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ABSTRACT

Large scale genome sequencing projects have created a demand for more eff icient sequence

analysis methods.  For a daily output in the order of 105 finished basepairs per lab, many tradi-

tional sequence analysis methods are too labour intense to be practical.  For a genome of a

higher eukaryote such as Caenorhabditis elegans, some of the most challenging analysis tasks

are correctly predicting the exons and introns of genes, and the functional annotation of the

proteins they encode.  This thesis describes new methods that have been developed to assist

both these tasks, in an integrated way.  Gene structure prediction and functional classification

are linked activities in the sense that quality improvement of one often leads to improvement of

the other.  The major issue for doing both on a large scale is how to improve eff iciency without

sacrificing quality.

Presented in part 1 are a set of software tools, that integrated in the ACEDB genomic data-

base form a graphical analysis workbench well suited for high throughput and high quality ge-

nomic sequence analysis.  They are based on single query sequence database searching and

were implemented as algorithmic improvements and interactive graphical visualisation tools for

results from the BLAST programs.  A novel type of dot-plot program was incorporated for sen-

sitive pairwise sequence comparison, and a database retrieval tool was developed to connect to

external databases.

Part 2 describes a different line of approach, based on multiple sequence alignments for da-

tabase searching.  Multiple alignment based methods are often more sensitive than single se-

quence methods, and further automate the annotation process.  In order to use such methods

eff iciently, a comprehensive high-quality collection of protein domain families described by

multiple alignments is needed.  Methods were developed to build and maintain such a database,

based on hidden Markov model profiles and seed alignments.  This resulted in the database

Pfam, which currently contains 175 of the largest protein families.  The high-quality align-

ments in Pfam are released together with automatically generated families of the remaining se-

quences.  A graphical workbench for display of Pfam search results was developed and inte-

grated into ACEDB.  Analysis of protein domain families in all predicted C. elegans proteins

was carried out by using Pfam and by a study of nematode-specific families.
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1. Introduction

This thesis concerns bioinformatics applied to genome sequencing.  These are both very

young research fields, and are introduced separately below.  Bioinformatics is a too wide-

ranging discipline to be fully covered in detail here.  The introduction therefore concentrates

on the aspects that at present are most relevant for genomic sequence analysis: gene predic-

tion and sequence similarity analysis.  Because the second part of this thesis entirely focuses

on protein families, a separate introduction is provided of this field.

1.1 Genome sequencing projects

One of the most important steps towards fully understanding the biology of an organism is

the determination of its entire genome sequence.  Thanks to recent improvements in DNA

sequencing technology, the sequencing of entire genomes has become feasible.  The genomes

of a number of model organisms, ranging from simple bacteria to invertebrate animals, have

been or are currently being sequenced, leading up to the challenge of completing the human

genome early next century.

The availabilit y of complete genome sequences will dramatically change the way that

molecular biology research is done.  The classical ‘f orward genetics’ approach to find a gene

is a top-down approach, using the phenotype of mutant individuals to progressively narrow

down its location in the genome via genetic and physical mapping techniques.  Eventually a

clone of the region that contains the gene is sequenced.  This procedure is very labour inten-

sive, and relies on good genome maps. With the entire genome sequence known, many short-

cuts can be taken which will accelerate traditional ‘ interest-driven’ research.  In model or-

ganisms it is also potentially possible to turn this process around: going from a known gene

sequence to its function and impact on the phenotype by ‘knocking it out’ [Plasterk, 1992;

Giese et al., 1992; Johnston, 1996; Spradling et al., 1995].  This ‘reverse genetics’ approach

will i nitially be done on an ad hoc basis for particularly interesting genes, see e.g. [Zwaal et
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al., 1993], but hopes are high that a systematic knock-out analysis of all genes with unknown

function in yeast will result in a wealth of new biological knowledge [Oliver, 1996].  We

cannot yet predict exactly what we will l earn from the genome sequence, but it is already

clear that it will be a major resource for biological research, both by direct analysis of the se-

quence as well as a reference for laboratory experiments.

Prokaryotic and single-cell eukaryotic genomes are more attractive for whole-genome se-

quencing than those of higher multi -cellular eukaryotes.  The reasons are that they tend to be

small (0.5 - 15 milli on basepairs (Mb) compared to 100 - 3000 Mb) and that the protein

coding regions tend to be densely packed single open reading frames instead of dispersed

exon/intron structures, thus rendering gene prediction relatively straightforward.  In fact, less

than 5% of the human genome codes for proteins.  Because of this, most human genome se-

quencing projects have so far concentrated on the parts of the genome that are expressed into

proteins.  This is done by making libraries of cDNA clones from mRNA in cells of different

tissues.  For eff iciency reasons, usually only 300-500 basepairs at the 5’ and 3’ end of these

clones are sequenced in a single read, called an EST (expressed sequence tag).  Although this

data is enriched in protein coding sequences and has tissue-specific information attached,

EST data is fragmentary and a large fraction is of poor quality.  It should therefore mainly be

seen as valuable complementary data to the complete genome sequence.  In fact, they are in-

valuable for finding protein coding regions in the genome sequence, as will be discussed in

section 1.2.

The complete genome sequence of four free-living organisms has to date been determined:

the bacteria Hemophilus influenzae Rd [Fleischmann et al., 1995] and Mycoplasma genita-

lium [Fraser et al., 1995], the yeast Saccaromyces cerevisiae [Dujon, 1996] and the archeon

Methanococcus jannaschii [Bult et al., 1996].  A number of other microbial genomes are

projected to be completed within two years: The two thermophili c archaeons and Pyrococcus

furiosus [Weiss, 1996], Mycoplasma pneumoniae [Hilbert et al., 1995], Esherichia coli

[Wahl et al., 1994], Bacillus Subtilis [Medigue et al., 1995], a protozoan that causes typhus

Rickettsia prowazekii [Andersson et al., 1995], the spirochete that causes lyme disease Bor-

relia burgdorferi [Dunn, 1996], Mycobacterium tuberculosis, Methanobacterium thermo-
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autotrophicum and Synechocystis sp. [Smith et al., 1995].  From the first compete genome

sequences, it has emerged that while Bacteria and Archea are metabolically similar, the ar-

cheal gene expression systems has much more in common with Eukaryota.

The methods described in this thesis are generally applicable to any genome.  However,

since they were developed in collaboration with the sequencing projects for C. elegans and

H. sapiens, the two main projects at the Sanger Centre, a more detailed description of these

genome projects follows.

Caenorhabditis elegans

This free-living soil nematode has been the subject of intense molecular biology research

ever since Sydney Brenner’s (1974) classic screen for mutants.  C. elegans is an attractive

model organism due to its completely known cell development from egg to adult hermaphro-

dite (959 cells) or male (1031 cells), its suitabilit y for genetic experiments (see review

[Hodgkin et al., 1995]) and to its excellent genetic [Edgley and Riddle, 1990] and physical

[Coulson, 1994] maps.

The systematic sequencing of its 100 Mb genome [Wilson et al., 1994] (appendix A) has

been underway since 1992 in two laboratories, the Sanger Centre in Cambridge, UK and the

Genome Sequencing Center in St. Louis, USA, and is estimated to be finished in 1998 [Wa-

terston and Sulston, 1995].  At present about 50 Mb from the most gene-dense regions have

been completely finished, comprising more than half of all genes, while approximately 20

Mb are in various stages of completion.

Currently around 30000 C. elegans EST sequences [Waterston et al., 1992; McCombie et

al., 1992; Y. Kohara, personal communication] are available, from approximately 5000

genes.  About a third of all predicted genes are associated with one or more ESTs.  Normally

only a small part of the 5’ and 3’ ends are covered by EST matches, but some genes are com-

pletely covered.  Such cases are very useful for calibrating the gene prediction methods.

ESTs have also in some cases provided direct evidence of alternative splicing (see figure

2.1).
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It has been estimated that C. elegans has a total of some 15000 genes [Waterston et al., -

1992].  This estimate was calculated by dividing the number of genes predicted in a 200 Kb

region by the number of matching EST clones, and multiplying this number with the total

number EST clones in the collection.  Assuming a representative EST matching frequency,

this would predict the total number of genes.  Amazingly, this number, which was based on

only four EST matches, is very close to the current estimate, which is based on nearly half

the genome.  The total gene estimate has fluctuated somewhat, mainly due to lower EST

matching frequency on chromosome X, which is over-represented in the currently finished

sequence.  The number may also be overestimated because it is based on predicted genes,

some of which are likely to be pseudogenes, but in the absence of conclusive evidence cannot

be recognised as such.  Over 7000 genes have been predicted so far, including 330 tRNA

genes and numerous other structural RNAs.

The genome project is at present mainly used as a resource to aid traditional research.  If

somebody wants to use the nematode as a model to study the function and effects of a gene

that has been discovered in another organism, the traditional cross-species hybridisation

methods need no longer be used to identify the C. elegans homologue.  Instead, a scan

through the genomic sequence will rapidly identify all homologues (once the sequence is

completed) and reveal their genome locations.  Thanks to a frozen library of random Tc1

transposon insertions [Zwaal et al., 1993], the chances are that the gene in question is near a

Tc1 element.  If this is the case, a deletion derivative can be made to knock the gene out, thus

generating a null phenotype mutant.

The sequence itself can also been used to screen for particular gene families.  For instance,

a number of nematode-specific families of G-protein coupled receptors have been implicated

in olfaction.  From the genome sequence, a large number of these genes were found by se-

quence similarity, which proved to be localised to sensory neurons by reporter constructs

[Troemel et al., 1995].

A number of other genomic phenomena have been discovered, such as the high abundance

of DNA repeat families.  Some of these have the characteristics of  apparently inactive, partly
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degenerated parasitic transposon families.  Such elements may have exploited a functional

transposon in the past to spread throughout the genome.

Homo sapiens

Because the human genome has such a low density of genes (< 5% coding), the first large-

scale human genome sequencing projects have concentrated on sequencing expressed se-

quence tags (ESTs) [Adams et al., 1995; Hilli er et al., 1996].  Currently around 630000 hu-

man EST sequences are available in the public database dbEST, but many more ESTs exist

[Adams et al., 1995].  The ESTs are also used for mapping purposes by a number of groups

that form an international consortium [Boguski and Schuler, 1995].

It has been estimated that the 3000 Mb human genome contains 50000 - 100000 genes

[Fields et al., 1994]. The 280000 ESTs sequenced by the Merck-St. Louis project [Hilli er et

al., 1996] were derived from an estimated 29000 genes.  Most other ESTs have only been

sequenced at the 5’ end, making the number of total genes hard to estimate, but it is clear that

EST projects will never be able to find all genes.  As more genes are sequenced, the chance

of resequencing already known genes grows, and rarely expressed genes become increasingly

diff icult to sift out from the abundant ones.  EST projects were fast and cost-effective in the

beginning of the human genome project, but are now drawing to an end.

Emphasis is already shifting towards complete genomic sequencing.  Before this can be

undertaken, the genome has to be mapped at a suff iciently high resolution.  This has pro-

gressed well during the past years and many people argue that the time is now right to start

sequencing at large scale [Olsen, 1995].  Already some 57 Mb of human sequences are avail-

able in the EMBL database, which in contrast to C. elegans is more than has been produced

by genome sequencing projects.  At the Sanger Centre, about 8 Mb of human chromosomes

3, 4, 6, 11, 13 16, 22 and X have been finished at this time.

A substantial amount of support is now becoming available for genomic sequencing.

Funding for about 300 Mb in the USA, 50 Mb in Germany and 500 Mb at the Sanger Centre

have already been allocated, to be completed within the next 5 years.  The amount of data

produced will depend on what accuracy is aimed for.  At low accuracy, the cost per base be-
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comes significantly lower, but the usefulness of the sequence is also reduced due to its un-

certainty.  However, since the gene density in the human genome is relatively low, a lower

quality is perhaps acceptable, at least in the non-coding regions.  It has been proposed that

lowering the quality from 1 error in 10000 bases, which is the standard quality, to 1 in 1000

might be a good compromise which would make completion of the entire genome affordable

and enable it to be finished 5 years earlier than originally projected.  The most important re-

gions would be finished at a higher quality, while nonessential ‘ junk’ DNA sequence would

be left in a less accurate state [Marshall , 1995].  The feasibilit y of this approach depends to a

large extent on how well analysis methods can be adapted to find coding regions in poor

quality sequence data.

Human genomic sequencing is still i n a very early phase.  As old techniques are refined

and new ones are developed, eff iciency will im prove and the cost decrease.  Currently a large

proportion of the resources are spent on development.  For instance, it has been proposed that

instead of sequencing the commonly used 40 Kb insert cosmid clones, the whole genome

could be cloned into 20000 350 Kb insert BACs (bacterial artificial chromosomes) [Venter et

al., 1996].  By sequencing 500 bases at both ends of each clone, the ordering and selection of

clones for complete sequencing would be simpli fied, and physical mapping would no longer

be necessary.  The next years will see a convergence of laboratory technologies that can be

automated eff iciently.  With a world wide collaborative effort, the completion of the entire

human genome sequence by 2005 seems feasible.
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1.2 Genomic sequence analysis

Once the genome sequence has been determined, what can we learn from it?  All biological

phenomena are ultimately encoded in the DNA sequence, so in the long term we hope that

knowing the genome sequence will provide answers to most biological questions.  However,

in the short term this will not be possible, since our current level of knowledge of this code is

insuff icient for a precise and detailed understanding of how it results in a living organism.

The basic principles for how strings of DNA encode RNA and protein molecules are

known.  We can find protein coding regions in DNA to some degree of confidence by look-

ing for signals that are important for the transcriptional and RNA processing machineries,

and by examining statistical effects of the usage of the genetic code (see below).  Direct evi-

dence of coding regions can also be gathered experimentally, by sequencing transcribed

mRNA sequences, as was done in EST projects.  However, the gene products interact with

other molecules to perform life-supporting functions, and we are not able to predict exactly

what these interactions are from the sequence alone.

A tremendous effort has gone into cracking the molecular enigma of protein folding, but

the ultimate goal of predicting the three-dimensional structure and the function of a protein

from its amino acid sequence alone is not yet in sight.  Instead, related but simpler problems

have been tackled, such as secondary structure (helix, sheet or coil state) prediction, fold rec-

ognition and 3D structure comparison.  Genome sequencing projects are in fact helping to

improve structure prediction, by rapidly producing more protein sequences.  Structure pre-

diction using multiple homologous sequences is superior to single-sequence prediction since

evolutionary information contained in the multiple alignment can reveal many structural

features, albeit mainly on the secondary structure level.  The main hope for predicting folds is

pinned on the belief that only a limited number of unique folds exist in nature, and once these

structures have been determined experimentally, the structure of new sequences could be

predicted by correctly assigning them to one of the known folds.  This notion is based on the

fact that already with only about 300 known unique fold classes, over 90% of newly solved

structures has a previously seen fold class [Holm and Sander, 1996].  This may however be
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due to oversampling of certain types of folds due to experimental bias, and that some fold

motifs occur at unusually high frequencies.  In fact, there is littl e evidence that the rate of

discovery of new unique folds is decreasing.

Even without a detailed molecular understanding of the genomic components, many func-

tional properties can be elucidated.  One way is by direct experiment, which will now be per-

formed exhaustively on the genes for which no function is known in the genome of S. cere-

visiae [Johnston, 1996].  Another way is to compare the sequence of newly found genes with

other known sequences of proteins with a known function.

