7A11.6(30.9) F18H3.3B(27.5)

PFOO078Reverse tran-
scriptase (RNA-dependent
DNA poymerase)

4xB04782(82.7-1037) F56C9.2(49.1) TO7E3.1(87.5) F28E10.3(107.9)

PF00083Sugar (and ather)
transporters

F14B8.3(1088) KO5FL.6(61.8) T22F7.1(93.6)

PF00084Sushi domain

TO7H6.5(46.7)

PFO0085Thioredoxins

7xC06A6.5(29.0-68.8) FA47B7.2(27.3) C35D10.10(50.5)

PFO0086Thyroglobulin
type-1 reped

B02225(23.3)

PFO0088Trefoil (P-type)
domain

D20963(58.8)

PFO009QThrombaspondin
type 1 damain

C11H1.1(50.5) C37C3.6(27.4) 5xD10222(17.6-35.5) F11C7.2(20.0)
2xF53B7.5(18.9-39.3) F58F9.6(44.8) T19D2.1(23.0) 4xFO1F1.13(18.3-
55.4) 2xF14H12.3(30.5-41.1) 3xF23H12.5(35.2-64.0) F57C12.1(28.1)

PF00091Tubulin

C54C6.2(27.2)

PF00092von Will ebrand
fador type A domain

C16E9.1(10058) 2xF09G8.8(92.6-1027) ZK666.3(1528)
ZK666.6(31.2) ZK666.7(38.8) ZK6739(33.9) R10H10.3(32.8)
T19D12.4(43.7) T25C12.3(74.4) ZK11932(39.7)

PF00096Zinc finger, C2H2
type

B00351(45.9) CO9F5.3(26.0) 2xC28H8.9(23.7-25.6) D10462(20.9)
F21D5.9(20.6) F26F4.8(28.1) 2xF52E4.7(24.2-31.1) F5383.1(21.7)
4xK04C1.3(22.3-32.9) T20H4.2(26.6) T21C9.2(26.6) W04D2.4(21.3)
ZC3959(21.3) 2xF15C11.1(23.1-31.4)

PFO0097Zinc finger,
C3HCA type

7xC01B7.6(23.6-39.1) C11H1.3(21.1) C26B9.6(34.4) EEED8.9(27.8)
F26F4.7(30.4) FA7G9.4(27.5) C32D5.10(30.4) C32D5.11(42.8)
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F19G12.1(42.8) F54B11.5(31.6) T13A10.2(35.6)
PF00105Zinc finger, C4 C26B2.4(27.1) F16H9.2(39.5) F54D1.4(41.9) TO7C5.2(67.7)
type (two damains) T07C5.5(34.8) ZK4181(67.3) F36A4.14(53.3) F21D12.1B(68.4)
PF00098Zinc finger, C27B7.5(32.7)
CCHC type
PF00099Zinc-bindingmet- | F53A9.2(24.2) F57B7.4(21.2) F58A6.4(30.2) T19D2.1(23.5)
all oprotease domain F57C12.1(32.2) K11G12.1(28.6) K11G12.1(22.8)

Abou 20% of al Wormpep proteins have & least one domain that matches a Pfam-A
family. The matching regions are on average aou half the length of the proteins, so abou
10% of the residues in Wormpep are @mvered by Pfam-A. Since Pfam-A only contains the
most common protein damain families, these numbers are necessarily much lower than the
fradion d Wormpep that has matches found ly all-protein seaches using BLAST. Figure
9.3l ustrates the relative propartions of annaation in Wormpep. Overall, abou 40% of the
proteins have functional annaation based onBLAST/MSRerunch analysis. Some 3% of the
Pfam matches are to previously unannaated proteins. Some of these were not annatated due
to human error, and nd becaise BLAST failed to pick up any similarity. Although Pfam-A
currently adds only a few more percent to the fradion annaated proteins, the analysis of
proteins with BLAST matches benefits from Pfam matches too, by cleaer indicaion d do-
mains and family annaation. Furthermore, cases where Pfam deteded previously unidenti-
fied damains in previously anndated proteins are not refleded in figure 9.3. Considering
that this analysis is based on the first relesse of Pfam, already a substantial fradion do
Wormpep is covered. The two approadies thus complement ead ather well, and the best

anaysisisadieved by combining them.

BLAST+MSPcrunch
only

BLAST+MSPcrunch
and
Pfam-A

Pfam
only
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Figure 9.3. Fradions of C. elegans proteins that can be annaated based on hamology, using
the pairwise BLAST+MSRerunch approach (chapters 3-6) and the family-based Pfam ap-
proach (chapters 7-8). Together they add upto an annaation level of abou 42%.

9.5 Clustering of Wormpep proteins

Many Wormpep proteins do nd match a Pfam family. To examine the complete distribution
of paralogue families in Wormpep, a dustering analysis was performed. The nature of pro-
tein sequences renders many standard clustering techniques inappropriate.

To ill ustrate this, let us consider the simplest clustering method, ‘single linkage' [Watanabe
and Otsuka, 1993. The principle works as follows: All proteins are cmpared to ead cther
and al significant pairwise matches are stored. The proteins are then linked together in
clumps by joining all proteinsthat have & least one match to ore of the proteins in the group.

This procedure would work perfedly if al proteins only had a single domain, and if a
clea significance aitoff to separate related from unrelated proteins existed. Unfortunately,
neither of theseistrue: unrelated clusters may be joined by multi-domain proteins, or by false
links. Asa mnsequence, it may be difficult to generate multiple di gnments from the result-
ing clusters, espedaly if the proteins only share adomain.

An algorithm which reduces the spacerequirements of the dustering, and to some extent
the joining of unrelated clusters is the Hunter, Harris and States ‘minimal spanning treée
method [States et al., 1993, which add sequences incrementally and orly stores the highest
scoring link for ead new sequence However, this method tes the oppasite dfed, that re-
lated famili es are sometimes nat merged with ead ather.

The first drawbad, false linkage due to multiple domains, has been takled by the
CLUSDOM program [Koonin et al., 1996k, which only clusters on links that overlap in se-
guence However, CLUSDOM does nat indicate which part of multi-domain proteins belong
to which cluster, so the dignment problem remains unsolved. Also, the program was un-

available for this gudy.
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We @plied single linkage dustering to Wormpep 11. Using Blastp filtered by
MSRcrunch (chapter 4) with a aitoff that is normally considered stringent (twili ght zone
between scores 40 and 80 resulted in a super-cluster of abou a third of all sequences.
MSRcrunch eff edively removes biased compaosition matches, but some spurious links will be
acceted with these parameters. By raising the stringency to na include any matches scoring
below 90 eliminates al spurious matches, bu extensive joining of unrelated clusters oc-
curred dwe to multi-domain proteins. The largest cluster contained 585 poteins, including
such dverse protein families as protein kinases, phasphatases, proteases, protease inhibitors,
transcription fadors, extracel ular domains, etc.

To make the dustering useful for further studies, idedly the dustering algorithm shoud
not only avoid these drawbadks as much as possble, but also generate multiple dignments of
the resulting clusters. This is important for generating consensus quences or profiles for
further charaderisation d the dusters. To produce useful multiple dignments, a strict defi-
nition d homology domains is needed.

A method that explicitly attempts to find danain boundries and that produces multiple
alignments of the found daonains is the Domainer algorithm [Sonnrammer and Kahn, 1994.
It also takes repeded damains within ore protein into acourt. Domainer first lets multi-
domain proteins join urrelated clusters, and then analyses the resulting graph d clusters for
likely domain boundries, at which the super-cluster is cleaved. The main drawbadk of Do-
mainer is that is vulnerable to imperfedions in its inpu of pairwise similarity data. Incom-
plete matching regions can cause Domainer to infer too many domain boundies, resulting
in fragmentation d red domains. On a dataset such as Wormpep, which contains predicted
genes with unwerified N and C-termini, the fragmentation will be compoundd. However,
the cre domains are usually of reasonable quality to use & a starting point, and the risk of
merging unrelated families is snall. Because of the fragmentation, the Domainer output
overestimates the number of domain families. These ‘pseudo-domains often need to be

processed manualy to producetrue domain families.

Domainwise clustering of entire Wormpep



Abou 60 % of all C. elegans proteins match ancther C. elegans protein. There is thus an
abundance of paralogue dusters. When the Domainer program was applied to Wormpep 11,
this generated 1818clusters in the range of 2-89 members. This is probably more than the
true number of domain families becaise of over-fragmentation in Domainer however. The
distribution d the duster sizesis plotted in figure 9.4. To analyse what propation d these
are spedfic for C. elegans and aher spedesin the family rhabditida, the mnsensus sgquence
of ead cluster was ached against Swisgprot 33 with Blastp and was filtered by
MSRcrunch. It appeas that most of the large dusters are domains that are foundin ather

phyla, while alarge fradion d the smaller clusters appea to be speafic for nematodes.

100 -

W Matches outside rhabditida
90 1 ONo matches outside rhabditida

80

70 A

60

50

Nr. of families

40 ]
30 4
20 1

10 A

mmmmmmmmmmmmmmmmmmmmm

Members in family

Figure 9.4. Histogram of Wormpep 11 family sizes based on Domainer clustering and
BLAST analysis of the domain family consensus squences. Families for which simil arity to
proteins outside rhabditida was deteded are filled columns; apparently nematode-spedfic
families are empty columns.

Domainwise clustering of Wormpep using Pfam
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The main problem with the éove duster analysisisthat it depends on Blastp and Domainer,
which do na produce perfed data. For a rough estimate of how many proteins have para-
logues and the size range of the largest clusters, Domainer analysis is adequate, bu the num-
ber of domain clustersislikely to be overestimated.

In this case however, we can improve the Domainer clustering by using the previously
found matches to Pfam-A families, as described above. By removing these matching seg-
ments, most of the large families, which are most prone to errors, are avoided, and corred
domain boundries areintroduced. The procedureisto extrad all sequence sedions larger than
30 residues that were not covered in Pfam-A into separate entries. A protein with a Pfam-A do-
main in the centre that has long flanking regions on either side, will thus generate two entries.
By doing this, Domainer will consider ead sedion as an independent sequence, and the bourd-
ary to the Pfam-A segment will be used as ared domain boundry. Furthermore, members of
previously found rematode-spedafic famili es were removed.

After extrading these segments from Wormpep, the remaining 8221 segments (90% of
Wormpep 11) were dustered by runnng Blastp and Domainer, in the same way as described
in the previous ®dion. As down in figure 9.5, the nematode-speafic families becme
larger this way, and most of the large families that match ouside rhabditida ae no longer

present.
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Figure 9.5. Histogram of Wormpep 11 family sizes based on Domainer clustering after re-
moval of known protein families and BLAST analysis of the domain family consensus -
guences.

9.6 Nematode-specific protein families

The largest C. elegans protein clusters that were foundto be unique to rhabditida in the pre-
vious edion were analysed in further detail. To improve the quality of the dignments they
were rebuilt from complete sequences. These dignments were seached against Swisgrot
and Swisgrot-TREMBL using sensitive HMM (hidden Markov model) methods as a second
passto look for matches to ather organisms. Only families lacking clea homology outside
rhabditida were @nsidered. Hydrophobcity patterns, coil ed-coil predictions and Prosite
pattern matches were inspeded too. This way we have mlleded 10 rematode-spedafic fami-
lies, which arelisted in table 9.3.

Three of the families are probably G-protein couged receptors. Although the sequence
similarity is wed, it is suppated by alternating hydrophobc/hydrophili c regions typicd for

receptors, and there is dso a dharaderisticdly conserved arginine & the end d the third pre-
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dicted transmembrane helix. Some of the members have been foundto be expressed in sen-
sory neurons, and are likely to function as olfadory receptors [Troemel et al., 1995. The
fad that so many G-protein couded recetor families appea to be nematode-spedfic is not
surprising, sincedivergencerates of transmembrane proteinsis much higher than for globuar
proteins.

Three examples of these families are shown in figures 9.6-8. Family nr. 2 has weak simi-
larity to transthyretin (formerly cdled predbumin), which transports thyroid hamones. The
hydropethy plot of family nr. 8 suggests it may have atransmembrane location, bu there is
no detedable sequence simil arity to G-protein cougded receptors.

The members in family nr. 9 are not randamly distributed throughou the genome. As
seen in figure 9.8b,large dusters are present on chromosomes V and X, while caromosome |
and Il only contain ore member together. This indicates that these families arose by locd
gene dugicaion. There is aso a strong correlation between the similarity and the distance
between two members, which is ill ustrated in figure 9.8. Members on the same csmid are
nealy always most similar to ead ather. In orly one cae of the ten cosmids that have more
than ore member, are they nat al very similar to eat aher (C42D4.4,which does not clus-
ter with the threeother members on C42D4).

Multiple dignments of these families are avail able by anonymous FTP at ftp.sanger.acuk

in /pulb/databases/wormpep/wormPfam.
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B0334. 1 22 SVQAVRVTGKVTCNGQPAENI KVKLYEKEI . . . ... .. VLDKELDEKSTDGRGSETLAGNKK. . . . EETA 79
co4x2. 1 57 RKQAVGVKGKLMCGGRPVRNATVKLWONDM . . . . .. FDPDDLI AETHVNEDGTEEVSGFAI . . . . SI TA 115
C1208. 4 26 RKOSVSVTCRLTCLGKPAEGVKI KLYEKEK. . . ... .. | KDI KMDOQT YTDANGVETVSGYKT. . . . El TN 83
C2709. 2 21 KFKTFKI RGMLTCRGDPI KGNI | \WVDDNWS. . . . . . .. FTDHLL SERKVTEDGKESLAGEPD. . . . D. DC 77
C33A12.7 181 GDGAFHVRGKLLCNGKPYENAEI ELYEKNI . . . . . .. | GKDTHLVTTNTTSLGFESMKAAVS. . . . EW G 239
C37C3.7 176 FTQSAGVKGVLMCGDKPLANTKVKLYDDDTGPR. . . . . . DLDDELAEGITDSLGQFLLTGHTS. . . . EVMI 235
CA0HL. 5 19 NTQSAGVRGKLI CNGKPAVGVLVKLYDDDRG. . . . . . | DADDLMASGKTNGNGDEEI SGHED. . . . EVTP 78
E02Cl12. 4 18 NSHSLTVKGRLLCAEYPASAVTVKLLKNSE. . ........ KSI VDETHADKQGNFQLSAETT. . . . EKDY 73
F10G7. 10 18 RKQGVAVKGVLKCGTAFANNTKVRI VDI DTGP. . . . .. DPDDTLDEKRTGEDGAFALTGSTH. . . . ELTS 77
F22A3. 2 18 RTQSTGVKGRLMCGSKPAAGVNLKLFDEDNGP. . . . . . DPDDVL DOKTTDDDGNFLLSGSSM . . . ELTP 77
F22A3. 2 153 GRONYRVKGAFRCGNVPVKNVQVKLI DDDFGS. . . . .. DPDDDL GSGYTNANGEFELSGSTT. . . . ELTT 212
F36A4. 8 27 RLQSVAVSCRLI CDGRPAAGVKVKMYEKEF. . . . .. .. FLDRKMAEVYTDVNGVEQ TGRKR. . . . EI ST 84

F40F12. 1 1 . MNSCWAKCKL MCEGRPASGVKVKLMESDN. Sf | pgFL DRDDKIVASGKADSNGEFNLSGSTK. . . . EIl TG 64
KO3HL. 3 23 RTQWAAAKGKL MCEGRPASGVKVKLMESDN. Sf | pgFL DRDDKIVASGKADSNGEFNLSGSTK. . . . EI TG 87
KO3HL. 4 23 RTQSAAI KGRLVCEGKPASGVKVKLMESDN. Sf gpgFLDSDDKIVASGKADSHGEFNLSGSTK. . . . EI TG 87
KO3H1. 6 22 RLOSVAVSGQLNCL GKPAVGVRI DLMESDNNGeet gl | DDNDFMGYTYTDSAGFENMSGSEYV. . . . EI SG 87

R13A5. 3 19 FKQSVAVKGKLI CNDDPAKDVRVKMYDKDV. . . . . ... LMDTKLDDKSTDGNGEFYLTGCDS. . . . EI SS 76
R13A5. 6 19 RTQSVGVKGQLI CEDKPAVGVKI KI YDEDK. . . . ... L SPDELMVSGKTDSSGREDLKGSAD. . . . EFTS 77
R90. 2 26 RTQSVAVSGRVI CNGQPASGVKLKLYEKES. . . . . . .. TFDVLLEEATSDANGQFRLSGSKT. . . . EI'ST 83
R90. 3 1 . MOSAAVSGRLI CNGRPAVDVKLKLYENEI . . . ... .. FFDRLVEEGRTDSNGQFRVLGSKR. . . . EI TT 57
R90. 4 1 . MOAVAVSGRLI CNGRPATNI KI KLYENEI . . . . . . .. LFDRLVEESRTDSNGQFRVSGSKR. . . . El SR 57
TO5A10. 3 20 SQRAVTVKGE VNCRGHROQPGTFVQLYDEDS. . . . . . | FDSDDL L GSVWADHRGVECVKGSTE. . . . EFTA 79
TO07C12. 7 19 RDQSI AVKGRLLCGNGPAANVRVKLWEEDTGP. . . . . . DPDDLLDQGYTDANGEFSLQGGTA. . . . ELTP 78
TO8A9. 2 27 SEQSVAVTCGKLTCNGEPAAHVRVKLYEKET. . . . .. .. TLDVLLDEGTTDENGEFKLQGHKYV. . . . EVST 84
T21C9. 8 23 SDQYVTVTGRLI CDGQPASDVLVKLYEDGT. . . . . . .. | YDTKLDSTRTSYDGTERVSGHYT. . . . KVFD 80
ZC64. 2 29 ANRTIMAVKGQL YCGKKPFEGAKI RLFRTFQPNa. . . ADDLAELLDVKNTYI TGVFQ\/EGGTArf pr TKTD 95

B0334. 1 80 I'DPHVNI Y. . HKCNYNG. . . . . VCYKKLKI KI PKSF. | SEGE. TADRTFDI GELNEAG. SFSGESTDCLN 139
a4:R2. 1 116 | DPQLRI Y. . HNCRSSSK. . . . VCRRKI TFTVPDNY. VNKGM QVNKWFDLGVPNIVEI gVKHKEEPHC. Y 176
Cl1208. 4 84 | DPKVNI Y. . HKCNTI G. . . . . LCYQKFQ Tl PDNF. | SI GS. | POKTFDI GEI HLAN. | FQCQTTDCI N 143
C27D0. 2 78 LNVKLI VQ. . HRCHD. MKT. GRSDSRI KGFSEFs| HLED. LI RSNYD. . . LEMNI . ELVGNSVRMSS 135
C33A12.7 240 FSPNPY!| Hf aNFCDPSNTI ranZAKTI Kl FI PQEF. VSDGH. | PKM FNI'GDVELTK. | ETENSTALAN 306
C37C3. 7 236 I'DPKLENI Y. . HDCDDGLK. . . . PCORRVTFNI PKSE. VSSCGE. NPKTFFENI GTI NMQI . EFESESHNVAL 296
CA0HL. 5 79 | DPKLNI Y. . HDCNDG K. . . . PCORKFTI KI PDSY. | NKGK. TVRNI YDAGVI QLAG. SFPGEGRDCLH 139
E02C12. 4 74 M. Pl AVY. . HDCDDGVK. . . . PGORKLKFQ PKYY. VGSCN. . . . . TFDLGEFNL. . . . . .. ETRVKHN 123
F10Gr. 10 78 | DPVLYI W . HECRDEQT. . . . PCSRKI KFVI PKKY. | HGGTp TDEQW/NI GVLNLEG. SFDNEGPCHTD 139
F22A3. 2 78 | DPELRI F. . HDCNDQGS. . . . PCOREW/I RI PAKY. | TNGP. EVKEI NDLGVLNLEV. EM SKLLI LGI 138
F22A3. 2 213 | DPHLKI Y. . HDCDDG N. . . . PCORRWKFELPNNY. | YSDT. DTPKTFDI G WNLEG. | LPGESRDCNH 273
F36A4. 8 85 | DPKVNVY. . HKCNYAG. . . . . | CYKKFG Tl PDDY. | TWGY. SPNRNYDI GTLNLAN. KYTGTTTDCLN 144
F40F12. 1 65 | EPYLAVF. . HDCKDG T. . . . PCORVLRI NI PKSY. ANWGS. SAEKTFNAGNLELAG. KFPGETRSCFN 125
KO3HL. 3 88 | EPYLAVE. . HDCKDG T. . . . PCORVLRI NI PKSY. ANWGS. SAEKTFNAGNLELAG. KFPGETRSCFN 148
KO3HL. 4 88 | ERYLWVE. . HDCKDG T. . . . PCORVFRVNVPKSY. TNSGS. SAKKTYDAGVI ELAG. KYPGETRSCLN 148
KO3HL. 6 88 | EPYVN F. . HKCNDGLS. . . . PCORQLRVDI PKSA. TASGP. APNETFSI GTLELSSr KVI GERRSCAY 149
R13A5. 3 77 | DPRVN Y. . HDCDDGAT. . . . PCORRLTI GVPDKY. | TNSD. KPTKVFDLGTI QLAG. KW/GETRDCI H 137
R13A5. 6 78 | EPKI NI Y. . HDCDDG K. . . . PCORKI TVYI PSQY. | SSCK. DPKKI FDFGTLQLAG. KFSGETRDCLN 138

R90. 2 84 | DPKLN Y. . HKCNYNG. . . . . LCYKKI G TI PDNY. VSSGK. TPSKTYDI GTLNLAN. QYTGQITDCI N 143
R90. 3 58 | DPKLNVY. . HKCNYNG. . . . . LCDOKFTI HI PKDY. VTSGS. QPSRTFDI GTLNLAN. NFPGQSTDCLN 117
R90. 4 58 | DPKVNVY. . HKCNYNG. . . . . LCSKKFTI KI PKDY. | NRGS. QAERTYDI GTLNLAN. KYPGESTDCI N 117
TO5A10. 3 80 | EPYVFI E. . HNCGYEGLN. . . . EKRVFSKM PAEY. | TEGA. KAKHVYHLGDI EL. . . ........ ... 127

T07C12.7 79 | DPVFKVY. . HKCDDSKLK. . . PGARKVKLALPKSY. | TSCK. VAKKTFDI GVLNLET. VFAKEERELLV 140
TO8A9. 2 85 | DPKLENI Y. . HKCNYKGVSysnl CYQKSSLTI PDNF. VTEGE. VPQKTENVGA | NLAN. KESDVI RI LMP 149
T21C9. 8 81 MDPKVN Y. . HSCNHYG. . . . . MCDKKLRI DI PHYA. | NSGOnFGVDNYDI GTLNLAD. QFSGETTDCI H 141
72C64. 2 96 | QPYVTI H. . HNCGVDNKQX snYGYKRI GVRLPEDY. VTLG . KARKVYDFG LNLEL. EFPQETHDLKF 160