The basis for structural and functional inference from sequence similarity is that evolution

proceeds via gene duplication and speciation events, giving rise to families of related pro-

teins that we observe in the present day.  Homologous sibling proteins caused by recent gene

duplication tend to have related functions, for instance enzymes that perform the same cata-

lytic reaction but on different substrates.  Homologues in different organisms may have iden-

tical functions, such as catalysis of the same step in a pathway, or may be related via both a

gene duplication and speciation events.  For both types of homologues, the constraints on the

sequence to make a functional protein are such that the common ancestry can be observed in

their sequences even after hundreds of milli ons of years.  The sequences will differ much less

than the actual mutation rate would imply, because any functionally deleterious mutation will

not be propagated.  Only slight variations in the sequence are usually tolerated.  This is the

basis for inferring function and structure from sequence similarity.  Whether proteins with

similar three-dimensional structures but dissimilar sequences and functions are actually

highly diverged homologues or are unrelated, is a matter open to discussion.  There exists a

‘ twili ght zone’ , where a marginal sequence similarity may be meaningful or not.  Only when

two sequences are suff iciently similar to each other can functional and structural inference be

done with confidence.

The first analysis that is done to new protein sequences is therefore a comparison to all

other known sequences, to determine whether functional information can be inferred by ho-

mology.  Traditionally, this has been done by manually perusing the output of various data-

base searches (see below) and further analysing potentially interesting database hits with
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various methods such as dot-plots (see chapter 5) and multiple alignments (see below).  A

researcher would be content to spend several days analysing a sequence that took months or

years to determine.  The main difference for genome sequencing projects is that so many

proteins are found every day that the process has to be made more eff icient and robust.  For

this, special analysis workbenches have been constructed (see below), so that a human expert

can process large amounts of sequence in time-spans matching the sequencing rate.

Having access to the entire genome sequence makes certain types of questions answerable.

For instance, the number of paralogues in gene families can be assessed, and a new research

field of ‘ comparative genomics’ is already emerging.  Here questions such as comparing the

genomic organisation and content of different species [Tatusov et al., 1996], finding com-

mon sets of ancestral genes [Green et al., 1993], and estimating the size of a minimal li fe-

supporting set of genes [Mushegian and Koonin, 1996] are addressed.  We can expect to

learn a lot from studying homologues in different organisms.  Already a number of intriguing

cases have been found, such as a nitrogen fixation like gene in S. cerevisiae [Dujon, 1996]

and homologues to human disease genes in lower organisms [Waterston and Sulston, 1995].

The remainder of this section will focus on the bioinformatics topics that are most rele-

vant to genomic sequence analysis, namely gene prediction, database searching and auto-

mated analysis workbenches.

Gene prediction

Predicting protein coding regions in genomic DNA is a species-specific problem.  Different

organisms use the interchangeable genetic codes to different extents, and higher eukaryotes

have their protein coding regions (exons) interrupted by non-coding regions (introns), while

prokaryotes and simple eukaryotes do not.  All gene finding systems are therefore fine-tuned

for a particular organism.

Protein coding DNA differs from non-coding in that it contains triplets (codons), each en-

coding an amino acid residue.  Since there are 64 triplets but only 20 amino acids, several

triplets can encode the same amino acid.  The frequency of usage of each codon depends on

the abundance of the amino acid it encodes, and the choice of codon for a particular amino
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acid.  Most organisms have a preference for certain codons, which usually reflects differ-

ences in the abundance of the different tRNA species that bind to each codon.  Highly ex-

pressed genes tend to use codons for abundant tRNAs [Bulmer, 1987].  The correlation be-

tween expression levels and codon usage is not perfect however, and a host of other reasons

are potentially involved in biasing the codon usage (see [von Heijne, 1987] for a review).

Table 1.1 shows the codon usage in E. coli [Krogh et al., 1994b].  Many codons are as fre-

quent as might be expected by chance, but there are some notable exceptions, e.g. the Ar-

ginine codons starting with A are hardly ever used.
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Table 1.1.  Codon usage frequencies and their expected frequencies in E. coli.

Codon Amino
acid

Codon
usage

Expected
frequency

Codon Amino acid Codon
Usage

Expected
frequency

AAA  Lys  3.5  1.3  GAA  Glu  4.3  1.6
AAG  Lys  1.1  1.6  GAG  Glu  1.8  1.8
AAC  Asn  2.4  1.4  GAC  Asp  2.2  1.7
AAT  Asn  1.4  1.3  GAT  Asp  3.2  1.5

AGA  Arg  0.1  1.6  GGA  Gly  0.6  1.8
AGG  Arg  0.1  1.8  GGG  Gly  1.0  2.2
AGC  Ser  1.6  1.7  GGC  Gly  3.2  2.0
AGT  Ser  0.7  1.5  GGT  Gly  2.8  1.8

ACA  Thr  0.5  1.4  GCA  Ala  2.0  1.7
ACG  Thr  1.4  1.7  GCG  Ala  3.6  2.0
ACC  Thr  2.5  1.5  GCC  Ala  2.5  1.8
ACT  Thr  0.9  1.4  GCT  Ala  1.6  1.6

ATA  Ile  0.3  1.3  GTA  Val  1.1  1.5
ATG  Met  2.5  1.5  GTG  Val  2.7  1.8
ATC  Ile  2.7  1.4  GTC  Val  1.5  1.6
ATT  Ile  2.8  1.3  GTT  Val  1.9  1.5

 CAA  Gln  1.3  1.4  TAA  *  *  *
 CAG  Gln  3.0  1.7  TAG  *  *  *
 CAC  His  1.1  1.5  TAC  Tyr  1.4  1.4
 CAT  His  1.2  1.4  TAT  Tyr  1.5  1.3

 CGA  Arg  0.3  1.7  TGA  *  *  *
 CGG  Arg  0.4  2.0  TGG  Trp  1.4  1.8
 CGC  Arg  2.4  1.8  TGC  Cys  0.7  1.6
 CGT  Arg  2.5  1.6  TGT  Cys  0.5  1.5

 CCA  Pro  0.8  1.5  TCA  Ser  0.6  1.4
 CCG  Pro  2.6  1.8  TCG  Ser  0.8  1.6
 CCC  Pro  0.4  1.6  TCC  Ser  0.9  1.5
 CCT  Pro  0.6  1.5  TCT  Ser  0.9  1.4

 CTA  Leu  0.3  1.4  TTA  Leu  1.1  1.3
 CTG  Leu  5.7  1.6  TTG  Leu  1.2  1.5
 CTC  Leu  1.0  1.5  TTC  Phe  1.8  1.4
 CTT  Leu  0.9  1.4  TTT  Phe  1.9  1.2

The non-random behaviour of triplets in coding DNA can be used to recognise it as such

[Staden, 1990].  A number of different statistical modelli ng techniques can be used for this.

The perhaps most straightforward way is to directly derive a statistical model from the differ-

ence in base frequencies in coding and non-coding DNA, as in the C. elegans Genefinder [P.

Green, unpublished], where the likelihood of coding is estimated by the logarithmic ratio of

the frequency of a triplet in coding vs. non-coding DNA.  These scores summed over a win-
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dow gives the coding potential.  It has proved more discriminating to use di-triplets (6 bases)

than single ones.  It is also possible to train a neural network to recognise coding regions, ei-

ther directly from the DNA sequence or as a way to combine a number of precalculated sta-

tistical properties in a weighted fashion, as is done in Grail [Uberbacher and Mural, 1991]

and GeneParser [Snyder and Stormo, 1995].

A statistical framework that appears well suited for gene prediction is the hidden Markov

model (HMM), in which a chain of states model the probabiliti es of bases in the different

codon positions [Krogh et al., 1994b].  GenMark [Borodovsky et al., 1995] achieves im-

proved performance by comparing the coding probabiliti es of  the top and bottom strands,

and Genie [Kulp et al., 1996] combines an HMM based system with a neural network that

predicts splice sites by a dynamic programming algorithm (see below).

Gene prediction in prokaryotes and lower eukaryotes is often considered trivial, since any

long region without stop codons, so-called open reading frames (ORFs), is li kely to contain a

gene.  However, to avoid errors such as accepting spurious long ORFs, missing short true

ORFs and using the wrong start codon, complex statistical models are necessary.

Predicting genes with introns requires an extra statistic on splice donor and acceptor sites,

which are also somewhat species-specific.  The final goal of the gene prediction then be-

comes finding the parse of exons and introns that optimises the combined likelihood score of

coding segments and splices.  The length distribution of introns, and a minimal length for

exons are normally also taken into account.  The most common method to find the optimal

exon prediction is dynamic programming (see below), which is used by Genefinder,

GeneParser [Snyder and Stormo, 1993] and Grail [Xu et al., 1994].

In C. elegans, the length of introns is usually small compared to the length of exons (the

most common lengths are 50 and 100 bp respectively), which limits the number of ways po-

tential exons can be combined together, and makes splice prediction relatively easy.  Human

genes on the other hand, often have introns that are thousands of basepairs long.  This makes

the ratio of true to false splice sites very unfavourable, and in many cases so many possible

parses are equally li kely that littl e confidence can be given to the prediction.  A further com-

plication is that multiple parses may occur naturally, so-called ‘alternative splicing’ , where a
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particular exon may be skipped or truncated.  This may either occur at all times, producing

two or more versions of a gene product, or be regulated and only occur under certain circum-

stances, such as in a particular developmental stage.  A drawback of dynamic programming

is that it normally only reports the optimal parse, while the true parse may score slightly

lower.  It might therefore be preferable to li st more than one plausible parse, but unfortu-

nately the number of possible combinations is often so huge that this becomes impractical.

Prediction of exons in higher eukaryotes can greatly be aided by matching EST sequences

from the same organism to the genome sequence.  A match provides definite proof of any

spliced out introns that are observed as insertions in the alignment.  Also, this is the only re-

liable way of predicting alternative splicing.  However, ab initio prediction is still necessary,

since the EST collection will never contain 100% of all genes, and since they do not usually

cover the entire span of the genes.

Upstream of the coding region in a gene lies a control region, called the promoter, where

the transcription complex binds to start transcription.  Promoter sites are known for many

transcription factors, and these can be used for locating promoters in new genes [Prestridge,

1995].  The main problems here are that the sites are often only a few basepairs long and that

sequence conservation tends to be rather poor, which gives many false positives.  So far, no

algorithm has incorporated promoter finding with exon finding.

Many genes code for structural RNA molecules.  Since these lack the codon bias of pro-

tein genes, there is no obvious statistical means of f inding them.  However, most tRNA genes

can be found by a consensus method [Fichant and Burks, 1991], or by sequence similarity.

More sophisticated methods to hunt for RNA genes exploit the fact that RNA molecules fold

up by internal basepairing.  This has made it amenable to stochastic context-free grammar

approaches [Sakakibara et al., 1994], which can be brought under the hidden Markov model

framework [Eddy and Durbin, 1994].  In practise this has been shown to be practical only for

tRNA (approximately 75 bases) or smaller RNAs.

A theoretically possible way to predict RNA genes would be to apply an RNA folding al-

gorithm [Zuker and Stiegler, 1981], and look for regions of DNA that fold into low energy

conformations.  However, the reliabilit y of available folding programs is currently not suff i-
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cient to distinguish true RNA genes from the background noise.  Furthermore, the known

algorithms are so computationally intensive that it would not be practical for genomic analy-

sis.

Finally, sequence similarity to homologous genes can be very useful for predicting protein

coding genes.  By comparing the raw translation of all six DNA frames to known protein se-

quences, the matching regions can give strong indications of what the correct gene prediction

may be.  Ignoring this information in a genome project invariably leads to incorrect gene pre-

dictions and missed frameshifts [Tatusov et al., 1996].  The first part of this thesis is con-

cerned with using sequence homology to improve both gene prediction and annotation for

genome projects.

Database searching

 By far the most eff icient way to predict the function of a newly found protein is by com-

paring its sequence to other proteins with known function, and inferring the function from

sequence similarity.  International collaborations have set up databases that collect and dis-

tribute all known nucleotide and protein sequences.  The main nucleotide database is

EMBL/Genbank [Rodriguez-Tome et al., 1996; Benson et al., 1996], and the main protein

databases are Swissprot and its supplement TREMBL [Bairoch and Apweiler, 1996], and

PIR-international [George et al., 1996].  Most entries of these databases have functional an-

notation, but a growing proportion have been sequenced by genome projects and are simply

annotated as ‘hypothetical proteins’ .

Approximately 100000 - 150000 unique protein sequences are known today, and this

number is increasing rapidly.  Although many database sequences are similar to each other,

usually the entire database is searched, or one where only identical or almost identical se-

quences have been removed.  Search speed is therefore of utmost importance, which can be

achieved either by heuristic algorithms or special hardware.

Sequence comparison is based on detecting evolutionarily similar sequences.  The sim-

plest scoring scheme is to give a positive score for identical residues and a negative score for

non-identical residues.  For all 20x20 = 400 possible amino acids, this corresponds to an
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identity matrix.  This scoring system only works well for closely related proteins.  For dis-

tantly related proteins, it becomes important to weight similar amino acids higher than dis-

similar ones.  The first scoring scheme where the scores were derived from statistical analy-

sis of related sequences was the PAM series of score matrices [Dayhoff et al., 1978].  This

was based on a matrix for closely related sequences that could be scaled for other evolution-

ary distances.  The drawback of this system was that the extrapolation to longer distances,

although theoretically justified, did not correspond to biological reality.  The BLOSUM se-

ries of score matrices [Henikoff and Henikoff , 1992], which were derived directly from ob-

served distant relationships are currently most widely used.

Given two sequences and a scoring scheme, an algorithm is needed to find the optimal

alignment.  The main challenge here is that because related protein sequences not only have

diverged in amino acid types, but also in the number of residues, they must be aligned with

‘padding’ in the deleted or inserted regions.  A suitable algorithm for this is dynamic pro-

gramming [Needleman and Wunsch, 1970; Smith and Waterman, 1981] (reviewed by

[Kruskal, 1983]).  Dynamic programming works by filli ng in a matrix of additive maximal

scores at all residue pair positions, allowing for gaps, and tracing back the path of the highest

score.  This path gives the optimal alignment, given the two sequences, the scoring scheme

and the chosen gap penalties.  If the scoring scheme and gap penalties are chosen carefully,

dynamic programming can be more sensitive than any other method.  However, these pa-

rameters can not be generalised to any type of comparison, and the wrong choice of parame-

ters can make it perform poorly.  Nevertheless, it has become very popular due to the fact

that it produces gapped alignments.

In dynamic programming, constraints on the beginning and end of the alignment have a

great influence on the result.  It can either be global, i.e. be forced to start at the first and stop

at the last residue in both sequences, or be local, i.e. the start and stop may occur anywhere.

The global algorithm can be more sensitive when appropriate, but the local algorithm is more

reliable and is used most often.  Various improvements have been made to the original algo-

rithm.  Many of these are implementation details that make it less computationally intensive.

It is possible to reduce both its space [Hirschberg, 1975] and time [Crook, 1991; Barton,
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1993b] requirements.  Other additions to the algorithm have permitted reporting of multiple

non-overlapping [Waterman and Eggert, 1987] or overlapping [Barton, 1993b] locally opti-

mal alignments.  Improvements in speed have also been achieved by parallel implementa-

tions on DAP [Colli ns et al., 1988], MasPar and Bioccellerator computers.