B

KO3HL. 4 1 WVBKYAI LGLVLEVGTVASLDFI'G. . RTQSAAI KGRLVCEGKPASGVKVKL VMESDNSFG. PGFLDSDDKIVASGKADSHG 74
KO3HL. 3 1 MRELLVSI ALFI GSTSAINLI G. . RTONAAAKGKL MCEGRPASGVKVKL VESDNSFL. PGFL DRDDKVASGKADSNG 74
KO3HL. 6 1 . MKI ALSFLFLTSTFSNAGKI G. . RLQSVAVSGQLNCL GKPAVGVRI DLVESDNNGEETG | DDNDEMGYTYTDSAG 74
C40HL. 5 1 ....MKLIILLCLVASSYALI G . NTQSAGVRGKLI CNGKPAVGVLVKLYDDER. . . . . . G DADDL MASGKTNGNG 65
TTHY_PETBR 8 .. LELCLAGLLFVSEAGPVAHGGEDSKCPL MVKVL DAVRGRPAVNVDVKVEKKTE. . . . . . KQTVEELEAS. GKTNDNG 75
TTHY_SM MA 8 .. LLCLAGLVFLSEAGPVAHGAEDSKCPL MVKVL DSVRGSPAVNVDVKVEKKTE. . . . . . EQTVEELFAS. GKTNNNG 75
KO3HL. 4 75 EFNLSGSTKEI TGA EPYLVWFHDCKDG TPCORVFRVNVPKSYTNSGSSAKKTYDAGVIELAG. KYPGETRSCLN. . 148
KO3H1. 3 75 EFNLSGSTKEI TG EPYLAVFHDCKDG TPCORVLRI NI PKSYANWGSSAEKTFNAGNLELAG. KFPGETRSCFN. . 148
KO3H1. 6 75 FENMVSGSEVEI SG EPYVNI FHKCNDGL SPCORQLRVDI PKSATASGPAPNETFSI GTLEL SSRKVI GERRSCAYRN 151
C4A0HL. 5 66 DFEI SGHEDEVTPI DPKLNI YHDCNDG KPCORKFTI KI PDSYI NKGKTVRNI YDAGVI QLAG. SFPGEGRDCLH. . 139

TTHY_PETBR 76 El HELTSDDKFG. . EGLYKVEFDTI SYWKAL GVSPFHEYADVVFTANDAGHRHY. TI AAQLSPYSESTTAI VSN. . . 146
TTHY_SM MA 76 ElI HELTSDDQFG. . EGLYKVEFDTVSYWKTFG SPFHEYADVVFTANDAGHRHY. TI AAQLSPFSESTTAVVSN. . . 146

Figure 9.6 A. Alignment of a seledion d the members in nematode-spedfic family nr 2.
This family has we&k similarity to transthyretins (B), suggesting a putative function as hor-
mone transporter.
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Figure 9.7. A. Alignment of all members of nematode-spedfic family nr 8. No puative

NWRAR BNWWORAW NWRBE BDNWWOAW NWREBRE ANWWWORW NWRAR BNWWOAW

A

1 MIPNYHKERMISHPWIFEL L EFKWKGSIWVAKAVYMVET! IPFELI OYG IPSVIIYKTANGESS. . QR. . . . TEESLVRYFDKRESY. I'PLERVEGEFVT TVWNRWIKLYQTI'G 101

1 MTI NYHKElI KTSHTWKFEVLLFRWKGSI VIKAI YMETI | FLI CYQ | SWYRTANMBEPS. . QR. . . . TEESVI RYCDKRLSF. | PLEFVLGEFVTI WDRWIKLMWRTVG 101

44 LSYNYNYDLATSKSLM VRM FKMRGSLWWQAVYKELI VW CAYSLVSVI YRFALTRSQKEQNKei i | FERFGEYCDARMGY. LPLNEVLGEECNI | | RRW.KLYTSLG 150
T S T, MUSEEVTTI VQRWNNVETNMG 21

261 ......... STYKNNI | FQ LERWKGSVWKSI WKELALW VTN YTI KAVYMT. LDDDR. . Kl . . . . | EDKNFLPKI ANFDL. SVLTEMLTEEVTTI VARWAKI EDNMG 351

PREe

102
102

S RVARRT! | RYLVASQVLVLRTI SVRTLRREPNYTSI VAAGFL HODEADI | ENVDFEYD.

KSAEVLTAFFYYYFQ\/I LKLl FKWKGSLWKAI YLDL| VWCFCYAFI SVI YRYALDRSQ. . QD. . . . TEERFMOFCNRRLDY. I'PI NEMLGEEVTTVI NRWMTQEANLG 145
MIISYD. . ...... EEFSSLM_RWRGSI VKAVLKDLI GEYI AYYI VLAFOQAYLLDEKG. . KE. . . . YETGW MACEI GAQY. | PLSELLGFEVSLI VARWAEQENCI S 93
MIVNYNL DVSSASI FSFLRLOQLRAKGSI VIKYLLKELFNFII ARl TVSSVYRSNLI | GEKTRK. . . . | MDNFAALFDONNDF. | PLTEMLGERVTI | VRRWNDI FANLG 103
MIVSYQLDVSSGNPL LFL RLLGRARGSI WKSVVGDLFVWLLFYYAI YFAYRYAFSKQL. . QT. . . . VEEEI S| HTDDRWKY. LPLTEMLGEFVTTVFERWRSALNVVP 235
MIVSYNQSVATSRPWIFLAL | FRARGSVWBAI W QYSVWLGLYFLVSAI YRFI LSAYQ. . QQ . . . | EVRLVDYVNSRVEY. VPLDWWLGEFI AGVLRREWYLYDI | G 101
M| SYTLDVSQTNLQSFESL LL RARGSVWKAVEGQLAVWIAVEL LI SCI YRYMLSPSQ. . QD. . . . VEEQLI RYFDNKLDAN| PLTELLGEFVSFVWARWGSI LNG G 102
MIISYS. ....... DTFLKLLFRWKGSLVKAI WKHLLI FLTMYYI | NAYYRFGMTKEQ. . QN. . . . BRI KYVMLVDGMKE. | PLTELLGFYVAM VRRWADCCQLI S 93
M1 NYNLAVSTSKPWILEKLLLKMWRGSI VKAVI LELAVWLVLYG LSVI YRTALNPGQ. . QR. . . . TFERI VQYCDSRLSY. | PLNEMLGEFVTAVWNRWIYLYQ | G 101

FI DNVGLVANCYI RGATEKARI YRRNI MRYCEL V@' L VFRDVEVRTRRREPTVETVVAAGE MNKHEL ELYNSYDTKYNSK | GTKYW PANWAL CMT YKAR.
FI DDVCLLANL YVRGT SEKAI | YRRNI ARYCAL TQLL VFRDVSVRTRRRFPTVETVVAAGEVSKDEL DLYNSYTTKNNSr | GKKYW PANWAL CMTYKAR. . .
NI DNI ALFVSAYVRGTDDRARQN RRNI I'RYCVI SQCLVFRDI HVGVRRREPTLEAVAQAG MLPHELEKENSI KSRYQ. . . . . KYMW/SFNWAL EL L NVAK.
Fl ENAAYAVSSFMKNG. EDVRRAQRTVI RYLVASQI LVMRSI SI KALRREBNYESI VTAGEL TKEESTI | QNTDLSYD. . SSCVPI RWAI QVLRHQY.
FI ESAAYAL AAFIVDDKINDE. . . . . . .ot oottt et e e e e et et e e e e e e e e e e e e e e

. RTW/PI RWATEI LREQ:ma\vsat nK 547
. KYMLGFNWTFNLLNEAR. . . . . .. R 241
. KWEI Pl LW VNLI KKQ( ....... Q 187

MBTGL
QTYNWPI NMANSLALVAH. . ... .. Q 332

M DNI ALFTSMYLSGNDERGRI LRRSI VRMCVVEQTMWFRDI HI GVRKREPTLETMVAAGH MTSSEL KKYNEVESRYA. .
WPDKMM MVSACLPGN. . ENWVRQTI ARWESL QAAI AWSGVSVKT L KRFPTERHWASKL MIEEEYDL YMNTDAPHG. .
WWENTAI TVANYl RGTDDRTRM RRNVI RYMVL AQVL VFRDCSI QVRKREPTMESI VSAGSFS. . . . QCLGSSATEYY. .
FI ESVALSVAVL LPGKGREDRLTRRAI | RYWLHQ LVFRDI SMRVRRREPTL KYVVDAGEMVRQEELDVL ESVNCESS. .
Fl DNI ACSTATYI RGDSERAKQYRRNI | RYCEL TQVL | FRDL SMKARKREPTL DTVAAAGEMVPHEKANEDLI QYNYN. . . . . KYELPFNWAWALVYNAR. . . . . . . K 197
W DDASLLFATYI RGADEETRVI RRNLVRYLVL SQALVLRDI SMQVRKRFPTMDTLAASGL MTHEEMDI LDHI KDPYS. RYW'SI QABLNLVYEQQ. . . . . . . K 198
WPDHLL YNVSALI RGQDPETRI | RKTI ARYT| LTSVLAWRSI SLRVL ARYPTDDHL VDSGL MTKEEMVVEKSI LVHVDP. . HOKWAVPLNW QTMWRCEF. . . . . . . E 192
FI DNl GEMAAEYVRGRTEQARMYRRNI VRYCEL AQVL VFRDI SMRTRRREPTL DTVVAAGEMVPHEKDREDE! QYKYS. . . . . KYW/PFQAAFSLTYEAR. . . . . .. K 197

DGYI ESDYFKAQVEGE! RTWRT NI EVWCNYDW/RL PL MYPQLVCLAVNLYELVSI I ARQLVI EKHKM VLE. . . . . VDVYEP. . . . VMTFLQEI FYMBALKVI DVMLN 300
DGYI ESDYFKAQVEGE!I RTWRTNI EVWCNYDW/PL PL MYPQL VCLAVNLYFLVSI | ARQLVI EKHKM VLE. . . . . VDVYEP. . . . VMITFLQEI FYMBALKVI EVMLN 300
EKSI DGDNARNAI AQEI SKFRSAL TTVSMYDW/PI PLMYPQL VNVAVHTYEFLCl FTRQFFI SADAHNKTE. . . . . VDLYIP. ... FMTI | EFl FYMBALKVAVELLN 345
SGNFFSHSVYRATWKEVSDFETHL SRVRKVDW/PI PLAYPQVI EFAVRLYEVI CAFAKQYFDLDDDDARYV. . . . . I HYYER. . . . I VTVFQEI CLMGALKVAEALLN 215
DHPFAAPSL YSAAWQEI KNF@ASI SWWKNADW/PI PLAYPQVI FFAVRLYFEI FCTFTRQHMETDPEI DRTI dssnyl TYYI P. . . . LGNI FQEI CLMBWKVSEALLN 651
EGRI ESAYTQNAI'AEEI RTFRSGLSL I WIYDW/PI PLMYPQL VEVAI HCYYLVCLVSRQFVI NSDAVNTTE. IDLGVR. . . . FMTI I ERFI FYMBALKVAVDLLN 340
KG | BS. | QVDMLLKQVYSYRDGFAMLFVWDW KI PLVYTQVVAI ATYGYEFI CLI GRQPKLDQRSM EKE. I TILER. ... FFTTFQVLFYLGALKVGOFSI R 284
EGKI AADLLMNEI GKHI | EFRKMLALLSNYDW/RI PLAYPQVVELAVRSYEFVALI ARCSVLLDGKE. PEQ. . . . . PSI LYPt vpf WNBI LQEI FWGWKVAESM N 290
QKLI DQPTAFNNVI FAI KEFRVANVETLI KEDAI Pl PI AYPQVVFLAVRVIYEAI CLVSRQFLI SDVKS. KTQ. . . . . MDWPVR. . . . | MTVLEFI FVI GAWKVAEVLLN 430
EGLI EGDYYVTVI SEDI KKFRTGLAWCNYDW/PLPI I' YRTI VOLAVHWEFVG LARQYVKGSEI D. PDM . . . . IDLVFP. . . . FMISI QEVFYMGALKVGEGLLN 295
KGKVDSYYLMNKI VDEI GKFRHGLASL L KYDW/PRVPLVYPQVI FLAVRI YEM CLI GRQFI VTGPNP. . SG. ... . IDLWP. . . . I TTWQELVYMBAWKVAEALLN 295
KGTLTHTNELRVLLDALEKYRNGFFQLFI YDW Al PLVYTQVSTI SVYGYFLFALI GRQYPSKNENE. . El . . . .. VDWVWR. . . . | FTI LQELFYVGALKVGEDLM- 289
KGL| ESDYYQVWQDE! KKFRTGLAW CNYDW/RI Bl MYPQLVCLAVHTYELVCLLARQYWWSEHADNKTE. . . . . IDLYFPR. . . . | MSTLQEI FYMBAWWKVAEAMLN 296