Without hardware acceleration, the dynamic programming algorithm is too time-

consuming for routinely scanning large databases.  Database searching can be made faster by,

instead of aligning all database sequences to the query, applying a heuristic to select the se-

quences most likely to have a high-scoring match, and only aligning these sequences.  This

can be done by hashing, as is done in FastA [Pearson, 1990], or by a deterministic finite

automaton to find high-scoring word matches, as is done in BLAST [Altschul et al., 1990].

These algorithms are so eff icient that they can be used routinely for database searches on

normal workstations.  FastA applies a dynamic programming step at the end, while BLAST

reports ungapped matches.  This is sometimes heavily criti cised, but on the other hand nearly

all alignment information comes from the matching segments and not from the gaps.  An-

other reason that ungapped matches were chosen is that a rigorous statistical theory could be

developed [Karlin and Altschul, 1990], using a random model.  As will be discussed in

chapter 4, although BLAST is rather well suited for genomic analysis, many aspects could be

improved upon.

Statistical significance has been the subject of much interest in database searching.  After

a search, the scores of spurious matches to unrelated sequences tend to be randomly distrib-

uted around some positive value, while true matches to related sequences ideally are sepa-

rated from the tail of the noise.  The background noise curve can be fitted to a distribution

function in order to estimate the statistical significance of the matches.  This can be done re-

gardless of the algorithm used, and has been done also for dynamic programming [Colli ns

and Coulson, 1990].  However, the shape of the distribution of scores is not known a priori,

so it was often approximated with the normal distribution.  This has recently proved signifi-

cantly less accurate than the extreme value distribution (see introduction of chapter 4).  Inde-

pendent of the method used to estimate the statistical significance, in most cases there is a
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‘ twili ght zone’ of marginally scoring sequences that may be distant relatives or spurious

matches.

There are some special requirements for database searching for genomic analysis. It is

preferable to search with the raw DNA sequence as query instead of the predicted genes, es-

pecially for genomes with intron-rich genes.  The search program must be capable of report-

ing matches to widely spaced exons without a too strong penalty for the intervening introns.

It must also be fast enough to cope with a throughput of 105 basepairs per day.  The Blastx

program satisfies both of these conditions.  Up to now, no dynamic programming algorithm

has satisfied either of these requirements, unless special hardware is used.  This may change

in the future, since dynamic programming algorithms are under development that either ex-

ploit a frameshift allowance for introns [Birney et al., 1996], or explicitl y takes splicing into

account, by not penalising gaps starting with GT (splice donor) and ending with AT (splice

acceptor) [X. Huang, personal communication].

Automated and integrated analysis workbenches

Most large-scale sequencing projects are undertaken by research centres specialised in

DNA sequencing that have resources to streamline the process and attain high throughput at

low cost.  It is not uncommon to have a daily output in the order of 105 basepairs.  To match

the speed of sequencing, a new breed of more eff icient analysis methods has become neces-

sary.  The two main routes to increased eff iciency are (1) automation of routine tasks and (2)

an eff icient analysis environment for human computer interaction.  At this moment a fully

automatic expert system that performs as well as a human does not seem feasible.  The rea-

son is that a human expert uses a very broad spectrum of biological knowledge and combines

different pieces of evidence in an intuitive way of reasoning that is hard to express as rules

that could readily be adapted to a computer program.  Instead, the eff iciency and quality of

the analysis can be improved by providing a human analyst with a powerful set of tools in an

integrated workbench environment.  These tools are intended to allow the expert to quickly

access and analyse information that visualises the most relevant data but hides irrelevant data

to prevent exhaustion.



22

Genomic sequence analysis can be performed at either the DNA or protein level.  For pro-

karyotic and simple eukaryotic genomes, where most genes correspond to single ORFs, per-

forming the analysis on the protein level is more or less acceptable.  For higher eukaryotic

genomes, where genes consist of many short exons embedded in introns, gene prediction is

less trivial.  Because of the inaccuracy of such gene predictions, the homology analysis of the

encoded proteins is more reliable when performed directly on the DNA sequence.

A system that has concentrated on ORF analysis of smaller genomes is GeneQuiz [Scharf

et al., 1994], which successfully has been applied to the Hemophilus influenzae [Casari et al.,

1995], Mycoplasma capricolum [Bork et al., 1995], Mycoplasma genitalium [Ouzounis et

al., 1996] and Saccaromyces cerevisiae [Casari et al., 1996].  For DNA analysis, a number of

graphical tools for visualisation of sequence similarity and other features exist, such as

ChromoScope [Zhang et al., 1994], the BDGP java viewer [Rubin, 1996], WebEntrez

[Kuzio, 1996] and APIC [Bisson and Garreau, 1995].

At the Sanger Centre, the analysis environment is built around the genomic database

ACEDB [Durbin and Mieg, 1996].  ACEDB was initially developed for storage and distribu-

tion of genomic data such as genetic and physical mapping data, strains, authors and pheno-

typical information.  With the arrival of the large-scale sequencing of the nematode C. ele-

gans, ACEDB was extended to incorporate a sequence analysis workbench.  This workbench

was extended with tools for more detailed similarity analysis, which are described in this the-

sis.

Figure 1.1 shows schematically the different steps of the analysis process, where ACEDB

forms the central foundation.  The sequencing groups normally finish the sequence of an en-

tire cosmid (40000 bp) before it is submitted to analysis.  First, a number of analysis pro-

grams are run in batch mode, such as gene finding and database searching.  The output of

these programs is then reformatted and read in to ACEDB.  At this point, an analyst will l ook

through the gene predictions and consolidate them using the similarity to other sequences.

The underlined components in figure 1.1 were developed as part of this thesis (see thesis

outline below).  If strong similarity is found that supports a different splicing pattern, the

gene prediction can be edited manually.  Once this type of analysis has been done on the
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DNA level, a more sensitive analysis can be performed on the translated gene predictions.

After the analysis has been done, the cosmid sequence and the attached annotations are sub-

mitted to the EMBL data library.
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Finished genomic sequence (cosmid)

Look for Use program(s) Search database
Protein homologs Blastx + MSPcrunch swir
Exons Blastn + MSPcrunch C. elegans ESTs
Protein homologs Tblastx + MSPcrunch dbEST + C. elegans ESTs
Protein motifs queryprosite (perl script) Prosite
Protein genes genefinder -
tRNA genes trnascan -
DNA repeats tandem, inverted -
DNA repeat famili es hmmfs Known C. elegans repeat famili es
Transposon inserts Blastn + MSPcrunch Tc1 insertion sequence tags

                           Convert to .ace format

                                                     Translate gene prediction

Look for Programs Database
Protein homologues Blastp + MSPcrunch swir
Protein family matches hmmfs / hmmls Pfam

                                                                                                                            Convert to .ace format

Figure 1.1. Component overview of the workbench for genomic sequence analysis built
around ACEDB.  The search methods in the tables are specific for C. elegans.  Boxes with
rounded corners are interactive visualisation tools.  The underlined components are described
in this thesis.

ACEDB

DNAmap

ACEDB

PEPmap

Blixem

Dotter Belvu

Efetch
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1.3 Protein Families

The method described above for genomic sequence analysis is essentially an extension and

streamlining of traditional methods.  It is clearly a significant improvement over manual

methods, and it works well enough to analyse and annotate genomic DNA at suff iciently high

rates and quality.  The main drawbacks are: (1) The annotation is still subject to the imagina-

tion of the annotator, who also has to spend much time reading annotations of database hits

to form an opinion on which domain(s) the query possesses.  This is compounded for pro-

teins containing multiple or repeated domains.  (2) Sensitive analysis methods are only used

as a second step, after the database search.

These problems can be mitigated by instead of searching a database of single sequences,

searching a database of multiple alignments of protein domain families. A family member-

ship thus found provides unambiguous domain annotation, and since the multiple alignment

contains evolutionary information, the method can more easily discriminate between true and

false members.

There are several ways to exploit the information in multiple alignments.  One way is to

convert it to a score matrix based profile [Gribskov et al., 1987].  Here each column is com-

pressed into a vector of 20 scores, one for each amino acid.  The scores are derived from the ob-

served amino acid frequencies and a score matrix, such as BLOSUM.  Another way is to bring it

under the framework of hidden Markov models [Krogh et al., 1994a], in which each column is

represented by a state which has a probabilit y to produce the amino acids derived from the ob-

served frequencies.  Insertions and deletions are represented by separate states, and positions

where insertion and deletions are li kely to occur are reflected by high probabiliti es to enter these

states.  HMM-based profiles have some advantages over score matrix based profiles, but need

many examples to train on.  The two models are however similar enough to be interchangeable,

and it is possible to combine them in a ‘hybrid’ model, in which the score matrix behaviour

dominates at small sample sizes but the probabili stic behaviour gradually takes over with more

examples (see chapter 7 for more details).
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The methods for comparing a sequence to a profile are normally based on dynamic pro-

gramming, usually with an extension that allows multiple non-overlapping matches in the

query sequence.

Alignment databases

The second line of approach in this thesis is to exploit family based techniques to genomic

sequence analysis.  For this, a comprehensive collection of multiple alignments is needed.

The most comprehensive protein family database is Prosite [Bairoch et al., 1996], but it is

only based on small motifs, or patterns.  Other databases are available that contain multiple

sequence alignments of the Prosite families [Gribskov et al., 1988; Attwood et al., 1996; Pie-

trokovski et al., 1996], but these alignment are still only of the most conserved regions and do

not span the entire protein domains.  For mere family membership identification this is not a

problem, but for a detailed domainwise analysis, whole-domain alignments are necessary.

Available databases such as PIRALN [George et al., 1996] and ProDom [Sonnhammer

and Kahn, 1994], do contain full -domain alignments, but these families tend to contain only

very closely related sequences and are unlikely to be more sensitive than pairwise compari-

son.  Therefore, it was decided to create a comprehensive database of whole-domain align-

ments, which contain as much evolutionary information as possible.  A system for construc-

tion and maintenance of such a database, based on HMM/score matrix hybrid profiles, was

developed.  The resulting database is called Pfam and is described in chapters 7 and 8.

Multiple sequence alignment construction

Extending the dynamic programming algorithm to more than two sequences has a computa-

tional complexity in the order of LN, where L is the average length, and N is the number of

sequences.  This makes it prohibitively time and space consuming for more than three se-

quences.  Techniques that limit the search space can be applied to reduce the computational

cost [Carrill o and Lipman, 1988; Altschul et al., 1989], but this method is still only practical

for a few sequences.
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Another method is to look for motifs in common to all sequences and use these as anchor

points to construct either a partial or complete alignment [Bacon and Anderson, 1986; John-

son and Doolittl e, 1986; Waterman and Jones, 1990; Schuler et al., 1991; Smith and Smith,

1992; Depiereux and Feytmans, 1992; Posfai et al., 1994; Smith et al., 1990].  These pro-

grams are usually best suited to find short motifs, and are often not practical for large sets of

sequences.

A more eff icient method is based on constructing a tree hierarchy of all sequences to be

aligned, and then progressively aligning sequence pairs, starting from the closest sequences.

Aligned pairs are merged into an averaged sequence, containing gap residues, which is

treated as a single sequence in subsequent pairwise alignments.  All sequences have a map-

ping to the final alignment at the root of the tree, and this gives the complete multiple align-

ment.  Several implementations of this algorithm exist [Barton and Sternberg, 1987; Feng

and Doolittl e, 1987; Taylor, 1988; Higgins et al., 1992].  A review [McClure et al., 1994]

comparing the quality of these methods concluded that they all to various extents make

similar mistakes.  One program may be more sensitive to inclusion of rogue sequences in the

dataset, while another one may have more problems merging subsets correctly.  No single

program stands out as being better than the others.

A further method is based on training a hidden Markov model on unaligned sequences,

which afterwards can be aligned to the model, thus generating a multiple alignment.  This

method was shown to be approximately as accurate as progressive pairwise methods [Eddy,

1995b], but is much slower.

Multiple sequence alignments can also be constructed from superposition of three-

dimensional protein structures [Sutcli ffe et al., 1987; Sali and Blundell , 1990; Russel and

Barton, 1992].  This method is only applicable to proteins with a known or modelled 3D

structure, which is a minority of all protein families.  Furthermore, although the alignment

corresponds closely to the structural alignment, it is not clear whether this always corre-

sponds to an evolutionarily correct alignment.

Sequence weighting
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When generating the model from the multiple alignment, care must be taken that the align-

ment is representative of all members.  If a group of closely related members are overrepre-

sented, the model will be biased towards that group and may not be sensitive to underrepre-

sented members.  This can be compensated for by either removing closely related sequences

from the alignment or by a weighting scheme, which downweights overrepresented se-

quences.  The latter method is better for preserving information about the sequence variation,

but on the other hand very littl e information is lost by removing near-identical sequences.

Various methods to calculate sequence weights are available [Sibbald and Argos, 1990;

Thompson et al., 1994; Gerstein et al., 1994; Eddy et al., 1995; Gotoh, 1995].  Using a

weighting scheme often leads to substantial improvements in sensitivity for searching.  The

difference in sensitivity between various weighting schemes is usually negligible, so aspects

such as speed of computation and robustness are of more concern.  Some methods are very

vulnerable to inclusion of false members [Krogh and Mitchison, 1995] and should be used

with utmost care.  A robust and fast method that was developed as part of this thesis is de-

scribed in appendix B.

1.4 Thesis outline

This thesis is divided into two parts because two main lines of methodology have been pur-

sued.  The first part contains chapters that describe components that have been developed as

parts of a sequence analysis environment for genomic sequence analysis, based on pairwise

comparison algorithms.  The second part is concerned with family-based comparisons, and

treats different aspects of the Pfam database of protein families, which was developed with

genomic analysis in mind.  As seen in figure 1.1, components from part 1 and 2 are actually

integrated in the same workbench.

Chapter 2 introduces the main methodology and programming environment of the

ACEDB database and graphics library, which are the foundation onto which all the graphical

analysis tools are integrated.  Chapter 3 presents Blixem, a graphical viewer for multiple se-
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quence alignments constructed from BLAST database search results, which have been proc-

essed by a program MSPcrunch, described in chapter 4.  MSPcrunch uses empirical rules to

filter out irrelevant BLAST matches, at the same time as it make the search more sensitive.

  For detailed pairwise similarity analysis, Blixem has been integrated with a new type of

dotplot program, Dotter, presented in Chapter 5, which has a new way of dynamically setting

stringency thresholds.  This, and its relatively fast operation makes Dotter also well -suited

for comparing cosmid-size DNA sequences.  Chapter 6 describes a general purpose database

retrieval tool, Efetch, which is used by the other programs in the workbench.  A picture of

these tools is given in figure 1.2

Part 2 describes family-based analysis methods.  Chapter 7 presents the database of pro-

tein families that this work is based on, Pfam, and explains why and how it was constructed.

Chapter 8 then explains how Pfam can be used for genomic sequence analysis, and describes

some graphical tools to assist this, which are depicted in figure 1.3.  In chapter 9, an analysis

of the proteins that have been discovered by the C. elegans genome project is presented.  The

analysis focuses mainly on protein families, and was done both by exploiting Pfam and by a

clustering procedure to examine nematode-specific families.
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Figure 1.2.  The graphical sequence analysis tools for the ACEDB genomic gene prediction
workbench.  Top left: the ACEDB main window.  Top right: the ACEDB DNA map, show-
ing the prediction of the C. elegans gene ZK637.10.  The columns shown are, left to right:
gene prediction (exons, blue boxes; introns, kinked lines), Blastx matches (blue boxes),
Blastn matches (yellow boxes) and DNA repeats (green boxes).  A large number of features
are left out, such as splices, starts, stops, li kely coding segments etc. (see figure 2.1).  Middle
left: The Blixem window of the same gene; The top part shows a schematic overview of all
Blastx matches; the matches inside the scrollable box are shown as a sequence alignment in
the bottom part.  Middle right: A Dotter dotplot of the genome at the ZK637.10 gene predic-
tion versus an E. coli homologue, called up directly from Blixem.  Bottom: Swissprot anno-
tation of the E. coli homologue retrieved by Efetch, activated by a double click on the match
in Blixem.
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Figure 1.3.  The graphical sequence analysis tools for the ACEDB protein family analysis
workbench.  Top left: The ACEDB main window.  Top right: The ACEDB PEPmap display,
showing the sequence of the C. elegans predicted protein C14F5.5.  The columns shown are,
left to right: The protein sequence, a hydrophobicity plot, Blastp matches (blue boxes) and
matches to Pfam protein families (green boxes).  Bottom right: Blixem alignment of the
Blastp matches; Pfam matches are shown schematically at the top.  Middle left: Belvu align-
ment of the first SH3 domain of C14F5.5 to the Pfam family SH3.  In Belvu, the residue col-
ouring is based on the overall conservation of all members, while Blixem’s colouring is only
based on the conservation relative to the query sequence.  Bottom: Swissprot annotation of a
human protein with homologous domains retrieved by Efetch, activated by a double click on
the match in Blixem or on the member in Belvu.
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2. Materials and Methods

The work in this thesis was carried out on a cluster of UNIX workstations from Sili con

Graphics running Irix 5.2, from Digital running OSF 3.2, and from SUN running SunOS

4.1.3 and 5.3.  The software was written in ANSI C [Kernighan and Richie, 1988], which is

easy to port between platforms, is suitable for large projects, and for which many mature de-

bugging tools are available.

Much of this thesis concerns the development of new graphical user interfaces.  For ge-

nomic sequence analysis, an eff icient and powerful work environment is of paramount im-

portance. The interfaces are based on the ACEDB database and graphics library [Durbin and

Thierry-Mieg, 1996].  These were initially developed for storage, analysis and distribution of

all genetic, mapping and sequence data of the nematode C. elegans, but have been general-

ised to suit any organism.  The entire source code, which is freely available, is written in

ANSI C, with a number of low-level API packages for accessing the database, memory man-

agement, array operations and the graphical displays.  The two aspects of ACEDB that are

perhaps most important for this thesis are described in more detail below.

The ACEDB database kernel

Instead of basing ACEDB on a commercially available database engine, it was decided to

equip it with a native kernel.  There are two main reasons for this: first, genomic data is very

different in nature from the type of data for which most database systems were developed, so

a specially designed system will be better tailored to handle the data eff iciently.  Second, the

often very steep cost of commercial systems will restrain widespread usage.  In fact,

ACEDB’s storage mechanism is very different from the dominating relational model.

 The data is stored as objects, which belong to a set of predefined classes.  The class mod-

els specify all attributes that can belong to an object of that class, but if an object omits any

of the attributes, they will not use up any space.  Attributes can be organised in a hierarchical

tree-structure to group related attributes together in a subsection.  Class models can be rede-

fined on a live database, making incorporation of new types of data easy.  Inheritance be-
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tween classes is not possible, but there is no overhead in sharing one large model between

related types of objects.

The eff iciency of ACEDB is achieved by two-level caching system.  The first cache is a

raw disk cache which contains copies of disk blocks and the second cache stores in memory

assembled objects.  User interfaces have direct access to the second level cache, which en-

sures high performance.  On the other hand, the direct control of the database means that only

one process can access it, and although many copies can be run on different workstations in

read-only mode, this effectively precludes multiple simultaneous edits.  A server/client ver-

sion exists, but not in conjunction with graphical interfaces.

The ACEDB graphics library

To avoid platform-dependent function calls in the graphical interfaces, a set of graphics

primitives are called instead, that make the appropriate function call depending on which

platform it was compiled.  This allows the programmer of a graphical interface to write code

that is portable throughout the platforms that are supported by the graphics library.

Some standard faciliti es offered by the graphics library are button, menu and keyboard

event handling, postscript generation, basic scrollbars and various line and text drawing rou-

tines.  The programmer can choose between a number of different window-types, depending

on whether he plans to display mainly text, graphics or pixelmaps, and which scrollbars are

desired.  Text and graphics can be mixed in the same window, but a text window uses char-

acter based coordinates, while a pixelmap window uses pixel coordinates.  Pixelmap win-

dows can display two-dimensional arrays (matrices) of 8-bit pixels, which can be rendered

dynamically to any grayscale.  This is for instance exploited in the program Dotter, described

in chapter 5.  The graph library is based on low-level X routines and some Athena widgets.

No widgets from the in some ways more evolved Motif library are used, mainly because it is

under li cense, and ACEDB maintains a policy of free distribution.

It is possible to write light-weight graphical programs that only use the graphics library,

but not the rest of the ACEDB database system.  Both Blixem and Dotter exist either as

stand-alone applications, or as linked-in modules in ACEDB.



34

The graphics library is currently supported for UNIX X-windows, Macintosh, and Win-

dows95/NT.  The two latter platforms are however somewhat experimental, and none of the

tools described in this thesis are routinely released for them.  Since the graphics library was

initially developed for X-windows, it uses three mouse buttons.  Instead of a toolbar, there is

a main menu which pops up when the right mouse button is pressed anywhere in the window,

except on buttons with special menus attached.  On systems with fewer mouse buttons, this

button is replaced by a pull -down menu on the toolbar.  On single-button systems, the middle

mouse button is simulated by a combination of a keyboard key and the mouse button.  The

system of attaching special menus to certain objects in ACEDB is widely used.  For instance,

Blixem and Belvu are called from the DNAmap and the PEPmap via menus under homology

objects.  A toolbar can be simulated by a row of buttons at the top with attached pull -down

menus.  This is used in most ACEDB map displays and in Belvu.  Some aspects of the

graphics library are only supported under X-windows.  For instance, the pixelmap rendering

tool used in Dotter, the Greyramp, exploits a special feature in 8-bit X-windows displays, and

currently does not work on Mac or Windows.

The ACEDB genomic database front-end

A large number of genome and bioinformatics centres use ACEDB to store, analyse and dis-

tribute genomic data.  At present, most end-users copy both the data and the program to a

local system.  Most of the tools described in this thesis are part of the distributed ACEDB

code.

The front-end to ACEDB consists of a number of specialised maps.  The main types are

the genetic, physical and sequence maps.  Objects displayed in these maps are normally ‘hy-

perlinked’ , i.e. by clicking on a box or text which represents an object, the object is displayed

in a new window.  The class of the picked object determines whether the new window will

displayed it in a certain map (e.g. markers, clones or genes), or simply in a text window (e.g.

articles, alleles or strains).

Figure 2.1 shows the two most fundamental ACEDB components, the main window and

the keyset window, and the DNA sequence map.  The main window lists the presently stored
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classes; by double clicking on one of them, all the objects of that class are listed in the keyset

window (‘key’ means ‘object’ here).  If a selection of the objects is desired, an expression

with wildcards can be entered at the top.  In the example, “Genomic_canonical” means ob-

jects of class “Sequence”, that have the attribute genomic_canonical, i.e. cosmids sequenced

by the C. elegans genome project.

Figure 2.1.  The ACEDB main window, a keyset of cosmids and the DNA sequence map.
The upper gene ZK637.8 was predicted to be alternatively spliced, according to evidence
from different ESTs.
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Part 1: A graphical workbench for genomic sequence analysis
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3. Blixem: a multiple alignment viewer for BLAST

3.1 Summary

The widely used database search programs in the BLAST suite present the results as pairwise

alignments.  While adequate for standard laboratory use for short query sequences, this type

of output is poorly suited for high-throughput use with genomic cosmid-size queries.  Not

only is the large volume of output data diff icult to digest, but it is also hard to form a picture

of which different homology domains the query contains.

Presented here is a graphical viewer for BLAST output, Blixem, which constructs a multi-

ple alignment of all pairwise matches and the query.  A zoomable schematic global view

makes it easy to see the big picture of the distribution of the matches, while another display

shows the actual multiple alignment in a scrollable region.  Blixem is also hyperlinked to the

annotation of matching sequences via the retrieval tool Efetch (chapter 6), and to the dotplot

program Dotter (chapter 5).  Detailed similarity analysis and functional annotation thus be-

come eff icient enough for processing large amounts of data.  Coupled to the gene prediction

workbench in ACEDB, Blixem is used routinely in genomic sequencing projects.  Examples

of usage are taken from the C. elegans genome, from which cosmids totalli ng 50 milli on

basepairs have been analysed this way.

3.2 Introduction

With the arrival of large scale genome sequencing projects [Wilson et al., 1994; Colli ns,

1995; Dujon, 1996], where highly automated laboratory techniques produce DNA sequences

at an ever increasing rate, the need for equally powerful sequence analysis tools has become

obvious.  Characterising genes found in 'blindly' sequenced DNA by searching for homolo-

gous proteins is presently the most tractable way to predict their function.  Thanks to eff icient

database searching programs such as BLAST [Altschul et al., 1991], Blaze [Brutlag et al.,
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1993], and Flash [Cali fano and Rigoutsos, 1993], and specialised hardware [Colli ns et al.,

1988], searching time is of littl e concern.  Instead, the main bottleneck lies in the manual

evaluation of the matches reported by the search programs, which often form a list of many

thousands of potential homologies.

Summarising the results automatically by e.g. using the annotation of the most similar se-

quence can often lead to misleading results.  Not only is the most similar sequence not neces-

sarily the best annotated one, but it is also easy to get misguided by partial matches to multi -

domain proteins.  Furthermore, similarities that are truncated or are found in predicted in-

tronic sequence may provide evidence that a predicted gene is incorrect, and requires re-

examination of both the DNA sequence and the exon predictions.  These problems need hu-

man intervention to ensure a high quality of both gene predictions and annotation.

However, manual reading of exceedingly long search result li sts becomes an inhuman task

for sequencing projects of several megabases.  What is needed is a workbench which auto-

matically performs the routine actions of a sequence analyst as well as presents the cases

where manual inspection is necessary in an interactive user-friendly environment [Bernstein,

1987; Medigue, 1995].

This chapter describes a core component, Blixem, of the large-scale sequence analysis

workbench presented in this thesis.  See figure 1.1 and 1.2 for an overview of all workbench

components.  Blixem provides interactive multiple sequence alignment analysis of database

matches reported by the search programs in the BLAST suite, which produce a list of ungap-

ped alignments, or MSPs (Maximal Segment Pairs).  The MSPs should first be filtered by

MSPcrunch (chapter 4), to reduce redundancy, remove low complexity ‘ junk’ matches, and

enhance the sensitivity and selectivity of multiple consistent matches.

Blixem is a general purpose viewer, although it was developed especially with the C. ele-

gans and human genome sequencing projects in mind.  It can either be used as a stand-alone

application, or as an analysis tool incorporated into the gene prediction workbench in the ge-

nomic database ACEDB.  The combination of Blixem and ACEDB forms an eff icient inter-

active system for making gene predictions where homology to other proteins can be analysed

in detail to improve both the gene structure and the functional annotation.
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3.3 General features

Blixem does not parse BLAST output directly.  Instead it relies on MSPcrunch to convert the

BLAST results to a format readable by Blixem.  These formats, ‘seqbl’ and ‘exblx’ , are de-

scribed in chapter 4.  Any program could be used to convert BLAST output to one of these

formats, but MSPcrunch is strongly recommended, since it also enhances the quality of the

data.

Overview display of matches

The upper part of Blixem, the "Big Picture" display, draws all the matches to the query sym-

bolically as lines, which on the y-axis are positioned according to the percent identity of the

MSP (see figure 3.1).  For DNA queries, the matches to either only one strand or to both

strands can be shown simultaneously (see figures 3.2 and 3.3).  By pressing the “whole”

button, matches along the whole query are shown, while the zoom buttons allow the user to

enlarge a particular region.  If a match is clicked on, all MSPs with that database sequence

become highlighted.  The blue square frame in the Big Picture is the part that is aligned on

the residue level in the Alignment display below.  The Big Picture display is centred around

this area, which can be shifted along the query with the middle mouse button.

Alignment display

For Blastp, Tblastn and Tblastx, a single query sequence is drawn on yellow background, as

in figure 3.1.  For Blastn, both strands are shown simultaneously (figure 3.2), and for Blastx

the three translations of one strand are shown (figure 3.5).  In the latter cases, the MSPs are

aligned under the appropriate query sequence.  Residues in the matching sequences are col-

oured in three different colours: Cyan (bright blue) for the same residue as the query, light

blue for a conserved substitution and no colour for a mismatch.
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For Blastx, the DNA query sequence is drawn on top, with staggering so that one triplet

covers the width of one character.  Amino acid residues in frame one thus correspond to

triplets that start with a base on the top DNA row, and end with the base on the third row that

is just to the right.  Residues in frame two start on the second row, and residues in frame

three on the third.

The start and end coordinates shown in the columns adjacent to the alignment refer to the

entire match, which may extend beyond the current window.  Horizontal scrolli ng is done

either with the scroll buttons at the left, or with the middle mouse button, which starts up a

crosshair, and centres the display on the crosshair position where the button is li fted.  When

the crosshair is on, the sequence coordinates of the query and the last clicked matching se-

quence are shown.  For Blastx, the query coordinate is that of the base under the crosshair.

The scroll buttons allow horizontal scrolli ng of the alignment in three different step sizes: a

residue (>, <), a whole window-width (>>, <<), or to the next match (match>, <match).  If

not all matches fit in the window, the lower parts of the alignment can be viewed by using

the vertical scrollbar on the left.

Annotation of a protein is fetched by double clicking on the sequence of interest in the

bottom display.  The program Efetch (chapter 6) will t hen retrieve the record from an exter-

nal database and display it in a separate window (figure 3.1).  Alternatively, a world wide

web browser can be launched, which calls Efetch and marks up the retrieved entry so that

references can be followed to other databases.  The fetch method can be set interactively in

the Settings tool.  The default fetch method can be set by environment variables (see

http://www.sanger.ac.uk/~esr/Blixem.html).
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B

Figure 3.1.  Blastp matches to the C. elegans protein ZK622.1 shown in Blixem.  The top
display shows a global overview of the MSPs in the vicinity of the alignment window in the
bottom display.  Each MSP is drawn as a line at its position in the query and percentage
identity level in the overview.  All matches to the clicked protein become highlighted, which
makes it easy to identify the domains shared with other sequences.  For instance, the matches
to the protein kinase RYK_AVIR3 only covers the C-terminal part (a), while the matches to
FES_HUMAN, which contains an SH2 domain N-terminal to the protein kinase domain,
covers the entire query (b).
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Figure 3.2.  Blastn matches to C. elegans ESTs aligned in Blixem.  By setting Blixem in
“highlight differences” mode, identical residues are shown as dots, while mismatches are
highlighted.  The example shows a typical case of EST hits, with a number of matches in the
5’ and 3’ ends of the gene.  The last intron and exon are confirmed by EST matches.  The
quality of EST sequences usually drops after 300 base pairs, which is exempli fied here by a
number of mismatches to the genomic sequence and a frameshift in the EST yk62f10.5.