PFGEDDDDFETNALI PRNFTMGLM ABN. . . .. .......... PMBTRELRK. .. ... .. DPEYDEVDVPLL YSEESSNI' PNHHYHGSVSEVRLEQKG. NAPVMWPH 384
PFGEDDDDFETNAL | DRNI TMGLKIWVDN. . . TMKTRPELLK. . ... ... DQEFDEVLVSLL YSEESSQ SNYHYHGSTSEVHLEQK. . CSSVRM PH 383
PFGEDADDFDCNL L | DRNLAI GLTSVDDA. . YDQLREVKP. . ... ... DVETGGSVKPLDS. . . DDTRSLKYHFGSAAQVEE! SYLKKEENKM AA 428
PLGEDDDDEEVINFLI DSNI . . . . .. oottt et et ettt e e e e e e e e e e 234
PLGEDDDDFEVNFLI DRNI YTGVAI'VDTE. . YAEG’ALKKan gkeki DAREGEHARPRYPHGVDGSI GDA. LVGSAQNMKFDDP. . . PENKQFSV 741

HDDGRI LEK. . . ... .. DVEVNDTVSPLYS. SAAAQRNVNFYFGSATNADAQ PDjVRQ TM PH 425
SDQLPSI GA ........ PWP. . . AVPHTR. . ASFKI'QDVI PKSHLAGFKLSEA. . . . EMKLI KP 356
YNRTPSVEK. . ... ... DAEVCADVEPLYS. VETAM PKNPQ GSAANYDVKVD. . EEEVMMVPH 373
HGYHPDL\D. . . .. ... DVESDPNYLPAYS. . ENSQ PRN. LTGSAAKVELAAP. . TDEVKI VRV 511
YDKTPRLEK. DARVWDDTW/P LYSEASAHEKRYI-QR@LAHI KI GRS. . VSQVRWPR 379
PLGEDDDDLECNYI | DKNLI TGLSI VDTMM(hddt gysnveehMAKTRACKK. . .. DERWG DKI APL YSMESAERSVHPLVGSASKI NLVKN. . KKEI VMTPH 393
PFGADDEDFEFNYI LERNLEVSM._| VDE PVYV. . . . ESL. . DDEI REL HTSASSKESNHPQRQHL RKLKFNVD. . AMQVQAVPG 371
PFGEDDDDFECNAL | DRNI TWLM\NDQX_‘: DDEVDEEVEPLYS. EETAKI PNNPLKGSVSDVKLPEY. . VHEI KMWPH 379

I

~

function has been asdgned to this family. The hydropathy plot (B) suggests that the proteins
are likely to have atransmembrane location.
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B0547. 3 25 LLAYLALFQTPRVIIQBYSTLI VNFAI TDFFACLFDEFVQQRLI PSGLTL. . AYl SNGLCSHFGPTTCYVGYSLM HCL SHSLWSLLLSFSYRCY!I LYKPAPT. . . 124
Q06C3. 6 144 FASYI | TFHTPKSMTHLKLCLLNLKFWIELI DLI YTVFLI PFVFYPI FAMGYI G FGKVFG PSEI QFYFAMACYGA ASAG LI FENR. QHEM PKGHKFRI QN 247
Q06G8. 4 25 FLOYLAI FQSPKAI RTYSLVLI NI TETNVGACVTGELEDQRI | QSGKSM . LYVSYGYCSLLGEGFCFNI FAAYLHFHTHALW LFL SFVWRYYVII| ROEPT. 124
Cl2D8. 12 23 | LTYLI LTKSNSKVGSYKYl MWL SLSALCYSVLGM VRPVSLKLKSRK. . KTTSSSVSLFEWEFM T. . . il €GFYFFFASLI SVHFVYRYKALKYGSKW YE 122
C39H7. 6 25 LLTYLALFQTPRVI KSYATLI VNFAI TDFCACLFDFFVQQRLI PSDLSL. . AYI SNGFCHHFGPTTCYVGYSLM_HCFSHSLWSLLL SFSYRCY| LYKPAPT. .. 124
C39H7. 6 343 LLAYLALFQTPRVI KSYATLI VNFAI TDFFACVFDEFVQQRLI PTGMTL. . AYVSNGFCKHWGPRT. . . . YSLMLHFLSHSLWSLLLSFSYRCYI LYKPAPH. . . 438
ca2p4. 4 25 LFLYLTAFHI KKI TGTYKLMWLI FTFI G VFSAVELVARPFAHNYNKALI . YESLNSW. QEYPEFLQF. Al | LFASFYLVI LAl | AVOFAFRYFTLCKPHLSKKE 127
CA2D4. 5 25 PLTLLI LYKSPSSFGAYKYLLTY! SI'FELVYAVLDVLVSPQLYTHKSAF. . MLVLDSNKTFLPFWILYPI DLLFCGMLGCSMAI FTI NFI YRYLVIVKGSELLKSE 127
ca2p4. 9 28 FLWYLI LTKSPRQUGVYKYLMVFI SI FEI LYSLLEVTLTPI HYSYRSSV. . WLI TTSDKLFSRDI LLTLNSFYWGFFGSSLAI FAI HFVYRYLVI SGNALLQTE 130
C45B11. 4 47 LTI HCl FNKTPKTIVDSVKW/I FNTHOWCCYVDI LVCSLI TPYFFFPTLSG. FPVGLFRVLG PTSAQLYI GWSCWMA Sl | ALFENRSSCI ONNRFKI TK. .. 147
C50C10. 6 27 FLI YLI LKRSPDALGLYKWLMW TSI FELTYSFVNLFAGCSVRTFGSAF. . | VFRKD. . QHFHLI SQF. MAVNYCSFFGESLAI | ACHFI YRYGTVELEFHKKYI 126
C53B7. 5 26 | VLLGLLKTRGKNLGTYKYLNMAFESVESI FYALT EFI LRPI MHI ENTTF. . FLI SRK. RENYSTKLGKI NSAFYCACFATSFVWWSGVHFVYRYFATCKLKYY. . . 124
D1054. 12 186 FGAYI | VAKTPRKIVRTVKASMEALHCI GAFVDFYLSFI Al PVETLPVCSG. YPLGFSLVLG PTDVQVYLG SFVGVI AVTI LLFFEDRHHRLI NSNI SNGAR. . 287
F13&. 2 32 | LM LI | RKSPNSLNDLKLFLYNTAFCQIANI LSAYFI QVRALPNTTTL. . AVLANGLCRKFGPEVCFGTYHVYLG SSSVALSI STTVMERYSLIIKNVRLS. .. 131
F17A2. 12 27 MIYLI FYHSPTHLKM_KVFLENTSLFQ | LWVSCSSQFRM TTAI Pl . . ELRSYGLLRYLEAW GYTMYQVLQTSAFMBGVEI LI TFVEKYELVRQI EFSK. S 128
F17A2. 6 28 FVI YFI LNYTPKQLQTLRYI'LVNTCVFQVI HVSACYLMQFRQVSNLVPM . EVWBYGYGRHFEAFVGYSLYHVVQTSTVASG SVWMILFLKYEAARNVKLTS. W 129
F17A2.7 23 LLI FI I LRYSPDCFQTFKYI LLVTCI SQ VAVTTNCLI Q RQVSNLTPM . El WCYGPLRHFTALI AYSTYFLTQTAVVI SNVLI FLTI YLKYLATKI NTRKT. . 123
F28H7. 1 24 ETVYI VWNDKKLQUGNYRYLLL YFALENI L TSIFVDM.VPMCVLNYRYAFS. VEVSDGFFEEYSDYHQF. | | AFRCSLI SGAYAVLHSHFLYREFVEFNNQFL. .. 123
F32&3. 1 32 SWLLWFKTRPVVFKDFRVFLVNSSTLQFFMEI | WETQVRPVNNPESS. . AYL FSGFCRHTHKNACFFSEDFFQL VFDASSFAI PATLRYKYTKVTNI NMKN. . 132
F33HL. 5 45 LLI ¥VI FKRTPKHVRSYAVLLFNFAI' EDLL TCVASLLACKTI FSGLSL. . TYI FHGPCKYVSSSL CFFCHCFVCHAMAHSQW LLI SFI YRYRVLVDGAPD. . . 144
F40F9. 4 53 GFGEMCYLRLSNQ SMVSMAVNNL QKQLFYSLVLQTLIPFVLIVHI PI TI . . YYLCPM_DVDLDFASVFVASTI TL YPAVDPL PSFFVI KSYREAI LKFFRKI NPL 155
F58G4. 5 24 LLLYLI KVRAGNSFGRYRVELMVSESI YAl YAFI El LTMPVLHI HKSGV. . LEYLDG. VLKFQTTI GGFMSSLYCGSFALCI SMEATHFI YRYVAVCRHGKLYYE 125
R04B5. 8 27 LLLLLI FKNQTKLERTMRI YLLNI CAAQUVTI |ISGELTQCRM P! . AFVCTGVClI RVGRRSCFL LHLLRDASSMWVALFAI VHVFYYRYKI LSHOKLS. .. 126
R04D3. 6 27 FLLELI VKHSPKSI HMLRI 'LGLTCI FQ VLAFSSFFTQ RFI TTKKPI|. . EMABYGL CKHFEPW CYCFYQAEQLTALASGLTI YGTFFLKYRMWKGVQVEK. E 128
R04D3. 7 23 TLI YTl | RHSPKNLSTLKI | LI NCF | QSSMAFI TQI RYVSNLVPL. . QLWBYGPCRHFEAFI CYSMVHVL QTSSLI SGMTVFLTTFVKYQAAKHWLP. .. 122
RO5H5. 1 41 I'LIYLI VKRTRI QVRSYAI YI LNFALEDFATCI | SFESCQQVI FSDFSL. . VYI FHGPCKYVSPWFCYFCHCFMCHAL AHSQW LLGSFI YRYRVLTGETPT. . . 140
RO9F10. 6 31 VTLNALFRESSQ FSTYKYFI | VHI I'I NIjl SECYVSFMMLPMIYLPHPM . . EFERNTGALADLGFSGVWFI FY. GLAQSVMLTVGSI LEMFFFRYNLI SVYKNDLFK 131
ZK829. 8 698 LFLVLLKFKSPRYI GGYRYLLMIEGVENLI TSVTEAWSTAI EGFNNCLI . | EVPHGLLFEYPLLAQN. LI SI/RCGMCAYTFALLAVHFLYRYLAVCRPLAI AHE 800
B0547. 3 125 . RHV. . LVI LI FLI YTPSLF. . . QFVSFEWAQD. . ... ... ... EPTEI'REI LTESFSTYNLT. .. ... .. GYTVTGTKNI | CFSALFTI LHMTLPI TPVYICI L 204
Q06C3. 6 248 CAFR..VLLI | FNVLIGSSV. .. MLNAI W.RAD. . . . . ... SNELKFKFLKI NPCPDPL. . ....... YFTPSTFAVDSQRNEFSI Cl VI VLTVWFI QYTE 326
Q06&8. 4 125 . KKV..LQ SWI Wyl PSLI . .. QLI SMCLQEM . .. NFDELRSLSKEWPQYNLTG. . . .. ... LTI TGSLDFFTFAPFYCLVHVAI | SFLI AIFG H 204
Cl2D8. 12 123 HGKY.. TFAWFLI SPI LYI NW . TLNCI FAFQ’I\K}R .. STEFLRPRNVERDFG NVDDVTY! | ADFYPVHENGOKFPSI GAFI SGFNFLLMITVSLFVI E 215
C39H7. 6 125 . RPV..LVLI | FLI ¥TPSLL. .. QFVSFLWAQD. . . . . . . DPDEVREI LTKHFPAYNLT. . ... ... EHTVYGTKNI | CFSALFTI LHMILPETPVYICI L 204
C39H7. 6 439 . RHT..LVILLM | YIPSLF. . . QA SFI WeQD. . . . . .. DPEElI REI LHVAFPAYNLT. . ... ... GHWTGTKNI LCFSALYTI LHMII Pl TPVYVCI L 518
Ca2D4. 4 128 GGYG . VI WLLLYSLI SGFI YG. GALGYFGYPDI Y. . . .. SDDYMSDWEEWYNRTI TSFP. . . . RFLI | PY; | DFLI VGVFI LELQYAI I | 216
Cca2D4. 5 128 ESSK..LFI WASPWYSAI W . MFl TEMTLOGNP. . . . . . .. DTDKLLEDTFLKKQKI SLSEVVYI GPNYYPEEGVI DW Pl | GM SLTLM FVSVYSI I'YFA 219
Ca2D4. 9 131 . LILWM PLMI GFI . . . . MRNDVVEVFHENI EEFEYLG. . AL. MYEKSWATKNM | YWSPI AGMTI MBLTVLASFLVI V 224
C45B11.4 148 I GIK. .. VWYFLNCO PIVG .. YLIPPFFHI P. .. .. ... .. DONAAKLNELQTI PCPTEEF. . . . .. FYSEIFVLATDDFWHTYLWVETTI | VI G FI QUAE 229
C50C10.6 127 SGSK..HLLLYIGRPI SIG | W. G MCSVYCGETPE. . . RSDYLRKNMVDNYRLRI EDVGYl SANYWPMGEKNGT VRPDFDSFFGTFLIMAI | VGASI GSVL 219
C53B7. 5 125 ........ NTLHRPNELRLFN. . LPTLLLWPLG. . . . . .. CSVPVTIMMSVSYELYP. . . .............. DTEYTEAAVTNVLNNHYNW KKENV 189
D1054.12 288 . NVK..RVLYSI | HYl | SVT. .. FI APGYMNIP. . . .. .. DQLQGRATVQQEI PCI PKD. . . . ... .. VI NRPGYFVLSI VNTI'PCLCLI FMFSLI | PQAL 366
F13&. 2 132 . RTS. . ERGLI I CGHI APFI . . . ATAI PETTQW . . .. . . DFDWRAQSVKEHSTYDLS. . . . . .. | YAPFSGFSDTRSFQFLFVTAAI Al GAYFVPENMVBY 212
F17A2.12 129 RVTG .| IILLFHVPI I ASW. . . MEVI MVI NGS. . . .. .. LPNEI REQYKFLNANAEEY. . ... ... .. SIVGALSLKTVPSLINFLLI SGSVWVASPFI SE 207
F17A2. 6 130 KRYL. . I TCI LLPLVTSVT. .. LEIILIITGS. .. .. .. LPNEI RERYKLI NVDVKDH. . . . ... ... SVVGTLNFKVLASQVNVCI MSSSVWM_PI'I GL 208
F17A2. 7 124 CNYG . VTFFILSPIFIALG .. AQTSLILTEG .. .. . I PSENQDHLEKI NFDI SDH. . . . . ... .. AVI GYI RLKTLPSI || TFVI TGTI LI LPAVG. 202
F28H7. 1 124 ........ TRWMPYGLLTS. .. . IFYLIFH V.. ............. IFWITEGTPNAMRLS. . ... ... ... .. ... RIG G ..SMBVLSI | SLAFIF 177
F32&8. 1 133 . I TKNQ'RM LLSSYLLSLI ... VGVI YWITYE. .. .. PDESLEVASETRKFHSTQY. . . . . DFRYYADI TGYQKHFWBWLATNLNM SIFVPPEVSE 216
F33H1. 5 145 . TKK. . M\VI VSLFYAMBAV. . . | FLFYFWDI G . ... ...... DTNI]_KQ MYDLHPQYHYDDREI W G. DI VWSGNTTVLTI PSLI Al FYMTIVPCVPI YFI | H 230
F40F9. 4 156 RFLLNHYI FI LI RKEGKKFTTGAKFSLLFLFPLMYGH WANKNPDVDEYNVRDL | MRTVGQPFERI TYFGAKFYNYDEEGRVEL NKNAW GLCQTSFMVSSSLACVE 260
F584. 5 126 DA K. . FYNLFI PRTELFIV. . . WILSI YFNFG. . . ... ...... PNQ KKDFFRNI TMOLYD. . ... ... . ...... EDI DKI SFMGPLYFTIHCLMICVIICAY 197
R04B5. 8 127 . SVQ . I NRNFI | VHLPAL F. .. CAI CQFI NPS. . . .. QHNAI VLETRALHPSYI FE. . ... ... OQNSIFGFSALTSPAVKASTI | FTI VLVLNPLAAI 206
R04D3. 6 129 EI LK. . TYFTFYCPECLSFI ... LVI | | VKT@QT. . ... .. FSWEAQEQERLVNLFLNNED. . . . . .. EYLVFAFLSFSKWPNTENLI | TSFCI FVWPVLSE 210
R04D3. 7 123 ... .. KKNIWAC. ... ... ELYLITIQA . ... . LPQDI'RKSYESI NKNLEEY. . .. ...... SVI G MNYSFLPSSI NGVI VNGLVVWPI SCL 190