Settings tool

The button “settings” contains most configuration options.  It can either be used as a pull -

down menu or as a button.  Clicking on it produces a separate Settings tool window (figure

3.1).  The options on the left side are on/off switches:

Big Picture Toggle Big Picture (top display) on/off .

Big Picture Other Strand Toggle between single and double

strand display in the Big Picture.

Highlight differences Show identical residues as a dot (.) and

draw mismatching residues in bright blue.

Squash matches.  Draw multiple matches to the same sequence on one line

(see figure 3.3).

Low complexity analysis Turn on the sequence complexity display (see below).
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B

Figure 3.3.  When the matches are split by many gaps, the normal display method, which
draws one MSP per line, can cause the alignment to become broken up (A).  In the “squash
matches” mode (B), all MSPs to the same database sequence are superimposed on one line,
and the start of each MSP is marked with a red vertical li ne.
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On the right hand side in the Settings tool, a number of multiple choice settings are available.

These are selected with right mouse button menus.  The background and the grid in the Big

Picture display can be set to 32 different colours, and the MSPs in the Alignment window

can be sorted, top to bottom, in four ways: alphabetically, highest score first, highest identity

first, or positionally, with the most N-terminal first.  Fetching can be done by Efetch, WWW,

or ACEDB (only if run inside ACEDB).

Low complexity analysis

To analyse regions of biased composition (i.e. low sequence complexity), Blixem has a spe-

cial display panel which can draw three different curves of the complexity of the query se-

quence.  The complexity is defined as the shannon entropy, i.e.

 f fi
i

i
=
∑

1

20

ln

for all residues i with a frequency fi in the window of a certain length.  The three curves can

be assigned individual window sizes and colours.  The panel can also show segments of low

complexity from the Seg program [Wootton and Federhen, 1993].  Seg uses three empirically

derived window sizes and complexity thresholds to decide whether a segment has stringently

low complexity, medium low complexity, or “non-globular” low complexity, i.e. the segment

is unlikely to have a globular fold [Wootton, 1994].  The stringent level is the default opera-

tion of Seg, and uses a window size of 12 and a threshold of 2.2 bits.  The other levels have

window sizes of 25 and 45, and thresholds of 3.0 and 3.4 bits.  Internally, Seg uses slightly

higher ‘trigger’ cutoffs to find initial segments, which are merged if they overlap [Wootton,

1994].  As a rule of thumb for protein sequences, a complexity below 3 bits is considered a

significant deviation from what is expected of an unbiased sequence, at least with window

sizes above 25.  To display Seg segments in Blixem, they are read in as pseudo MSPs with

scores of  -4, -5 and -6 for the three different levels.  The default window sizes of the com-

plexity curves are set to the three Seg window sizes.
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Figure 3.4.  Low complexity analysis of the C. elegans protein F58A4.5, which has a region
of biased composition between 200 and 500 (mainly serine rich).  The entropy of the se-
quence is plotted using three different window sizes.  Underneath, segments are drawn that
were found by the Seg program at three different stringency levels.  Blastp reports thousands
of matches to unrelated sequences with a similar bias.  This can be avoided by removing the
region in the query with e.g. the Seg program, or, as was done here, by filtering the Blastp
output with MSPcrunch.

Dotter analysis

The dot-plot program Dotter (chapter 5) is linked in with Blixem.  It is normally used to

make a dot-plot of the query and a database sequence, but can also be called to make a plot of

the query vs. itself.  The Blast MSPs are also passed on for display in Dotter, as shown in

figure 5.2.  If Blixem is used for Blastx data, Dotter makes three dotplots of the different

frame translations, and superimposes them in one graph.  When using Blixem to analyse an

entire cosmid, only a part of the query is passed on for Dotter analysis.  Blixem uses a heu-

ristic to guess which region is relevant, but may get confused by repeated domains.  If this
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happens, it is possible to select the query region manually with the option “manual Dotter

parameters” under the main Blixem menu.  This also allows manual setting of the zoom fac-

tor in Dotter.  Sequence features such as exons and introns are passed on from Blixem to

Dotter.

If Blixem is run in stand-alone mode, Dotter relies on Efetch to retrieve the entire se-

quence, since BLAST does not provide this.  If Efetch fails, only the matching region can be

analysed in Dotter.

3.4 Special features inside ACEDB

For eff icient large scale genomic sequence analysis, Blixem has been integrated in the

ACEDB genomic database package.  This is particularly useful i f the user wants to predict

genes in a DNA query sequence, since ACEDB includes a semi-automatic gene prediction

environment.  Blixem can be called up from ACEDB's sequence display windows so that

exon predictions can be validated in the light of homology to other proteins.

When used from ACEDB, the BLAST output is first filtered by MSPcrunch, which out-

puts the accepted matches into .ace format (see figure 4.9c).  These are then read in to and

stored in the ACEDB database.  When Blixem is called, ACEDB converts the data to

Blixem’s internal data structure.  Exons and introns are passed on as pseudo MSPs with

scores of -1 and -2, respectively.  As shown in figure 3.5, the genes are displayed both in the

Big Picture overview, and in the alignment.

Double clicking on a match in Blixem, which normally calls Efetch to retrieve the annota-

tion, is here by default set up to call up the corresponding ACEDB objects.  This can be used

to retrieve annotation independent of Efetch, as shown in figure 3.5.  It also allows further

analysis of the matching object in the DNAmap or PEPmap (chapter 8).  Normal Efetch an-

notation retrieval can also be used.  To make this the default when using Blixem in ACEDB,

an environment variable ‘BLIXEM_FETCH_EFETCH’ must be set.
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Figure 3.5. Multiple alignment of Blastx matches in Blixem when called from ACEDB.
Example taken from the C. elegans cosmid ZK637, showing matches between the predicted
gene ZK637.10 and glutathione reductases.  The global overview display in the top panel
shows MSPs on both the top and bottom strand.  The lower alignment panel shows the DNA
sequence at the top, and its translation in three frames on the yellow lines below.  Predicted
exons are marked in the alignment panel as blue frames on the translated genomic sequence
and as yellow boxes with the other MSPs (ZK637.10x).  It is very common that the MSPs
extend slightly beyond the true end of the exon.
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3.5 Blixelect: an organiser for multi-query Blixem analysis

For medium-scale sequence similarity analysis projects, where only inspection of BLAST

matches to a set of query sequences is wanted, but no gene prediction is intended, setting up

an ACEDB database may involve unnecessary overheads.  For such cases, a simple organiser

tool was developed, called Blixelect.  It reads a list of query names from a file, and expects

two files for each query:  one containing the query sequence and one with MSPcrunched

BLAST output in the seqbl format (figure 4.9b).  The filenames must start with the query

name, but the extensions may be chosen by the user.  Normally they are ‘ .seq’ and ‘ .seqbl’ .

Blixelect first parses the seqbl file to count the number of matches, which it li sts next to each

query name, as shown in figure 3.6.  To save space, Blixelect can be set to only li st queries

with one or more matches.

Another option is to force Blixem to automatically call dotter with the first listed database

match.  This can be useful for e.g. eff icient comparison of the proteins of two genomes, if

one only wants to establish if there is any homologue in the other database.  The keyboard

arrow keys can be used to go to the next query in the Blixelect window.  Queries with a

sought feature such as ‘has a homologue’ can be selected, and after all of them have been in-

spected, a li st of the selected queries can be printed out.
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Figure 3.6.  The Blixelect tool (top left) is useful for analysing a batch of BLAST searches.
The number of matches to each query is li sted next to its name.  By clicking on a query,
Blixem and Dotter (optionally) are called up.  This example contains all H. influenzae pro-
teins that were found to match C. elegans but not S. cerevisiae using stringent MSPcrunch
criteria.  After analysing the output using less stringent criteria, the proteins marked red were
found likely to be homologous to a yeast protein.
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3.6 Discussion

A number of graphical tools exist for schematic display of database hits [Medigue et al.,

1995; Rubin, 1996].  As far as we are aware, however, Blixem is the only viewer that recon-

structs a multiple sequence alignment from BLAST matches.  The unique combination of a

schematic overview and detailed residue analysis, and the integration with the other work-

bench tools make Blixem a key component for complex analysis tasks.  A number of other

systems also employ Blixem as a BLAST viewer.  It is suited for WWW servers that report

BLAST results, since it can read both the query sequence and the MSPs from standard input.

For web usage, one could argue that it might be preferable to re-implement Blixem in Java,

which would make it platform-independent.  On the other hand, progress is being made on

porting the ACEDB graph library to PC and Mac platforms, which in practice would make

the standard Blixem application equally portable, but faster.

Blixem can in principle be used to view the output of any database search program that

produces ungapped matches.  Allowing insertions in the query sequence would require a fun-

damental change in Blixems drawing routines, and the result of many insertions at different

points could be detrimental to the alignment.  We have therefore not pursued this approach.

To display output from programs that report gapped matches, they would first have to be

converted to a set of MSPs.  Ironically, the latest version (2.0) of BLAST reports gapped

alignments, which makes it a lot less suitable for Blixem than version 1.4.

A number of features may be incorporated in the future.  For instance, it would be

preferable to limit the vertical scrolli ng to the alignment part of the display only, so that the

Big Picture would be visible at all times.  Although such a mechanism exists in the ACEDB

graph library, such windows can not be printed properly, and are therefore not used.  To use

Blixem as a generic graphical display tool for showing data from an arbitrary external pro-

gram, a general interface specification would be needed.  At present, all displays are hard-

coded in the program, even the Seg displays.  Instead of using “magic scores” for each

method, such data should instead be converted to a standard format, which would specify the

type of data and display parameters such as colour and scaling.  If such a format becomes
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widely used, it would allow graphical display of the output of third party sequence analysis

programs, with a very small overhead for their developers.
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4. MSPcrunch: a BLAST enhancement tool for large-scale se-

quence similarity analysis

4.1 Summary

For high-throughput genomic sequence similarity analysis, most database search programs

generate prohibitively large amounts of information.  To allow an annotator to concentrate on

essential tasks, an automatic system was developed that makes many of the standard deci-

sions a trained sequence analyst would, and only presents the most informative matches to

the annotator.

The system is currently based on the database search programs in the BLAST suite, which

have been primarily designed for short query sequences.  A number of algorithmic additions

were made that are especially valuable for multi -domain queries, which is the norm for ge-

nomic cosmid-size sequences.  It is implemented by changing some input parameters to

BLAST, and applying a number of f iltering rules to the output by a post-processing program,

called MSPcrunch.

The main advantages compared to default BLAST searching are: 1. Domains with weak

but significant hits will not be missed due to other higher-scoring domains.  2. ‘Junk’

matches with biased composition are eliminated.  3. Higher sensitivity and selectivity are

achieved for multiple matching segments in the ‘ twili ght zone’ , thanks to strict  consistency

criteria.  4. A range of output formats is provided, including gapped alignment, graphical

schematic and tabular data.

The default mode of operation has been calibrated empirically to suit the needs of eff icient

and sensitive genome annotation.  This mode will remove redundant matches even if they are

significant, but will report the highest scoring of the statistically insignificant matches, since

these may prove to be biologically relevant after further analysis.
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4.2 Introduction

Large scale genome sequencing projects [Wilson et al., 1994; Dujon, 1996], generate new

sequences at such a high rate that homology analysis has become a serious bottleneck.  The

availabilit y of fast database searching programs such as BLAST [Altschul et al., 1991], Fasta

[Pearson, 1990],and Flash [Rigoutsos and Cali fano, 1993], and fast parallel computing hard-

ware such as MasPar [Brutlag et al., 1993], DAP [Colli ns et al., 1988] and Bioccelerator

[Esterman, 1995] ensure that the actual computation is a more or less solved problem for at

least the foreseeable future.  Analysing the search results generated from a hundred thousand

newly sequenced basepairs per day, however, presents a major challenge.  Available search

programs produce results that are too time-consuming to digest on a large scale.  For genome

projects, there is a demand for automated analysis systems [Scharf et al., 1994].  Our phi-

losophy is that human evaluation is still a required for high-quality sequence analysis, but

many monotonous time-consuming tasks can be automated by computational methods.  Pre-

sented here is a program, MSPcrunch, which applies a number of rules to evaluate matches

reported in a database search, and concisely presents only the most relevant information for

further consideration.

Much of the recent developments of database search programs has been refinement of the

statistical significance of a match [Karlin and Altschul, 1990], i.e. finding the probabilit y that

a match was caused by chance.  For most search algorithms, the extreme value distribution

[Gumbel, 1958] has proven the best model so far for describing the distribution of optimal

scores to database sequences [Altschul et al., 1994].  Statistical significance of a match cal-

culated under this model has been shown to generally agree well with biological relevance.

However, sequences that are unusually rich in a few amino acid types may give rise to

spurious matches that under the random model are very significant.  A solution to this is to

detect low complexity regions and remove them from the query [Wootton and Federhen,

1993; Claverie and States, 1993], but this has the drawback of artificially disrupting the

query sequence, which may lead to missed true similarities [Koonin et al., 1996b].  The risk

of this is reduced if only the abnormally frequent residues are removed [Casari, personal

communication].  In this chapter a method for avoiding matches caused by biased composi-
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tion is described, that instead of  modifying the query, compares the observed score to the

expected score, given the residue composition.  If the observed score was deemed to be the

result of compositional bias, the match is rejected.

When the amino acid composition is not biased, the statistical significance of single

matches reported by BLAST [Altschul et al., 1990] is normally reliable.  The significance of

multiple matching segments is however diff icult to calculate properly using the extreme

value distribution, and BLAST uses a heuristic to decide which segments are consistently

ordered with respect to each other [Karlin and Altschul, 1993].  This heuristic does not take

the distance between two segments into account, and often overestimates the combined sig-

nificance of what are really independent segments [Koonin et al., 1996b].  In this chapter, a

method is described that uses empirically derived consistency rules for multiple matches

between two sequences, which explicitl y takes the distance between segments into account.

This has a flavour of gap penalties, but the method is very different from dynamic pro-

gramming.

MSPcrunch is implemented as an add-on tool for the BLAST programs, which were cho-

sen because of their robustness, speed and the underlying philosophy of only looking for un-

gapped matching segments, which allows finding of matches to multiple independent do-

mains.  For genomic analysis, which involves finding protein matches to short exons inter-

spersed between introns, this is a big advantage.  The main problem with using BLAST for

large multi -domain queries is that it by default only reports the highest scores.  This can

cause weakly conserved domains to be missed if other domains generate too many high-

scoring matches.  The problem can be alleviated by changing a parameter so that BLAST re-

ports all matches.  This can cause severe over-reporting, but MSPcrunch then removes re-

dundancy in congested regions so that only the high-scoring matches of any given region are

kept.

Statistical significance tends to work well to support clear similarities.  Weakly significant

matches may or may not infer homology.  Matches in this so-called ‘ twili ght zone’ are a

mixture of true and false similarities, and the problem is to separate the signal from the noise.



55

For ungapped matches from BLAST, the problem of spurious matches is bigger than for dy-

namic programming methods that find the single best match.

After filtering out redundant and ‘ junk’ matches, the accepted matches can be viewed ei-

ther as a graphical ``Big Picture'' schematic display with one database sequence per line, as a

gapped alignment, or can be exported to other programs such as ACEDB or Blixem in a

tabular form.

4.3 Methods and materials

MSPcrunch is in itself not a database search program, but relies on the programs Blastp,

Blastn, Blastx, Tblastn and Tblastx from the BLAST suite [Altschul et al., 1991].  This has

the advantage that end-users can use any BLAST service provided on the internet and process

the output with MSPcrunch.  Another reason for implementing MSPcrunch as a post-

processing filter was to keep it flexible to adaptation to output from other database search

programs that may become popular in the future.

Version 1.4.6 of BLAST was used.  BLAST searches for ungapped segments in two se-

quences and extends them until the maximum score is achieved.  All such maximal segment

pairs (MSPs) scoring above a certain threshold are reported.  This threshold is normally set to

report 10 spurious hits, but here we lower it to 25 for Blastp and 35 for Blastx, Tblastn and

Tblastx, using the BLOSUM62 score matrix.  A lower threshold causes BLAST to report

more spurious and true MSPs, but MSPcrunch removes most of the spurious ones by consis-

tency checks described below.

The BLAST B parameter was set to a high enough value so that it does not limit the num-

ber of MSPs reported (106).  For Blastx on cosmids, we use the -span1 option to avid a too

voluminous output, and the score matrix BLOSUM62-12, which is a slightly modified ver-

sion of the BLOSUM62 matrix [Henikoff and Henikoff , 1992]. The modification was to

lower the score for stop codons from -4 to -12.  Such a high penalty for stop codons is prefer-

able for DNA sequences with very low error rates. Note that for older versions than 1.4 of
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BLAST one needs to set the S (first pass cutoff) parameter set to a low value, since only da-

tabase sequences that have a match above this threshold will be searched in the second pass,

which looks for matches above S2.

Running Blastx on long DNA query sequences (more than 105 bases) may prove impossi-

ble due to memory limitations.  For such cases, we have developed a program Seqsplit

which splits up the query into smaller chunks with overlaps.  After running BLAST on the

smaller chunks, another program Blastunsplit combines all the output files into one and re-

constructs the positions in the original query.

The protein sequence database searched, Swir, is a low-redundancy collection of se-

quences from Wormpep, Swissprot and TREMBL [Bairoch and Apweiler, 1996].  Redun-

dancy was removed by a program nuswir [P. Rice, personal communication], which rejects

any sequence from TREMBL that is more than 95% identical to any Wormpep or Swissprot

entry.  Wormpep entries in Swissprot were also removed.  118182 Release 11 of swir con-

sisted of 118182 sequences.  7299 of these sequences came from Wormpep release 11, 51474

from Swissprot release 33 and 59409 from TREMBL.  See chapter 9 for more information on

Wormpep.

4.4 MSPcrunch rules

The post-processing of MSPs from Blastx or Blastp in MSPcrunch is outlined in figure 4.1.

An MSP consists of an ungapped alignment between a segment in the query sequence, sim-

ply called 'the query' hereafter, and a segment of a database sequence, called 'the subject'.
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Figure 4.1.  Overview of the different modules in MSPcrunch.

Run BLAST with modified
B and S2 parameters

Remove biased composition
MSPs

Remove MSPs positionally
covered by stronger MSPs

No

More MSPs
?Yes

Output remaining MSPs
in the chosen format

Remove non-adjacent MSPs
in twili ght zone

Consider all MSPs to one
database sequence

Finished
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Biased composition matches

Biased composition MSPs are detected by a rule that compares the score of the MSP with the

score of an MSP with no composition bias, in relation to the amino acid composition of the

MSP in question.

The expected score of an MSP, Sexp, is the average score two random sequences of that

particular length and amino acid composition would have.  For a typical MSP the expected

score is negative, but if the composition is biased the expected score may be positive.  The

expected score is calculated the following way: Two vectors Q and D with the observed fre-

quencies of the amino acids in the query and database segments making up the MSP are con-

structed.  The vectors are then scored against each other so that

S = L Q D Mi=1
20

j=1
20

i j ijexp ∑ ∑

where L is the length of the MSP and M is the scoring matrix.  This method yields the same

result as random shuff ling methods would asymptotically, but is faster.  To avoid unjustified

high values of Sexp due to small sample sizes in short MSPs, the frequencies Qi and Di are

given pseudocounts according to

Q
Qc p

Li
i i= + ⋅

+
α
α

,  D
Dc p

Li
i i= + ⋅

+
α
α

where Qci and Dci are the counts of residue i in the query and database segments in the MSP,

and pi is the background frequency of residue i.  A good value for the pseudocount weight α

was found to be 5 (cf. [Henikoff and Henikoff , 1996]).  Using a lower weight tends to reject

too many short true matches, while a higher weight may cause acceptance of too many biased

composition matches.

To evaluate whether the score S of the MSP is the result of biased composition, we calcu-

late the bias-ratio β:

β =
−

−
S S

S LM
exp

exp
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where Mexp is the frequency-weighted expected score of random (unbiased) sequences ac-

cording to the scoring matrix used.  For BLOSUM62, Mexp = -0.945. β can be used as an in-

dex of how biased the composition of the MSP is.  As a rule, β < 0.8 is a clear sign that the

MSP has a biased composition and should be rejected. Table 4.1 shows to what degree the

unwanted biased composition MSPs are removed for different values of β.  For values of β

above 0.8, loss of good matches with slight bias becomes a problem.

A simpler and less effective version of this algorithm has previously been described.  The

method described here has been implemented since version 1.2 of MSPcrunch.

YMH5_CAEEL B0284.1 CA14_CAEEL GRP_ARATH

β biased good biased good biased good biased self
0.1 331 132 292 3 2503 27 1625 1
0.2 298 132 288 3 2485 27 847 1
0.3 221 132 277 3 2443 27 326 1
0.4 133 132 51 3 2418 27 66 1
0.5 23 132 191 3 2378 27 15 1
0.6 7 132 67 3 2255 27 3 0
0.7 0 132 15 3 1867 27 0 0
0.8 0 132 3 3 623 25 0 0
0.9 0 132 0 0 22 22 0 0

Table 4.1.  Separation of biased composition matches from good ones by MSPcrunch as a
function of the bias-ratio β.  The numbers refer to counts of MSPs that passed the
MSPcrunch adjacency criteria.  No coverage limit was used (see below).  YMH5_CAEEL
(Swissprot P34472) has a stretch of biased composition (acid-rich) in the N-terminus as well
as a reverse transcriptase domain and 3 C-type lectin domains (see figure 4.7.  B0284.1
(Wormpep CE00650) has a charged-residue biased region.  CA14_CAEEL (Swissprot
P17139) is a collagen, containing mainly [Gxy] repeats.  Although these matches have biased
composition, they are to other collagens, and it is therefore useful that MSPcrunch does not
reject all of them.  GRP_ARATH is the most biased composition protein in Swissprot 28
(72% Glycine, relative entropy 2.0 bits).  In this extreme case even the match to itself does
not pass the biased composition test when β > 0.6.

Positional coverage limitation

For genomic cosmid-size analysis, this is perhaps the most important feature of MSPcrunch.

BLAST has a settable limit for the number of highest scoring database sequences to report,

which is by default set to 250.  If matches to one domain fill t his quota entirely, other weaker

scoring domains will not be reported.  To prevent this from happening, we set the limit i n
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BLAST to a suff iciently high number that all matches are reported (B=1000000).

MSPcrunch then limits the number of matches by taking the position in the query into ac-

count.  If the query segment of an MSP is already covered by many other MSPs that score

higher and are accepted by MSPcrunch, the MSP is rejected.  Figure 4.2 shows the MSP cov-

erage on a cosmid sequence of 40 kbases.  The two main causes of very high number of

MSPs covering certain regions are strong amino acid frequency bias and large protein fami-

lies.  We limit the coverage by default to 10-fold on each strand.  An MSP is only rejected if

every residue in the query segment is covered.  In practise, due to staggering of matches, this

leads to a coverage up to 20-fold.
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Figure 4.2.  Histograms of MSP coverage on both strands of the 40 kbase DNA query se-
quence from the C. elegans cosmid ZK643 (A) before and (B) after MSPcrunch.  MSPs were
generated by Blastx as described in Methods.  The number of MSPs was reduced from
119168 to 200 by MSPcrunch.  The peak at 38000 is the result of a repetiti ve region which
gives rise to very biased amino acid sequences (poly-G in the positive strand and poly-P in
the negative) and the peaks at 29000 and 30000 have a strong bias for charged residues.
Most matches to these regions were removed by the biased composition detection mecha-
nism.  The main significant homology in this cosmid is to a G-protein coupled receptor
(ZK643.3), located between bases 25000 and 28000. Most matches are insignificant alone,
but satisfy the adjacency criteria in MSPcrunch with neighbouring matches.  There is also a
motif conserved with DCMP deaminases at 32700-32800.  Most other accepted matches are
to predicted proteins from this cosmid.
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Adjacency tests for multiple MSPs

MSPs that have an unbiased composition and score above a certain threshold are clear indi-

cators of homology.  This threshold is normally considered to be approximately 80-90 score

units, using the BLOSUM62 score matrix.  MSPs with scores in a region below this thresh-

old, i.e. in the twili ght zone, may have such low scores due to fragmentation caused by gaps

in one of the sequences relative to the other.  Since these gapped alignments are potentially

real, a lower score threshold should be used for adjacent MSPs that can be concatenated

within some limits of allowed overlaps and gaps in the query and subject sequences.

Figure 4.3 ill ustrates two cases of pairs of MSPs; the MSPs in the first pair A1/A2 is

clearly consistent with a normal gapped alignment.  The MSPs of the second pair B1/B2

could be caused by a gap in a true alignment, but this is less likely due to the long overlap.

The wider the gaps and the more the MSPs overlap, the less likely are they to combine into a

true gapped alignment.  If B2 would overlap B1 with more than the length of B1, no gapped

alignment could possibly join them together and the MSPs should be treated separately.

The definition of adjacency completely depends on the chosen parameters for how big the

gaps and overlaps between MSP may be.  BLAST itself has a consistent ordering check for

multiple matches [Karlin and Altschul, 1993], which is used for calculating the combined

probabilit y.  It is very conservative however, and only dismisses consistency if joining a pair

of MSPs is impossible, and does not take the length of the gap into account.  Still , this simple

rule does reduce the noise level a fair amount.

To test adjacency between two MSPs MSP1 and MSP2, where MSP2 is C-terminal of

MSP1 in the subject sequence, we define the following variables (see figure 4.3):
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A

B

Figure 4.3.  Diagrams of two cases of neighbouring MSPs in the sequences Q and S, for il-
lustration of the MSPcrunch parameters MSP_dist and MSP_shift.  The MSPs A1 and A2 do
not overlap, while B1 and B2 do, yielding a negative MSP_dist value.
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Query_gap = MSP2_QueryStart - MSP1_QueryEnd -1

Subject_gap = MSP2_SubjectStart - MSP1_SubjectEnd -1

MSP_dist = minimum ( Query_gap,  Subject_gap )

MSP_shift =  | Query_gap - Subject_gap |

For Blastx, the query coordinates are converted to amino acid coordinates.  Introns are es-

sentially Query_gaps.  If the Query_gap is larger than the Subject_gap but smaller than the

intron limit , MSP_intron, potential introns are accommodated by setting Query_gap equal to

Subject_gap before calculating MSP_dist and MSP_shift.

Consistency checking algorithm.  For a truly consistent pair of MSPs, the values of

MSP_dist and MSP_shift are located in a band that in order to distinguish true from false

adjacency must become more narrow for lower scoring MSPs.  The consistency checking al-

gorithm is performed as follows:

For all pairs of MSPs between two sequences {

Calculate MSP_dist and MSP_shift for the pair.

Calculate the acceptance boundaries for MSP_dist and MSP_shift based on the 

lowest scoring MSP of the pair.

If MSP_dist and MSP_shift are within the limits, mark the two MSPs as adjacent 

to each other.

}

For all MSPs between two sequences {

If it scores above the twili ght zone upper limit , accept it.

Otherwise, reject unless it was found to be adjacent to another MSP.

}
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Parameter estimation.  The basis for adjacency analysis is that random spurious matches

may occasionally end up adjacent to each other purely by chance, whereas real matches will

do so very frequently.  To investigate the range of the adjacency parameters in real homolo-

gies, matches to a G-protein coupled receptor and a carboxyl esterase were analysed manu-

ally to verify if they were true or false, based on the overall dotplot as reference.  The

MSPcrunch adjacency parameters for 78 MSPs that were verified to be correct are shown in

figure 4.4.  Most of the values are clustered near zero, but some low-scoring true neighbours

are also present.  In the lower region, there is overlap between noise and signal, but not in the

upper region.  A similar plot of randomly generated spurious matches would have a flat dis-

tribution along y axes in both plots, but tend to be strongly concentrated in the lower region

on the x axes.

Allowed adjacency bands.  We are now faced with the problem of devising a set of rules

that will i nclude as many as possible of the true MSPs, while as few as possible of the false

MSPs.  Usually it is more desirable to include some spurious matches, since removing all of

them may reduce sensitivity to true matches.

The simplest rule for confirming adjacency would be constant distance and shift cutoffs

for matches in the twili ght zone.  This would not work well , however, since it would be too

permissive for low scoring MSPs and too restrictive for high-scoring ones.  To accommodate

for this, a gradual tightening of the permissive distance and shift cutoffs is needed.  This

could be done either linearly, or according to some function.  For MSP_shift and the lower

bound of MSP_dist (maximum allowed overlap), we found that the rule needs to be quite

strict, even for MSPs in the upper twili ght zone, so a linear curve was found adequate.  For

the upper bound of MSP_dist and MSP_intron, however, strictness is much more required in

the lower twili ght zone than in the upper.  Attempts to use a linear allowance function were

unsatisfactory because they were either too strict in the upper zone, or would go to zero too

suddenly in the lower zone.  A
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Figure 4.4  A sample of true MSP_dist and MSP_shift values from 78 MSPs that were
manually verified.  The score of the weakest MSP in each pair was used.  Data from matches
to the G-protein coupled receptor ZK643.3 (Swissprot YOW3_CAEEL P30650) and the car-
boxylesterase K07C11.4 (Wormpep CE07347).
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quadratic function proved to gave a significant improvement over a linear.  We did not pur-

sue a more complex curve form, as we would only expect marginal improvements from this.

The bounds for the allowed bands that performed best were produced with these parame-

ters.  If the twili ght zone is defined between scores lower and upper, we define the bounds

for a parameter at these endpoints as distmax.lower, distmax.upper, distmin.lower, etc..  The

shape of a curve is controlled by the .power exponents.  A power of 1 gives a linear curve,

while a higher power gives a curve which is relatively more stringent in the lower region.

For scores in the twili ght zone, this gives the following bounds:

MSP_dist < distmax.lower + (score - lower)^distmax.power/distmax.scale

MSP_dist > distmin.lower - (score - lower)^distmin.power/distmin.scale

MSP_shift < shiftmax.lower + (score - lower)^shiftmax.power/shiftmax.scale

MSP_intron < intronmax.lower + (score - lower)^intronmax.power/intronmax.scale

where

distmax.scale =  (upper-lower)^distmax.power/(distmax.upper - distmax.lower)

distmin.scale = (upper-lower)^distmin.power/(distmin.lower - distmin.upper)

shiftmax.scale = (upper-lower)^shiftmax.power/(shiftmax,upper - shiftmax.lower)

intronmax.scale=(upper-lower)^intronmax.power/

(intronmax.upper-intronmax.lower)

(MSP_shift and MSP_intron are always positive so the lower bound is zero ).