S5H5. 1 141 . AKD. . EIRNSVALYSMSBLC. . . FLLVYVFDNS. . . DSDLLFQ ETRVHPEYHYDDESI W KKSI WSGNI SAFAPI TLI S| LYMIIPCVPI YCAI L 227
RO9F10.6 132 KLLRFQVLLYRFLIIFHPIV... AITTINYSIG .. .. VEAKATMELWLSNPNLP. . . ... ... PEVTCYSCI | AVLDDYVMYI | TVI YA QVILQL 211
ZK829. 8 801 FRPK. .. TI FLNSLEVNMCFGSSWVLIIGHITTMAP. . . . ... .. DDHI YDLI DEKFI QFHNTSSRDLAM VANYEYPVYDWSKSG LGWMLI ATLI TTSI M SYV 890
B0547. 3 205 VLRRRI | SRLSFKGVN. . . | TKDTKNEHSQLEVAETY@AAI BGFYLFG. . ... .. ... LLTFSSFLFI'R. . . . LLSRLASFI FVTRYRHFI NHAF 282
Q06C3. 6 327 FI SHC Wyl YSEDAVR. . . YSKSTRKLOKMFLYASFSQLG FVTVFEVLPLG FAMWLTTGYKNQ GLLNI CNLI FPTIG. . . . MNTSI GLVTMYKPYRDYFIIG E 423
Q06G8. 4 205 | LRKM | NRWLNGVD. . . VIl RSRNLHAQLLRTIESFKATVRI | YYFGCI FFI LGRI WINP. . . . | FEFSI FVPTVI'VR. . . . VLTPLSAFI HVAPYRDFVSKME 298
Cl2D8. 12 216 | FGFKCYYEMIRVVWPGRNYSI TOKLLOQTQLERALVFQTLI PLI I MYl PLFI LELFPMLNI DLG. . FAHYVSI SI'SLYP. . . . ALDALPSI LLI RDYRDSLI'KVE 314
C39H7. 6 205 | LRRKI TSRLSVNGVN. . . | TKETRNVHSQLLVALTYQAAI PGFYLFGVTSYAI GQFG YNHPA. . LEYETFSSFLLIP. . . . LLSPLASFEI FVIPYRRFI VHYE 300
C39H7. 6 519 | LRRKI | SRLSYQGVN. . . | FTSDTKNLHSQLLVALTYQAAI PGFYLFSI YSYAI GQFGA YNHPA. . LEYFETFSSFLLIP. . . . FLSPLASFI FVTPYRQFI KLKL 614
Cca2p4. 4 217 YCGVRVHTI LOKELQQ. . . Q8 VNOKLQKQFFRALWOTWRTFLEVLPI APFLI GPLLEPI | EIl GUFPTGAMYVI LTI YS. Pl DTI AFMM VOQEYKKALRGLT 317
C42D4. 5 220 VNSYVAMNKLVLTSWN. . . . SORYKANQTELLNALVI QAI | PFALIVHFPASI VEI TPFENCGNQ TFARI FSVTVALYR. . . . VLDPLPTI FVWKCYRKAMISLS 315
ca2p4. 9 225 | CGYKCYLRI KLLLKNGGT: QLENALAI QTL| PI ELLHTPWLKESFAI FDAGLG. AYCFANSI TI ALYR. . . . Al DRLPNFFI | SPYRKAALGCE 324
C45B11.4 230 FFLCCLYYI YESTTIT. . . LSPKTKKYQRTFELGTI AQALVPLI FLLAPAALVFLSI FENYYDQ. SLNNEI VLFI SFHD. . . . FVSTFI | | LI HHPYRQFLI QVA 326
C50C10.6 220 YFG GOYRW SI-Q_KI VET(ENTVKSLQ«J_FYALW@AI PSVLMYFPI SVAFI FPMUNI ELN. LKYPEI GLTI AVYR. . . . Al DRLPSLLI | RSYREGCNDI F 319
C53B7. 5 190 SYI AYWYYQYENG .. ... VRHI YLKNLLGCEVHYFVMILI PTI FMYAPTGVMEI APFEDVNLN. ANANFI VFCSFLYP. . . . GLDPLI LI LI | RDFRRTI'FNFL 283
D1054. 12 367 YFVLSI FWLYHTVSK. . SQ\/TNRLQ<Q:FFALC| QVFI Bl FVLSFPVLYI VLAl WENYYNQ. AATNFALFA@'ALHG. . . . | LSTLTMLEVHTRYREATFQ F 462
F13G3. 2 213 FVI RKI M VTKAHS. K. . . NEEN'I'KRI—FI'RNLM(G_A@\/LLPLI SYFP. ... || TLYLVTOMIA. EEFLI TEHLLNI MTCFPALVDRFI SEYFI VPYRVALEKLV 308
F17A2.12 208 FFREKI LRRIINSQFYQ . . HSKWKKSQ QVEVKGLTI QAFLPLI FYVP. . VFGLYFYCI LTHT. . . El LEQQYFMIVWRCL PAFFDPMLTLYFVIPYRRRLKI WM 304
F17A2. 6 209 SSRRKLLEHI QKTSDR. . . VSQTKNSQNKMFVKGVI LOTFLPLCFYCP. . | SSI YFYCl VTRNN. EEI LEQQYFMFLI PAFPALFDRY! TLYFI TPYRNRVKI W. 307
F17A2. 7 203 LLRKKTLRNINSN. . K. . . FSI TKKALI KGFI NGVTLOVFLPLI'CYI P. . . . VEGSFLVLAETK. TEVPFEQYFFSVLVM_PM_FDRYI | LYSVAPYRKQI EKW 297
F28H7. 1 178 YFGYKI CHKLSSQSSD. . . MBEKTKKLQTQLMKALTVQAI | PTCVSFAPCLFAWYQPVEGLDLGRW QFAAG AVATFPR. . . . AEDPLALI YFVPTFRRKFINEKL 275
F32&8. 1 217 VFIRLI Q KLNSLKHL. . . FIDKTAAQAKKFEDLALTI QTLVRPAVCVI Pl YI AHLI LENYDLPFL. SNFEKVLYMVLSLP. . . TAl DAFI VI VTI TRYQKAFI AFF 314
F33H1. 5 231 YFRDKTLSTLASNALS. . . MBPATKASHOQKLITVALSI QAAI PI FWLVASG FTLAEFG | DGPI . . PENI TFRLIVDCI P. . . . SSSPLVAFI FI APYREGELRI | 326
F40F9. 4 261 GFGTLCYRRLSDTLSI . . . VSNAPNNLQKQLFYALCFQILI PLVLIVHFPI TI FELGPMLTLDTD. FTTTI AFHTIL I I'YR. . . . AVDPLPNFVI | KNYREAVLNVE 357
F58G4. 5 198 KTYKKLNDLTI Q. . . MBERTRHVNKQLFWILGEQT! LPCVTQYI PVGAMEFLPFFEI HFG. Rl GNVVGAACSLYP. . . . Al DPI'| Al EM DKFERNYVLGKE 290
R04B5. 8 207 | YRNKI WGLLNEYEEY. . . KSPRI KHA. KSM TGLTI QILI BSI GFVP. . . . LWQFFLTQYSE. AGVLI LEYFNSFLVI LPTLI DPI LS| VEVI PERRVFFKYL 302
R04D3. 6 211 HWRKRTLRQ YHQVEN. . . MBAPRQQLYKSFVMGELTI QCVLPYVFYI P. . | YTLYYYCLLTG . . EEI LELEFFEVEI PALPTLVDRI | S| YFVIPFRRKENRW/ 307
R04D3. 7 191 TLRRKI FKLLSGPNK. . .. SSDTLYLONRI FLQGALTFQ FGHI LVIYVP. . | YI CTFI SFI TKT. . . EYTESQFFI FVLPSLTTWDRVI TMYFVTRPYRKKLLCWV 286