For Blastp (protein-protein comparison) we found the best definition of the twili ght zone

to be 25-75 (12.5-37.5 bits), while for Blastx, Tblastx and Tblastn (DNA-protein compari-

son) 35-75 (17.5-37.5 bits) due to the higher background noise levels.  A default score of 75

was chosen as the upper limit of the twili ght zone since only few spurious matches score

above this value.  For Blastn (DNA-DNA comparison) we set the zone by default to 70-140
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(19-39 bits).  We found that a linear behaviour in the distmin parameter was adequate, while

a squared function for the other parameters gave better performance.  The allowance bands

that these functions yield are plotted graphically in figure 4.5.

To ill ustrate how these rules work in practice, an example is shown in figure 4.6.  BLAST

reports some false MSP together with the true MSPs.  The false MSPs are not the lowest

scoring ones, but since they lack adjacency, they can be ruled out as spurious twili ght zone

matches.  The rule is stringent enough to allow confident use of lower scores than BLAST

normally does.  By default, BLAST sets the cutoff so that we expect 10 spurious matches to

be reported, on a purely statistical basis.  For this particular query sequence and database

(ZK643.3 and swir10), this gives a lowest accepted MSP score (S2) of 33.  As shown in fig-

ure 4.6c and d, lowering the BLAST score cutoff to 25 results in more true matches, but also

more noise.  However, thanks to the adjacency rules in MSPcrunch, the MSPs that are low-

scoring due to gaps in the alignment can be separated from the spurious ones.  Of course, all

true MSPs are not always found.  For instance, of the 78 manually verified MSPs in figure

4.4, 9 could not meet the adjacency criteria and were thus incorrectly missed by MSPcrunch.

Our results are generally applicable to any scoring scheme, but since the most popular

scoring schemes, BLOSUM [Henikoff and Henikoff , 1992] and PAM [Dayhoff et al., 1978],

are in half bit units, we have chosen to express all scores in this unit.  To convert them to

other scoring schemes, they have to rescaled appropriately.  Since the parameters have been

estimated empirically to best suit the needs of interactive genome analysis, they may require

adjustment for other purposes.  All the twili ght zone parameters can be changed on the com-

mand line.  The above described algorithm was implemented in MSPcrunch version 2.0.

Simpler and less effective algorithms have  previously been described [Sonnhammer and

Durbin, 1994a; Sonnhammer and Durbin, 1994b].
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Figure 4.5.  Bands of allowed MSPcrunch twili ght zone adjacency parameters.  If the pa-
rameters MSP_dist, MSP_shift and MSP_intron (Blastx only) between two MSPs fall within
the shaded area, they are considered adjacent and will be accepted by MSPcrunch.  The lower
score of two MSPs is used.
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 Figure 4.6.  Dotplots ill ustrating the effect of MSPcrunch on the comparison of ZK643.3
(Swissprot YOW3_CAEEL P30650) with CLRA_RAT (Swissprot P32213).  A. The full
dotplot generated by Dotter (chapter 5) with a window size of 17.  B. MSPs generated by
Blastp using default parameters in a search against swir10 (S2=33).  5 true and 3 false MSPs
are reported.  C. MSPs generated by Blastp using an S2 cutoff of 25.  9 true and 11 false
MSPs are reported.  D.  MSPs from C kept by MSPcrunch.  All the false MSPs were rejected
and all the true MSPs were kept, thus effectively enhancing both sensitivity and selectivity.
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4.5 Displaying results

The recommended way to view MSPcrunch results is in Blixem.  Nevertheless, MSPcrunch

also supports a number of ASCII text output formats, that are useful for quick inspection of

the results, and for exporting the data to other programs.  Currently, the following output

formats are available:

• A graphical ``Big Picture'' schematic of the relevant matches, with one database sequence

per line as shown in figure 4.7.  This way one rapidly gets a good picture of which pro-

teins match a certain region of the query.  It is not unlike the Big Picture display in

Blixem, except that matches that are considered adjacent are combined onto one line, and

the sum of their scores is given as the score.  The number of adjacent segments is also

shown.  Non-adjacent MSPs of the same sequences are displayed on separate lines.  If an

MSP with a positive expected score passes the biased composition filter, its score will be

marked by an asterisk.

 

• Gapped pairwise alignments, as shown in figure 4.8a.  This is achieved by simply con-

catenating adjacent MSPs. Only if BLAST reports overlapping MSPs will gaps appear as

dashes in one sequence and residues in the other.  For non-overlapping MSPs, BLAST

does not provide the residues of the one sequence that spans the gap, and no attempt is

made to retrieve it separately, since littl e information would be added by this.  Such gaps

will t herefore be represented by dashes in both sequences.  In practice, short gaps of a few

residues can usually be reconstructed from the overlap, while long gaps can not. For a

more concise report, any gap longer than ten will not be shown at full l ength, but will be

truncated to ten dashes.  The layout has been designed to be easy to read by humans as

well as easy to parse by other programs.

 

• A detailed listing of each MSP, as shown figure 4.8b. Instead of sorting the MSPs in score

order, which BLAST does, MSPcrunch sorts them by position from N to C-terminus in
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the database sequence.  This way a much better appreciation of the global alignment with

gaps is gained, if it exists.

 

• In tabular format, with one line per MSP, for parsing by other programs.  A variety of one-

line formats are supported, one of which is shown in figure 4.9a.  This format, called

‘exblx’ can be parsed directly by Blixem (chapter 3), which will fetch all the matching se-

quences, using Efetch (chapter 6).  Another format, ‘seqbl’ , contains all the information

Blixem needs, including sequence data (figure 4.9b), and thus eliminates the sometimes

time-consuming sequence fetching.

 

• In .ace format, for export to ACEDB, as shown in figure 4.9c.  This is particularly useful

for homology assisted gene prediction, since ACEDB includes an interactive gene predic-

tion workbench coupled to Blixem, which integrates the display of predicted exons into

the BLAST-based multiple sequence alignment (see chapter 3).
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QUERY= YMH5_CAEEL P34472 HYPOTHETICAL 136.3 KD PROTEIN F58A4.5 IN CHROMOSOME III.

                  |==============================================|1222
F40F12.2    1643 1                           _______________     CE00617 REVERSE TRANSCRIPTASE
ZK1236.4     423 3                             ___ _ ____        CE00531 TRANSPOSON T1-2
B34751       453 5                          _______ _ _ _        B34751  MOSQUITO TRANSPOSON
PC1123       320 4                         ___ ____              PC1123  BLOODFLUKE PLANORB
PC1231       329 5                          _ __  _  _           PC1231  MOSQUITO TRANSPOSON
H44490       260 3                          _________            H44490  REVERSE TRANSCRIPTASE
S31175       309 4                          __ __ _              S31175  TRANSPOSON NLR1CTH
YTX2_XENLA   137 1                          _____                P14381  TRANSPOSON TX1
C06E8.4      220 3                          _____ _ _            CE00800 RNA-DIRECTED DNA POL
RTJK_DROME   343 6                           _ _ __   _ _        P21328  RNA-DIRECTED DNA POL
S20106       168 2                           __ __               S20106  HYPOTHETICAL PROTEIN
MANR_HUMAN    75 1                     __                        P22897  MANNOSE RECEPTOR
MANR_HUMAN    79 1                      __                       P22897  MANNOSE RECEPTOR
B26330       229 4                          _ _ ___              B26330  TRANSPOSON I FACTOR
A32713       358 7                          ____  _ _ ___        A32713  REVERSE TRANSCRIPTASE
POL2_MOUSE   210 3                           __ _ _              P11369  REVERSE TRANSCRIPTASE
S16783       233 4                          _ _ _ _              S16783  RETROPOSON L1 - RAT
B34087       274 5                          _ _ _ _ _            B34087  HYPOTHETICAL PROTEIN
A44490       147 2                           _    _              A44490  REVERSE TRANSCRIPTASE
S28721       304 5                          _ _ ___ _            S28721  HYPOTHETICAL PROTEIN
JU0033       226 4                           _ __ _ _            JU0033  HYPOTHETICAL L1 PROT
S27771       263 5                          __    _ _ _          S27771  RNA-DIRECTED DNA POL
Y2R2_DROME   202 3                           _  _ _              P16425  RETROTRANSPOSABLE ELEM
B27672       214 4                           _ _  _ _            B27672  RNA-DIRECTED DNA POLY
POLR_DROME   183 3                          __ __ _              P16423  POL POLYPROTEIN
LIN1_NYCCO   199 3                           __ _ _              P08548  REVERSE TRANSCRIPTASE
C07A9.1      114 2   _ _                                         CE00502
B36186       208 4                          _ _ ___              B36186  TRANSPOSON
E44255        75 1                     __                        E44255  MANNOSE RECEPTOR
G44255        77 1                      __                       G44255  MANNOSE RECEPTOR
TETN_CARSP    77 1 ___                                           P26258  TETRANECTIN-LIKE
TETN_HUMAN    76 1 ___                                           P05452  TETRANECTIN PRECURSOR
S23650       160 3                             __ _ _            S23650  HYPOTHETICAL PROTEIN
LECE_ANTCR    83 2                     _ _                       P06027  ECHINOIDIN.
IXA_TRIFL     85 2    _ _                                        P23806  FACTOR IX/X-BINDING
LECI_HUMAN    99 2                                          _ _  P07307  HEPATIC LECTIN H2
LECI_MOUSE    88 2                                          _ _  P24721  HEPATIC LECTIN 2
A42230        88 2                                          _ _  A42230  LECTIN M-ASGP-BP
LECH_RAT      96 2                                          _ _  P02706  HEPATIC LECTIN 1
ODP1_ECOLI    99 2                     __ _                      P06958  PYRUVATE DEHYDROGENASE
ANP_OSMMO     90 2                     _ _                       Q01758  ANTIFREEZE PROTEIN
JH0626        90 2                     _ _                       JH0626  ANTIFREEZE PROTEIN II
VP3_ROTS1     92 2                                        _  _   P15736  INNER CORE PROTEIN VP3
LECI_RAT      82 2                                          _ _  P08290  HEPATIC LECTIN

Figure 4.7.  Example of the Big Picture display of MSPcrunched Blastp results.  The se-
quence YMH5_CAEEL (Swissprot P34472) was searched against swir5.  The domain or-
ganisation of this protein is C-type lectin (30-160), an acid-rich stretch (160-540), C-type
lectin (540-620), Reverse Transcriptase (650-980) and C-type lectin (1080-1150).  All
matches to the acid-rich stretch were removed by the biased composition rule (β=0.8).  In the
original output from Blastp, the 62 highest-scoring MSPs were all biased composition
matches, apart from the close relatives F40F12.2 and ZK1236.4 from the same chromosome.
The columns are:  Entry name, combined score, nr. of MSPs, schematic alignment, accession
nr. and abbreviated description.  Sequences from Wormpep include a dot and the ones from
Swissprot an underscore.  Other sequences are from PIR.
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A

QUERY = ZK643.3  Length = 522
=================================

> CLRA_RAT  P32213 CALCITONIN RECEPTOR A PRECURSOR (CT-R-A) (C1A).
------------------------------------------------------------------

Score= 96 (Sum of 2 contiguous HSPs), Identity= 48%

Query: ZK643.3 146 - 171 CPPTWDGWNCFDSATPGVVFKQ-CPNY
                         C  TWDGW C+D    GV+  Q CP+Y
Sbjct: CLRA_RAT 72 - 98  CNRTWDGWMCWDDTPAGVMSYQHCPDY

Score= 61 (Sum of 2 contiguous HSPs), Identity= 25%

Query: ZK643.3 227 - 283  LLTYSASVIFLIPAVFLLTLLRPIRCQ----LHRHLLISCLLYGAFYLITVSLFVVN
                          L+ +S S+  LI ++ +    + + CQ    LH+++ ++ +L     +I +   V N
Sbjct: CLRA_RAT 153 - 208 LVGHSMSIAALIASMGIFLFFKNLSCQ----LHKNMFLTYILNSIIIIIHLVEVVPN

Score= 322 (Sum of 5 contiguous HSPs), Identity= 33%

Query: ZK643.3 275 - 486  ITVSLFVVNDAPLSSQVFQNHLFCRLL-----RYLRLTNFTWMLAEAVYLWRLLHTAQHS
                          I + + +V   P    V ++ + C++L     +Y+   N+ WML E +YL  L+  A  +
Sbjct: CLRA_RAT 196 - 407 IIIIIHLVEVVPNGDLVRRDPISCKIL-----QYMMACNYFWMLCEGIYLHTLIVMAVFT

                          EGETLRSYKVICWGVPGVITVVYIFVRSL------CWIENSTVAWIEWMIITPSLLAMGV
                          E + LR Y ++ WG P V T+++   R++      CW+   T   + ++I  P + A+ V
                          EDQRLRWYYLLGWGFPIVPTIIHAITRAV------CWLSTET--HLLYIIHGPVMAALVV

                          NLLLLGLIVYILVKKLRCDPHLERIQYRKAVRGALMLIPVFGVQQLLTIYRFSN------
                          N   L  IV +LV K+R     E   Y KAV+  ++L+P+ G+Q ++  +R SN
                          NFFFLLNIVRVLVTKMRQTHEAEAYMYLKAVKATMVLVPLLGIQFVVFPWRPSN------

                          YQVTDQSLNGLQGMFVSFIVCYTNRSVVECVLKFWS
                          Y     SL   QG FV+ I C+ N  V   + + W+
                          YDYLMHSLIHFQGFFVATIYCFCNHEVQVTLKRQWA

Figure 4.8.  MSPcrunch output of pairwise alignments.  A (this page). Gapped alignments of
the accepted MSPs in figure 4.6d.  Note that only contigs of adjacent MSPs are aligned with
gaps, separate contigs are not.  The start and end coordinates of the entire contig is given at
the start of each alignment, to make parsing easy.  B (next page). Each MSP reported sepa-
rately with MSP-specific information in N to C-terminal order.  Matrix_expected and bias-
ratio are referred to in the text as Mexp and β.
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B
QUERY = ZK643.3  Length = 522
=================================

> CLRA_RAT  P32213 CALCITONIN RECEPTOR A PRECURSOR (CT-R-A) (C1A).
------------------------------------------------------------------

Score= 68, Identity= 50%, Matrix_Expected= -20.8, bias-ratio= 1.04, Adjacency= Right

Query: ZK643.3 146 - 167 CPPTWDGWNCFDSATPGVVFKQ
                         C  TWDGW C+D    GV+  Q
Sbjct: CLRA_RAT 72 - 93  CNRTWDGWMCWDDTPAGVMSYQ

Score= 28, Identity= 43%, Matrix_Expected= -6.6, bias-ratio= 1.00, Adjacency= Left

Query: ZK643.3 165 - 171 FKQCPNY
                         ++ CP+Y
Sbjct: CLRA_RAT 92 - 98  YQHCPDY

Score= 34, Identity= 26%, Matrix_Expected= -25.5, bias-ratio= 0.89, Adjacency= Right

Query: ZK643.3 227 - 253  LLTYSASVIFLIPAVFLLTLLRPIRCQ
                          L+ +S S+  LI ++ +    + + CQ
Sbjct: CLRA_RAT 153 - 179 LVGHSMSIAALIASMGIFLFFKNLSCQ

Score= 27, Identity= 23%, Matrix_Expected= -24.6, bias-ratio= 0.83, Adjacency= Left