5H5. 1 228 YFRHNTRVI LNNPHI N. . . LESPTAKSNHVKLI RALTVQAG PRI FW.VASG FTVMBQFG | GGPI . . PENI TFRLVDCI P. . . . LI SPI VTI | FVQPYREGLLKVL 323
RO9F10.6 212 TVSSCVLFYI LI\FVKTCQBNETATI KEQKMM LSLFI HGELI M_PTI FLI YALFFKSEMN. DLAI SLLMOVAYHG . . . FVSTCAM LFTKPLREKI LPFK 311
ZK829. 8 891 FFAQKI HLSLKACT. . ... FSGAVKRLHSSLLKSLI AQT! | BLI STI | PCFVI WFLPLGGDNYGVMLSTYFMPLLSVYR. . . . Al DRVVI TCSLSDYRNSALKTL 986

Figure 9.8a. Alignment of a seledion d the members in nematode-spedfic family nr 9.
This family has we& similarity to G-protein couded receptors, which is suppated by the
hydropathy profile (nat shown).
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Figure 9.8b. Thedistribution d all members in nematode-spedfic family nr. 9 ower the six
chromosomes of C. elegans (bladk bars). The yellow areas represent the regions that have
been cloned and the green areas are the sequenced regions that Wormpep 11is based on.
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Figure 9.8c. Treeof al members in nematode-spedfic family nr 9. The most similar se-
guences are dmost invariably close in the genome; either on the same wsmid (e.g. the seven
proteins on F17A2), or on the neighbou cosmid (eg. B0O547 and C39H7, F33H1 and
ROSH5).
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Table 9.3 Nematode-spedfic protein families. GPCR stands for G-protein couded receptor.
1 These families have been foundindependently and are describe dsewhere [Troemd et al.,
1995.

Fam- | Members (nr. of domainsin bradkets) | Alter- Domains | Proteins | Length | Putative
ily nr native function
name'
1 C18H2.1 C18H2.3(2) C18H2.4 F37A4.4 6 5 1000 | - (Contains
F56D5.9 one aak
reped)
2 B03341 C04G2.1 C12D8.4 C14C10.2 33 30 160 | Hormone

C27D9.2 C33A12.7 C37C3.7 CAOHL.5
E02C12.4(2) F10G7.10 F22A3.2(2) F26G1.3
F36A4.8 FA0F12.1 KO3H1.3 KO3H1.4
KO3H1.6 R13A5.3 R13A5.6 R90.2 R90.3
R90.4 TOSA10.3 TO7C12.7 TO7C4.5
T08A9.2(2) T14G10.3 T14G10.4 T21C9.8
ZC64.2

transporter

3 B02444 B02445 B02446(3) B02447(3) 9 6 195 | - (trans-
ZK4186 ZK4187 membrane)

4 C14A4.10 C18F10.4 C18F105 C18F10.6 59 25 25 400 | GPCR
C18F10.8 C33A12.10C33A12.11 C33A1238
C33D9.4 C34C6.1 F48D6.2 RO7B5.6
R13F6.3 TO1B7.2 TO4A8.1 TO4A8.2
T12A2.10T12A2.11 T12A2.12 T12A2.13
T12A2.9 T13A10.13 T19C4.3 T21C9.7
T23F115
5 AH6.10AH6.11AH6.12AH6.13(2) AH6.14 | gra 43 42 335 | GPCR
AH6.4 AH6.6 AH6.7 AH6.8 AH6.9
B03045(2) B03046 B03047(3) C27D6.10
C27D6.6 C27D6.7 C27D6.8 C27D6.9(2)
C33G8.5 C56C10.5 F18C5.1(2) F18C5.6
F18C5.8 F23F12.10 F37C12.15F37C12.16
FA4FA.13 FAAFA5 FAAFA.T FA9E12.5
F58A6.10 F58A6.11 F58A6.6 K11E4.4
R04B5.10 RO5H5.6 R10H1.2 T11A5.3
T11A5.4(2) T19D12.8 T21H8.2 T21H8.3

6 B02283(13) 13 1 230 -

7 F26C11.3(9) 9 1 80| -

8 B05643 B05644 C07A9.8 CO9B9.3(3) 13 12 386 | - (rans.
C20F4.2 F32G8.4 R13.3 T19C3.1 T20G5.4
7C5181 ZK6753 ZK6882 membrane)

9 B05473 COBC3.6 CO6G8.4 C12D8.12 ad 60 59 315 | GPCR
C33G8.1 C39H7.6(2) C42D4.12 C42D4.4
C42D4.5 C42D4.9 C45B11.4 CA8C5.1
C50C10.6 C53B7.5 C54A12.2 D105412
F13G3.2 F15A2.4 F17A2.10 F17A2.11
F17A2.12 F17A2.6 F17A2.7 F17A2.8
F17A2.9 F18E3.5 F28H7.1 F32G8.1 F33H1.5
FAOF9.4 FA7G9.2 F52D2.7 F57A8.3 F58G4.5
F58G4.6 F58G4.7 K02A2.1 K02A2.2 M7.9
R04B5.8 R04D3.6 R04D3.7 R04D3.8
RO5H5.1 RO7B5.1 RO7B5.2 ROSC7.7
RO9F10.6 R11D1.5 R11D1.6 TO7C12.1
T07C12.4 TO7C12.5 TO8H10.2 T18H9.4
T19E7.5 T22H6.3 T22H6.4 ZK8298

10 KO7E12.1(58) 58 1 195 -




9.7 Comparison of C. elegans to other genomes

One of the motivations to sequence the genome of the invertebrate C. elegans, isits potential
usefulnessas a model organism. Insights in nematode biology can dften be extrapdated to
human hbiology. For example, in a study of 44 human disease genes, upto 32 rad a homo-
logue in 23% of the C. elegans genome [Hodgkin et al., 1999. Naturaly there ae differ-
ences, bu many of the basic life-suppating functions involved in e.g. energy metabolism,
replication, gene expresson and signalling are anserved throughou al phyla. SinceC. ele-
gans is a multi-cdlular animal with a omplete nervous gystem, it is hoped that many, if not
most, human proteins will have ahomologue in the worm. Many events during ealy devel-
opment and dfferentiation, such as body patterning by the Hox cluster, are smilar in the two
organisms. To addressthe question d how much protein hamology can be expeded between
human and C. elegans, al presently available proteins of these two arganisms were com-
pared.

It has been proposed that most protein damains that are present in two spedes belonging
to dfferent phyla, are dso foundin many other phyla. In 1993,it was estimated that over
90% of these *anciently conserved damains' (ACRs) were dready present as functionally
charaderised entries in the sequence databases [Green et al., 1993. To examine the anount
of conservation ketween arganisms from diff erent kingdoms, we have dso compared the C.
elegans proteins to the proteins in two completely sequenced genomes: the yeast S cere-

visiae and the baderium H. influenzae.

Pairwise comparison of proteinsin H. sapiens, C. elegans, S. cerevisiae and

H. influenzae

To explore the anourt of conservation ketween these organisms, al proteins from ead ge-
nome were wmpared to al proteins of the other genomes (seeMaterials and Methods). The
results are listed in table 9.4 and are summarised in figure 9.9. The animals H. sapiens and
C. elegans had the highest level of similarity, with 60% of the human proteins matching C.

elegans. In general, the organism with the smaller genome has a larger propation o its ge-
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nome matching, and the organism with the larger genome has a larger number of proteins
matching. In terms of percentages, H. influenzae is most similar to S. cerevisiae, which in
turn is most similar to C. elegans, which in turn is most similar to H. sapiens. Thisisin

agreament with the phylogenetic treeof these organisms.

Table9.4. Crossspedes protein comparison. The percentages within bradkets in the second
column indicae what fradion d the genome the set of proteins represent. *Only yeast
TREMBL entries that were non-identicd to Swisgrot entires.

H. sapiens proteinsin Swisgrot 33 3475(~5%)

H. sapiens proteins that match Wormpep 11 2077 60%
H. sapiens proteins that match S. cerevisiae 1432 41%
H. sapiens proteins that match H. influenzae 323 9%
C. elegans proteinsin Wormpep 11 7263(~50%)

C. elegans proteins that match H. sapiens 2378 33%
C. elegans proteins that match S. cerevisiae 2146 30%
C. elegans proteins that match H. influenzae 454 6%
S cerevisiae proteinsin Swisgrot 33and TREMBL*  6719(~100%)

S. cerevisiae proteins that match H. sapiens 1929 2%
S. cerevisiae proteins that match C. elegans 2447 36%
S. cerevisiae proteins that match H. influenzae 901 13%
H. influenzae proteins 1680(10(%)

H. influenzae proteins that match H. sapiens 282 17%
H. influenzae proteins that match C. elegans 340 20%
H. influenzae proteins that match S. cerevisiae 482 2%




H. sapiens
(~5%)

60%| | 33%

C. elegans
(~50%)
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> (100%)
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Figure 9.9. Percentages of the proteins in genomes representing baderia, fungi and animalia
that match ore another. The percentage inside the drcles indicates what fradion d the ge-
nome that was avail able for the analysis.
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Common proteinsin subsets of C. elegans, H. influenzaeand S. cerevisiae

To further investigate to what extent protein families are shared anong organisms from dif-
ferent kingdoms, we dso looked for proteins that intersed these genomes. We excluded H.
sapiens from this analysis, since only abou 5% of the human proteins have been sequenced
completely. The number of proteins common to two o more genomes can be curted from
the paint of view of any of the organisms in the union. They were therefore counted sepa-
rately from all participating genomes. All these numbers are listed in table 9.5, and the low-
est of the numbers are ill ustrated in the catoonin figure 9.10. The fad that S. cerevisiae in
most cases contains more proteins than its courterparts is partly due to the fad that a com-
pletely nonreduncant set of S cerevisiae proteins was not obtained (seeMaterials and Meth-
0das).

Almost all of the proteins shared between all threeorganisms, have afunction that can be
inferred by sequence similarity. Of the 294 H. influenzae proteins, 251 fad functional anno-
tation provided by TIGR. We analysed the remaining 43 proteins and foundthat 38 could be
assgned a function with high confidence, leaving only 5 genes withou a putative function
(H10090,HI0174,H10271,HI0719and HI1719. It will be interesting to find ou what the
function d these proteins is. Given that these proteins are onserved throughou so many

phyla, they arelikely to be of fundamental importance
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Table 9.5. Common subsets of proteins sared between genomes from organisms repre-
senting baderia, fungi and animalia. In the overlap cases, where the numbers can be murted
from either genome, they are listed in the same order as the spedes in the left column.
Within bradets are the percentages of the genome that was courted from.

Organism combination

Proteins

C. elegans NOT (S cerevisiae OR H. influenzae)
S cerevisiae NOT (C. elegans OR H. influenzae)
H. influenzae NOT (C. elegans OR S. cerevisiae)
(C. elegans AND S. cerevisiae) NOT H. influenzae
(C. elegans AND H. influenzae) NOT S cerevisiae
(S cerevisiaeAND H. influenzae) NOT C. elegans
C. elegans AND S cerevisiae AND H. influenzae

5049(70%)

3973(5%%6)

1135(68%)

1760(24%), 1843(27%)

58 (1%), 46 (3%)

299 (4%), 205(12%)

396 (5%), 604(9%), 294(17%)
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C. elegans
(~50%)

S cerevisiae @ H. influenzae

(~100%) (100%)

Figure 9.10. Diagram of common proteins shared between three kingdoms. The number
shown ininterseding areas is the lowest of the participating genomes.

19¢



The most obvious reason that C. elegans and S cerevisiae have so many more similar
proteins than with H. influenzae seems to be eukaryotic protein kinases, which apparently are
absent from H. influenzae. A number of other protein families are dso speafic to eukary-
otes, such as histones, tubuin, and much of the proteinsinvolved in transcription, translation
and replicaion. Only afew proteins were foundto be unique to C. elegans and H. influen-
zae. These aelisted intable 9.6. Many of these gopea to be metabalic enzymesinvolved in
biosynthesis, but most cdlular roles seam to be represented. We were suprised to nde strong
similarity between DNA poymerase | (HI0856 in H. influenzae and W03A3.2in C. ele-
gans, yet no similarity was foundto a yeast protein. No ather DNA polymerases were simi-
lar between C. elegans and H. influenzae. This type of DNA polymerase | was also absent
from the human proteins, but the yeast and human pdymerases are very similar to ead ather.
There ae thus instances, where onservation d moleaular medanisms does nat follow the
groupngs of the traditional phylogenetic treeof life.

Seven of the 46 H. influenzae genes did na have functional annaation provided by TIGR.
One of these (HI0323 had been assgned a function in an previous reanalysis [Casari et al.,
1995, and three were adgned a putative function (HI0152, HI0392 and HI1663 here,

leaving threegenes withou a putative function (seetable 9.6).

Table 9.6. The 46 H. influenzae proteins that match C. elegans proteins but not S. cere-
visiae. The functional assgnments were taken from TIGR except in four cases that ladked
annaation (H10152,H10323,H10392and HI1663. ThreeORFsdid na match any function-
aly charaderised proteins.

H. influenzae Functional annaation

ORF

H10019

HI0140 N-aceylglucosamine-6-phosphate deaceylase (nagA)
HI0151 Protease spedfic for phage lambda dI repressor (hflK)
HI0152 Transcription fador

HI0211 Phosphatidyl glycerophosphate phosphatase B (pgpB)
HI10244 tRNA-guanine transglycosylase (tgt)

HI10259 UDP-glycose:glycoprotein dycosyltransferase
HI10280 Uridine phosphorylase (udp)

HI0323 Lacdoylglutathione lyase

H10340

HI0392 Acyl transferase

HI0406 Acetyl-coenzyme A carboxylase (acd)
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HI0478 ATP synthase F1 epsil on subunit (atpC)

HI0550 Lipodigosacdaride biosynthesis protein

HI0701

HIO714 ATP-dependent clp protease proteolytic component (clpP)
HI0736 Sodium-dependent noradrenali ne transporter

HI0759 A/G-spedfic adenine glycosylase (mutY)

HI0765 Lipodigosacdaride biosynthesis protein

HI0773 3-oxoadd CoA-transferase

HIO774 Butyrate-acdoacdate menzyme A transferase subunit A (ctfA)
HI0856 DNA poymerase | (paA)

HI0910 Mutator mutT (AT-GC transversion)

HI0975 Pantothenate permease (panF)

HI0991 DNA/ATP binding protein (red)

HI1013 Glyoxylate-induced protein

HI1042 Methyltetrahydrofol ate transmethylase (metH)

HI1075 Cytochrome oxidase d subunit I (cydB)

HI1115 Thioredoxin (trxA)

HI1116 Deoxyribose ddolase (deoC)

HI1219 Cytidylate kinase (cmk)

HI1260 Folylpayglutamate-dihydrofol ate synthetase expresson regulator (acd)
HI1324 Lon protease (lon)

HI1362 NAD(P) transhydrogenase subunit alpha (pntA)

HI1363 NAD(P) transhydrogenase subunit beta (pntB)

HI1441 Stringent starvation protein A (SpA)

HI1448 Molybdogerin biosynthesis protein (chlE)

HI1526 Autotrophic growth protein (aut)

HI1545 C4-dicarboxylate transport protein

HI1588 Formyltetrahydrofolate hydrolase (purU)

HI1646 Cytidylate kinase (cmk)

HI1663 Glyoxaase

HI1675 Molybdenum cofador biosynthesis protein (moaC)
HI1676 Molybdenum cofador biosynthesis protein A (moaA)
HI1690 Na+ and Cl- dependent gamma-aminobutryic add transporter
HI1705 Aminopeptidase di (pepA)

Human homologuesin C. elegans

Nealy two thirds of human proteins have ahomologue in 50% of C. elegans proteins. This
figure is inflated mainly by two fadors. the known human sequences are biased towards
well-known and uhquitous families, and because most C. elegans proteins occur in families
of paradlogues. We eped that most protein familiesin C. elegans aready have & least one
representative in Wormpep 11,and that a mgjority of the human proteins that have ahomo-
logue in C. elegans aready shoud have amatch. To estimate the fradion d human proteins
that will have amatch to the etire C. elegans genome, we fitted a airve to a number of
smaller sets of C. elegans proteins, as siown in figure 9.11. This curve suggests that ap-
proximately 70% of the human proteins in the set would match the aitire C. elegans genome,

which is only 10% more than the fradion that matches half of it. This means that 85% of the
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human proteins, for which a C. elegans homologue eists, would arealy have adetedable

match to at least a paralogue.

o
©

°
Y

°
3

°
>

o
IS

Fraction of Human proteins with match

o
N

°
e

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Fraction of known C.elegans proteins

Figure 9.11. Projedion d the fradion d human proteins that match C. elegans proteins for
different fradions of known C. elegans proteins. The datapoints below 50% were simulated
by taking fradions of the aurrently known C. elegans proteins in Wormpep 11. The values
are averages from 3 independent experiments and the arorbars are standard deviations.

As mentioned before, the number of true orthologues is sgnificantly lower than the num-
ber of matching proteins. This is ill ustrated in figure 9.12. Since non-orthologous homo-
logues may have diverged in function, they are often lessuseful for predse inference of bio-
logicd information. We have estimated the number of orthologues between the human and
C. elegans datasets by looking for homologues that are the most similar pair of proteins, as

seen from both genomes. This is usualy the cae for true orthoogues.
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Genome A: @

Genome B: @

Figure 9.12. When comparing two genomes, the number of matching proteins can be higher
than the number of orthologues due to crossreadion with paralogues. In the example dowve
there aethreeorthoogous proteins, P1, P2 and P2'. P2 and P2’ are paralogues that arose by
gene dugication kefore the spedes A and B separated, while P1” and P2” arose dterwards.
The number of orthologues will be overestimated by courting every matching protein. This
effed can be reduced by only courting proteins that are redprocaly the most simil ar pair.

Further evidence for orthology is that both proteins are equally long and match ower the
entire length. This property shoud be used with care here, sincethe C. elegans proteins were
predicted from genomic DNA and may not always have the mrred N and C-terminus due to
lack of experimental evidence, and becaise the extent of the match was estimated using
Blastp, which sometimes only report part of the match.

Of the 2077 human proteins that match C. elegans, 744 had redprocdly best partners.
This number of proteins are thus likely to have true orthologues. Requiring that both pro-
teins have to match ead aher by more than 80% reduces the number to 257. Given that
only abou 5% of the human proteins were used in the analysis, many of the true orthologues
may not have been sequenced yet. However, the human and C. elegans proteins that fulfil
the stringent criteria mentioned above ae likely to have very similar functions even if they
are not true orthologues.

The number of detedable orthologue relationships shoud grow more linealy than the
curve of homologues in figure 9.11. When the C. elegans genome is finished, we would ex-
ped a significant increase in arthologue relationships compared to naw, athough probably

not twice & many. A greder increase in orthoogous partners will be the result of complet-
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ing the human genome. Given that C. elegans is estimated to contain no more than 15000
genes, and orly a third of the homologues above were deemed likely orthologues, it is not
reasonable to exped more than 5000eventual orthologue pairs.

We refrained from performing the oppaite extrapdation d what fradion o C. elegans
proteins would match larger fradions of the human genome, since basing such an estimate on

only 5% of al human proteins will make the number at 100% highly unreliable.

9.8 Materials and Methods

The dustering of Wormpep was performed by version 1.6 & the Domainer program [Sonn-
hammer, 1996, using pairwise homology information from Blastp verson 1.4. Blastp
[Altschul et al., 199Q was used with the BLOSUM62 substitution matrix, and orly matches
scoring above 90 were used. The Blastp ouput was filtering by MSRcrunch (chapter 4) to
remove biased compasition matches, trim off overlapping ends of conseautive matches, and
to reduceredundancy.

Wormpep 11 contains 36 protein sequences that are alternatively spliced versions of other
genes. Sincethese ae nat true paralogues from a different locus, they were excluded from
the dustering analysis. Arbitrarily, the first listed version was included. Normally the dif-
ference between aternatively spliced genesis just one exon, coding for a few tens of amino
adds, so the lossof information by this procedure is negligible.

The Pfam matching was performed with the hmmfs and hmmls sach programs, which
are part of the HMM ER padage [Eddy, 1995.

The nematode-spedfic families were analysed by running HMMs derived from the multi-
ple dignments against swirll, which is a nonredundant combination d Wormpep 11, Swis-
sprot 33 and Swisgprot-TREMBL. Prosite patterns were seached with the perl script query-
prosite, and coil ed coil predictions were dore with the program Pepcoil, which is part of the

EGCG padkage [Riceet al., 1999 and wses the dgorithm by Lupas et al. [199]].
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The proteins sts for the pairwise genome to genome cmparisons were a®mbled the
following way. H. sapiens: all entriesin Swisgrot 33. C. elegans: all entries in Wormpep
11, except dternatively spliced versions of the same gene (the A version was arbitrarily se-
leded). S cerevisiae: adl entries in Swisgrot 33 and all entries in Swisgprot-TREMBL that
were not 100 identicd to (a part of) a Swisgrot entry. H. influenzae: all entries in the
TIGR set (ftp://ftp.tigr.org/pub/data/h_influenzag. The human and yeast datasets contained
both nwclea and mitochondia encoded proteins. The 13 mitochondial C. elegans proteins
in Swisgrot 33 were not included. The S cerevisiae dataset was sosmewhat redundant even
after excluding the 100% matching and included sequences. We did na wish to remove less
than 100% identica proteins on the basis of similarity only, to avoid removing very similar
paral ogues.

For the pairwise genome to genome @mparisons, Blastp was used with MSRcrunch
(chapter 4), to efficiently filter out false matches in the twili ght zone. Compared to a straight
score aitoff of 80 a 90 for ead urgapped matching segment, this method deteds a grea
ded more true matches. The MSRcrunch parameters were set more stringently than the de-
fault, to reducethe number of spurious matches. We foundthat raising the score range of the
‘twili ght zone' from 35-75 to 45-80, and the bias composition criterion to 0.8with no fseu-
docourts, removed virtualy all spurious matches with oy asmall | ossof true matches. The
acaracy was asessd by manual inspedion d afew genome @wmparisons in Blixem (chap-
ter 3) and Dotter (chapter 5) using the Blixeled multi-query results organiser. Inthe C. ele-
gans to H. sapiens comparison, 125 potein assgnments were removed by the increase in
MSRcrunch stringency. Of these, only 9 were foundlikely to be true matches. We dso per-
formed the same analysis on the 150 assgnments (2% of the C. elegans proteins) in the C.
elegans to S. cerevisiae comparison that only had matches scoring below 80. Of these, only
abou 10were dubious. Very few matches with scores above 80 were false.

Our method shoud thus be agood compromise between sensiti vity and seledivity for ge-
nomic comparison pupaoses. An aternative gproach would be to apply other types of pro-
grams for postprocessng matches in the twili ght zone, such as dynamic programming and

multiple dignment methods [Koonin et al., 1996h Tatusov et al., 1999. MSRcrunch could
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also have been used in aless gringent mode, combined with manual processng of twili ght
zone matches. For a detailed analysis, manua inspedion d the results is esential. How-
ever, the aceragy achieved by MSRerunch withou manual processng in the twili ght zone
seans adequate for a reasonably reliable estimate of the overall percentage similarity be-
tween genomes. If anything, ou method is conservative; we accet mising some week
matches as a tradeoff for rejeding most spurious ones.

A further uncertainty in the numbers of matching proteins is caused by courting whole
proteins as units. A more accrrate method would be to give the numbers of matching do-
mains. Pfam could be exploited for this, but many cases would require labour-intense man-
ual processng, which is unsuitable for large-scde analysis.

When comparing threegenomes with ead ather, a‘bridging’ situation that often occursis
when ore genome cntains a protein which is sgnificantly homologous with proteins from
the two ather genomes, which do nd show significant similarity to ead ather. We noted
several cases of thisin the C. elegans/ S. cerevisiae / H. influenzae comparison. For exam-
ple, the kill er toxin-resistance protein WP:F48E3.3 is smilar to KRE5_YEAST (P22023
and HI0259, b there is no dscernable simil arity between the S. cerevisiae and the H. influ-
enzae proteins. In such cases, ore could in principle infer homology indiredly. We have not
pursued this grategy here, since most of the bridging cases require amuch more thorough
manual analysisto provide anclusive evidence of homology.

The smaller sets of C. elegans proteins in the Human to C. elegans comparison were gen-
erated by learsing out randamly chosen proteins from Wormpep 11. It was not dore by re-
moving all proteins from the same @smid at once, which might have yielded slightly lower
values due to clustering of gene families. The regresson was performed by fitting a loga-
rithmic function to the smulated datapoints in Microsoft Excd.

A further criterion that can be used for orthology, is that the two genesin question must be
more similar to ead ather than to hamologues from phylogeneticdly more distantly related
organisms [Tatusov et al., 1994. For the human to C. elegans comparison, this would be a
fungi, plants or baderia. We only found ore such case (The putative DNA helicase
MO3C11.2is more similar to the yeast protein CHL1 YEAST (Swisgrot: P22516 than to
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the inferred human orthologue XPD_HUMAN (Swisgrot P18074. One reason for finding
so few casesisthat alarge propation d the proteins are only foundin animalia

The human dataset could have been augmented by using EST data. We dhose to nd use
this data, sinceits fragmentary nature makes the estimate of the number of matches and their

extent uncertain.

9.9 Discussion

This chapter has provided a glimpse into what can be learned from data generated by geno-
mic sequencing projeds. Some results were surprising whil e others were more or less ex-
peded. Molealar biology reseach before the genome projeds had aready indicated that
many protein danains are anserved between distantly related organisms, while some gppea
to be unique. With entire genome sequences such naions can be quantified, and detail ed an-
swers can be given abou which families are most widespread. This knowledge will have a
profoundimpad on kiology and guide experimental reseach in new interesting diredions.

Perhaps one of the most striking results is the estimate that about 70% of the arrently
known human genes will have ahomologue in the invertebrate C. elegans. This underlines
the gopropriatenessand wsefulnessof studying this nematode, and we can exped that the un-
ravelling of moleaular biologicd phenomena in it will gredly asgst the understanding of
human hiology. One shoud kee in mind havever, that the propation d human hamo-
loguesis likely to deaease in the future & alessbiased set of human genes is produced by
genomic sequencing.

Another striking result is that most protein damains that are conserved in distantly related
organisms have been hiochemicaly charaderised already. This is exemplified by the fad
that of the 294 H. influenzae proteins aso foundin C. elegans and S. cerevisiae, only 5 had
no functionally annatated hamologues. This was also the cae for only 3 o the 46 poteins
foundin C. elegans and H. influenzae but not in S. cerevisiae. This grongly suppats the an-

cient conserved region (ACR) theory [Green et al., 1993, which was based onthat over 90%
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of newly foundACRs were dready in the databases. We foundthat thisfigureis now at least
95%.

One of the most fundamental questions in bioinformatics is how much functional infor-
mation can be inferred from a particular similarity. Obviously, the more sequence simil arity
between two proteins, the more likely they are to have similar functions. Here the concept of
orthologous pairs comes in, which are usually proteins with identicd functions. We have
addres=d this in the C. elegans to H. sapiens comparison, and foundthat it is likely to be
true for 15-30% of the homologies. Nonorthdogous homology, which often has a lower
level of similarity, still allows many general feaures to be inferred, such as putative nucleo-
tide binding moieties, protein-protein interadion danains, or caalytic adivities. In such
cases, the substrate(s) and the cdlular role(s) can na be inferred from the homology. The
scenario is more cwmplicated if proteins in different organisms that perform identica func-
tions, for instance a cedytic step in a metabadlic pathway, have evolved from different an-
cestors. A number of such cases of ‘nonorthologous gene displacement’ have recently been
discovered [Koonn et al., 1996y .

Homologous proteins (i.e. that were derived from a mmmon ancestor) often have similar
sequences, becaise of the functional and structural constraints impaosed onit. After long
time spans, howvever, mutations acaimulate, and the anino aad sequences may drift beyond
the paint of reagnition. Performing the analysis on the basis of sequence similarity may
therefore not necessarily give the ultimate answer. The methods based on comparing one
sequence with anather are probably close to being as snsitive & they can ever get. It ispos-
sible to look further badk in time by using multi ple dignment methods, since truly important
feaures gand ou more prominently. Thisis exemplified by the fad that many of the nema-
tode-spedfic families initially could na be adgned a function when orly a few members
were known. But as more members were gathered in families nr. 4 and 5, it becane in-
creasingly clea that they were likely G-protein couded receptors. Some families, e.g. nr. 8,
which still only has a small number of (very similar) members, defy functional prediction

today. This may change in the future & more members are found.
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Still, C. elegans and aher organisms sean to contain a large number of unique families
with few members. Are these truly unique protein families with nowel folds? The answer
must be sought with more sophisticated analysis methods than pue sequence @mparison.
Structural threading methods, that fit a sequenceto known structuresin order to find the most
likely fold, may give an answer. However, it is nat aways clea what functional information
can be transferred in such cases.

Our capability to reagnise homologues was $hown to be improved by seaching a data
base of pre-assmbled protein families such as Pfam, as an addition to traditional single-
sequence database seaching. Although the number of proteins that changed status from
‘function unknevn' to ‘putative function’ was not enormous, a large number of novel and
suppative domain clasgficaions were found. Since this analysis was based on \ersion 1.0
of Pfam, we can exped asignificant increase in the usefulnessof this approad in the future.

The dustering of C. elegans proteins and the distribution d the families that appea to be
nematode-spedfic provides insights in the general mecdhanism of evolution d paraogues
within agenome. It seansthat the genome is constantly shuffled around chunks of DNA are
dudicaed, preferentialy next doa to the original. In many cases, this must have lethal ef-
feds, bu what we observe today in the living organism is the result of the acamulation d a
courtlessnumber of ‘lucky acadents .

The fad that 46 proteins occur in both C. elegans and H. influenzae, bu not in yeast, sug-
gests that evolution in many cases proceels by gene loss followed by replacenent, or by
horizontal transfer from one organism to an ather. Some of the observations could also be
caused by different rates of genetic drift in yeast of these proteins, which made it impossble
to recognise atrue homologue. A more thorough analysis would be necessary to establish
which hypothesisis most likely for ead individual case.

An asped of protein functionthat is of vital importanceto biology is how proteins interad
with ead ather in the network of pathways that make up aliving cdl. That regulation and
signal transduction is a mgor asped of metazoan life is evident from the large number of

protein kinases, receptors and transcription fadors foundin C. elegans. The quest for under-
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standing moleaular mechanisms on this level will be one of the gredest future dalengesin

biology.
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10. Conclusion and future perspectives

Just as Columbus little could have imagined how the world would change from his discov-
ery, so it isequally hard for us to envisage the dhanges to science and society that large-scde
genome sequencing will eventually bring abou. One thing is certain: it will have aprofound
impad on medicd reseach, bah dredly by for example improving the aility to deted gene
mutations, and indiredly by providing a aucial information resource for biologicd reseach.
Knowing the ammplete genomic sequenceis of course only a beginning; the work required to
discover new biologicd functions and medianisms will still be needed. But we can exped
that this work will be gredaly accéerated by having the sequence @ a blueprint. In some
ways, genome reseach can be likened with the extensive dforts to map the wntinents of the
world in the 16th and 17%h centuries. Just as then, the global goal of the endearour is clea,
which was to find new sources of riches and trade routes to bring them home, bu exadly
where they will be discovered can na be known beforehand.

We ae dtill in the ealy days of genome reseach. Many of the isales that need to be a-
dres=d at thistime ae of afundamental nature. Most scientists in the field are not yet used
to working with the vast quantities of data that are being produced, and it will take along
leaning process before the full potential of the information is redised. The increase in se-
guence data therefore has to be acompanied by anew breed of efficient analysis and visuali-
sation todls. Most of this thesis is taken upwith methods that adadressthis very point: how
computers can assst humans optimally in performing large-scd e sequence analysis.

Alrealy, the high sequencing rates may seem a burden for the person who hes to anayse
the sequence Compared to the past, when a yea’s experimental work could be analysed
manually in afew days, this may seem true. But in fad today it only takes a few hous to
analyse a @smid sequence, which it has taken ore person about a month to finish. However,
using the analysis methods of the past, it may well have taken over amonth to analyseit. As
sequencing beames more automated, so doanalysis methods, and there is no indicaion that

anaysiswill ever bethe bottlened. To keep abreast of the sequence flow will however most
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likely continue to require asignificant amourt of analysis labour, and a steady improvement
of the software tods.

The long term building up d knowledge @ou genes and proteins is one of the most con-
crete goals of genome sequencing. By transferring functional information from biochemi-
cdly charaderised genes using homology analysis, a vast body of genes with predicted func-
tionsis gathered. The propation d proteins with an experimentally determined functionin
sequence databases is therefore stealily droppng. This is nat necessarily a problem, since
strong sequence similarity has been shown to correspond well to hamologous functions.
Computational methods for separating spurious smilarities from true homologies have been
a cantral themein thisthesis.

In recent yeas there has been a dea increase in the fradion d proteins from genome
projeds that can be asdgned a function onthe basis of sequence similarity. As discussed in
chapter 9, there is dill a significant propation d proteins for which thisis not the cae, bu
most of these ‘hypathetica’ proteins are only foundin ore spedes and its closest relatives.
Whether they are homologues of known genes, but have drifted too far in the sequenceto be
recognised as such, a whether they are truly unique lines of proteins must still be unravelled.
To some extent, this will be dore by a refinement of homology analysis methods, such as
systematic use of multiple dignmentsin arder to look badk further in time. However, there
is dill alarge need for systematic biochemicd charaderisation o these newly found poteins.
The dfort to uncertake this effort for all such proteinsin yeast [Oliver, 1994 will soonindi-
cde just how possble such an endeavour is.

Genomic sequence analysis plays a central role in the concerted genome sequencing ef-
fort. A network of different disciplines, such as genetic and plysica mapping, and al other
aspeds of biologicd reseach can be linked together with the sequence & areference One
of the main goalsisto bring data together from these diff erent sources, and make them avail-
able for ‘in sllico’ analysis. This will beaome an increasingly important approach for mo-
leaular biology research. Figure 10.1ill ustrates the main flows of data between experimental
disciplines and computational analysis in a genome sequencing projed. The results of such

projeds are not well suited for traditional paper pullishing. It istherefore esential that both
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the data and the visualisation tods are dedronicdly distributed throughou the world, and

that the datais curated at ahigh quality.



Physicd mapping

I A A A

Sequencing

EMBL/Genbank

|

Swisgrot

Figure 10.1. Global view of the information flow in the C. elegans genome sequencing proj-
ed. Solid lines indicae the main production line flow information, whil e the dashed lines
are feedbadk channels that reinforce the sources.
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