Query: ZK643.3 258 - 283  LHRHLLISCLLYGAFYLITVSLFVVN
                          LH+++ ++ +L     +I +   V N
Sbjct: CLRA_RAT 183 - 208 LHKNMFLTYILNSIIIIIHLVEVVPN

Score= 27, Identity= 22%, Matrix_Expected= -25.5, bias-ratio= 0.97, Adjacency= Right

Query: ZK643.3 275 - 301  ITVSLFVVNDAPLSSQVFQNHLFCRLL
                          I + + +V   P    V ++ + C++L
Sbjct: CLRA_RAT 196 - 222 IIIIIHLVEVVPNGDLVRRDPISCKIL

Score= 109, Identity= 35%, Matrix_Expected= -53.9, bias-ratio= 0.98, Adjacency= LeftRight

Query: ZK643.3 307 - 363  RYLRLTNFTWMLAEAVYLWRLLHTAQHSEGETLRSYKVICWGVPGVITVVYIFVRSL
                          +Y+   N+ WML E +YL  L+  A  +E + LR Y ++ WG P V T+++   R++
Sbjct: CLRA_RAT 227 - 283 QYMMACNYFWMLCEGIYLHTLIVMAVFTEDQRLRWYYLLGWGFPIVPTIIHAITRAV

Score= 27, Identity= 43%, Matrix_Expected= -6.6, bias-ratio= 0.98, Adjacency= Right

Query: ZK643.3 370 - 376  CWIENST
                          CW+   T
Sbjct: CLRA_RAT 289 - 295 CWLSTET

Score= 105, Identity= 35%, Matrix_Expected= -69.9, bias-ratio= 0.93, Adjacency= LeftRight

Query: ZK643.3 375 - 448  STVAWIEWMIITPSLLAMGVNLLLLGLIVYILVKKLRCDPHLERIQYRKAVRGALMLIPV
                          ST   + ++I  P + A+ VN   L  IV +LV K+R     E   Y KAV+  ++L+P+
Sbjct: CLRA_RAT 292 - 365 STETHLLYIIHGPVMAALVVNFFFLLNIVRVLVTKMRQTHEAEAYMYLKAVKATMVLVPL

                          FGVQQLLTIYRFSN
                           G+Q ++  +R SN
                          LGIQFVVFPWRPSN

Score= 54, Identity= 33%, Matrix_Expected= -34.0, bias-ratio= 0.99, Adjacency= Left

Query: ZK643.3 451 - 486  YQVTDQSLNGLQGMFVSFIVCYTNRSVVECVLKFWS
                          Y     SL   QG FV+ I C+ N  V   + + W+
Sbjct: CLRA_RAT 372 - 407 YDYLMHSLIHFQGFFVATIYCFCNHEVQVTLKRQWA

Figure 4.8b.
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A
  68 (+1)     146     167    72    93 CLRA_RAT P32213 CALCITONIN RECEPTOR
  28 (+1)     165     171    92    98 CLRA_RAT P32213 CALCITONIN RECEPTOR
  34 (+1)     227     253   153   179 CLRA_RAT P32213 CALCITONIN RECEPTOR
  27 (+1)     258     283   183   208 CLRA_RAT P32213 CALCITONIN RECEPTOR
  27 (+1)     275     301   196   222 CLRA_RAT P32213 CALCITONIN RECEPTOR

B
# seqbl
# BLASTP
  68 (+1)     146     167    72    93 CLRA_RAT CNRTWDGWMCWDDTPAGVMSYQ
  28 (+1)     165     171    92    98 CLRA_RAT YQHCPDY
  34 (+1)     227     253   153   179 CLRA_RAT LVGHSMSIAALIASMGIFLFFKNLSCQ
  27 (+1)     258     283   183   208 CLRA_RAT LHKNMFLTYILNSIIIIIHLVEVVPN
  27 (+1)     275     301   196   222 CLRA_RAT IIIIIHLVEVVPNGDLVRRDPISCKIL

C
Protein ZK643.3
Pep_homol CLRA_RAT BLASTP 68 146 167 72 93

Protein CLRA_RAT
Pep_homol ZK643.3 BLASTP 68 72 93 146 167

Protein ZK643.3
Pep_homol CLRA_RAT BLASTP 28 165 171 92 98

Protein CLRA_RAT
Pep_homol ZK643.3 BLASTP 28 92 98 165 171

Protein ZK643.3
Pep_homol CLRA_RAT BLASTP 34 227 253 153 179

Protein CLRA_RAT
Pep_homol ZK643.3 BLASTP 34 153 179 227 253

Protein ZK643.3
Pep_homol CLRA_RAT BLASTP 27 258 283 183 208

Protein CLRA_RAT
Pep_homol ZK643.3 BLASTP 27 183 208 258 283

Protein ZK643.3
Pep_homol CLRA_RAT BLASTP 27 275 301 196 222

Protein CLRA_RAT
Pep_homol ZK643.3 BLASTP 27 196 222 275 301

Figure 4.9.  Examples of tabular output from MSPcrunch.  A. The ‘exblx’ f ormat, which
contains score, frame, start and end coordinates and subject name and description of each
MSP on one line.  B. The ‘seqbl’ f ormat, which is the same as exblx, except that it contains
the sequence of the database entry instead of its description.  Both formats are parsed by
Blixem, but for exblx data, Efetch (chapter 6) must be installed to retrieve the sequences.  C.
The same data in .ace format, which is used to export the MSPs to ACEDB.
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4.6 Discussion

An often heard criti cism of using ungapped alignments is that distantly related proteins as

a rule can only be aligned by inserting gaps.  However, the regions which require gaps usu-

ally correspond to loops between secondary structure elements in the 3-dimensional struc-

ture, where the length of the loop may vary.  The loop residues can often not be aligned

structurally, which makes sequence alignments of these regions rather meaningless.  Also,

the results of algorithms that produce gapped alignment depend strongly on a somewhat ar-

bitrary gap penalty.  A further advantage of ungapped alignments is that repeated and shuf-

fled domains in one sequence can be detected, something which is often compromised by

programs that produce a gapped alignment.

One drawback of ungapped alignments is the diff iculty of calculating an appropriate com-

posite score for all MSPs with the same protein. Here we put the emphasis on making sure

that a series of MSPs are truly consistent with a single gapped alignment.  We then simply

sum up the individual scores.  The BLAST programs also calculate the probabilit y of multi-

ple matches by summing the individual scores of consistently ordered MSPs and correcting

for the number of MSPs.  However, their consistency criterion [Karlin and Altschul, 1993] is

much weaker than our adjacency criteria and falsely high significance may arise from spuri-

ous hits that are not truly adjacent, especially those involving biased composition matches.

An additional practical problem with the probabiliti es calculated in BLAST is that they

increase with the size of the database, because the expected number of spurious matches in-

creases slowly as the database grows.  However, the true match scores do not change, and

because many of the new sequences are homologous to existing ones, the correction often

overestimates the drop in significance.  In any case it is more convenient to work with a

measure of similarity that remains stable for a particular match.  For these reasons we de-

signed MSPcrunch to work only with the raw scores (which are log odds ratios).

The parameters used to deem two MSPs adjacent or not, MSP_dist and MSP_shift, were

here used independently of each other.  It might be worth considering treating them in a

combined way, so that a large MSP_dist is more readily accepted if MSP_shift is small .  We
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have not found any such combinatorial rule that works satisfactorily in practice, and that

make sense both biologically and statistically.  Biologically one would expect a larger

MSP_shift for a larger MSP_dist, but allowing this would increase the levels of accepted

noise.  There does not seem to exist a strong correlation between the parameters, and since it

is also important for rules to be simple enough to understand, we have not pursued this any

further.

The reduction of redundant results due to large protein families was achieved here by re-

jecting excess matches to a given region.  A more subtle way of accomplishing this is to

search a pre-clustered database.  Instead of f inding similarities to every member of the fam-

ily, a single match would be found to the entire family, thus giving the relations to all other

members of the family, not only the closest relatives.  This is demonstrated in Part II , using

the Pfam collection of protein families based on hidden Markov models.  Whether searching

a collection of aligned families always is more sensitive than pairwise comparison to all se-

quences is however not entirely clear.  Sensitivity may also decrease if the family is not well

defined, or if the query is much closer to one of the members than to the average of the fam-

ily.  Therefore, we have here pursued a higher quality of traditional single-sequence database

searching, which most likely will remain an important tool complementary to family-based

searching techniques.

The system described here is similar to GeneQuiz [Scharf et al., 1994] in that it per-

forms many sequence analysis tasks automatically.  MSPcrunch however is primarily con-

cerned with the proper treatment of similarities along large DNA queries, for which a solu-

tion of the multi -domain problem is needed.  Together with Blixem and Dotter, integrated in

ACEDB, MSPcrunch is part of a sequence analysis workbench.  This workbench also has

different goals than GeneQuiz, since it was designed to analyse the DNA sequence and im-

prove the quality of exon/intron predictions using sequence similarity, as well as being an

annotation tool.  Given the complexity of the gene prediction process in higher eukaryotic

genomes, we don’ t envisage a fully automatic system for this in the near future.

Many of the features in MSPcrunch have been made partly obsolete by subsequent im-

provements in the BLAST software.  Especially the sensitivity for multiple weak matches
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was improved significantly in BLAST 1.4.  Our biased composition check is currently being

tested as an option in BLAST, and we hope that other features will be included in the future

too.  Performing the filtering process during the search phase would reduce the computa-

tional load.

 MSPcrunch, Seqsplit , Blastunsplit are available by anonymous FTP from ftp.sanger.ac.uk

in the directory /pub/MSPcrunch.



80

5. Dotter: A dot-matrix program with dynamic threshold control

suited for genomic DNA and protein sequence analysis

5.1 Summary

Graphical dot-matrix plots can provide the most complete and detailed comparison of two

sequences. Presented here is Dotter, a dot-plot program for X-windows which can compare

DNA or protein sequences, and also DNA versus protein.

The main novel feature of Dotter is that the user can vary the stringency cutoffs interac-

tively, so that the dot-matrix only needs to be calculated once.  This is possible thanks to a

"Greyramp tool" that was developed to change the displayed stringency of the matrix by dy-

namically changing the greyscale rendering of the dots.  The Greyramp tool allows the user

to interactively change the lower and upper score limit for the greyscale rendering. This al-

lows exploration of the separation between signal and noise, and fine-grained visualisation of

different score levels in the dot-matrix.

Other useful features are dot-matrix compression, mouse-controlled zooming, sequence

alignment display and saving/loading of dot-matrices.  Since the matrix only has to be cal-

culated once and since the algorithm is fast and linear in space, Dotter is practical to use even

for sequences as long as cosmids.

Dotter was integrated in the gene-modelli ng module of the genomic database system

ACEDB.  This was done via the homology viewer Blixem in a way that also allows segments

from the BLAST suite of searching programs to be superimposed on top of the full dot-

matrix.  This feature can also be used for very quick finding of the strongest matches. As ex-

amples, we analyse a C. elegans cosmid with several tandem repeat families, and ill ustrate

how Dotter can improve gene modelli ng.
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5.2 Introduction

Ever since the introduction of graphical dot-matrix plots to sequence analysis [Fitch, 1969]

[Gibbs and McIntyre, 1970], they have been among the most popular methods for analysing

similarity between two sequences, particularly for gaining a good picture of  the similarity

between repeated domains.

The original dot-plot concept of drawing one sequence along the horizontal axis and the

other along the vertical axis of a coordinate system, and drawing a dot where two residues

match has essentially stayed the same.  Regions of similarity between the sequences will re-

sult in a diagonal row of dots, whereas spurious matches give rise to a background of single

dots.  A standard filtering technique to reduce the noise is to apply a window along the di-

agonals and only draw a dot in the centre of the window if the sum of all dots in the window

exceeds some score threshold.

One problem is that the optimal threshold for drawing a dot is hard to guess a priori.  Poor

choice of threshold may result in dot-plots either too full of noise or lacking the relevant di-

agonals.  This can be frustrating, since changing the threshold usually requires recalculation

of the entire dot-plot, which often is very time consuming.  Estimating the threshold by prob-

abili stic methods [McLachlan, 1971] [McLachlan, 1983] [McLachlan and Boswell , 1985]

[Reich and Meiske, 1987] [Argos, 1987] can be of use for finding the approximate border

region between signal and noise, but still usually requires recalculation of the dot-matrix at

different score levels.  Inspecting the dot-plot at different thresholds is very informative since

it gives a better picture of the strength of a diagonal relative to the noise and other [Staden,

1982].  Dotter was created to make this interactive aspect of dot-plots more powerful than in

previous implementations.

Improvements on the classical single-bit dot-plot (where dots are either on or off) have

been to encode the score of a dot by colours [Maizel and Lenk, 1981] [Reisner and Bucholtz,

1988] [Zuker, 1991] or by lines of varying thickness [Argos, 1987].  However, none of these

programs can plot more than 16 different colours or shapes, and since they can not be modi-
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fied dynamically to other thresholds, they do not eliminate the need for recalculation if an-

other stringency rendering is required.

Modern graphics hardware offers new possibiliti es for addressing this problem.  Dotter

allows the user to set score thresholds dynamically after the dot-matrix has been calculated,

using the X-windows system for changing screen colours on 8-bit displays. This is done by a

mouse-controlled "Greyramp" tool which lets the user modify two score thresholds which

can either be used as a strict “all or nothing” cutoff , or as a smooth rendering of many differ-

ent score levels at once.  Dots scoring below the first threshold are invisible and dots scoring

above the second threshold get the maximum intensity while dots scoring between the

thresholds are rendered with an intensity proportional to their score.  Employing 128 differ-

ent greyscale colours ensures a smooth range of intensity values.

Computationally, the main problem with dot-plots is that the execution time is propor-

tional to the product of the lengths of the sequences, which makes long sequences very time

consuming. This problem has been attacked by heuristic approaches [Pearson and Lipman,

1988] [Schwartz et al., 1991] and trees combined with heuristics [Lefevre and Ikeda, 1994].

Such techniques can give improvements in speed of several orders of magnitude, at the cost

of generating a not entirely correct dot-matrix.  For long sequences, where an overview of the

strongest matches is of main interest, such approximations may be acceptable, but for de-

tailed analysis of weak similarities the full matrix still needs to be calculated.   We recognise

the usefulness of such fast methods and have therefore equipped Dotter with the abilit y to

also read in matches produced by the BLAST suite [Altschul et al., 1990].  Displaying un-

gapped matches from BLAST is also informative since it shows the extent of high-scoring

segments.

Dotter is a versatile tool for dot-matrix comparisons of DNA and protein sequences.  It

can produce dot-plots for DNA vs. DNA, protein vs. protein, and DNA vs. Protein.  For

DNA, it can draw the reverse complement diagonals in the same dot-matrix as the forward

ones.  For DNA vs. protein, it translates the DNA sequence in the three forward frames and

draws them all i n the same dot-matrix.  All modes feature tools to inspect the sequence

alignment of any diagonal.
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5.3 Methods

Generating the dot-matrix

Here, the dot-matrix will not simply contain a zero or a one (one bit) for each dot as in the

traditional dot-plot, but a value between 0 and 255 (8 bits = one byte).  The dot-matrix thus

contains scores, averaged over a chosen window-span, but we prefer not to call it a "score

matrix" to avoid confusion with the well -known pairwise score matrices, such as PAM120

and BLOSUM62.  The dot-matrix needs only to be calculated once for a given window-span.

For maximum speed, we precalculate score vectors for every possible symbol in the verti-

cal sequence along the horizontal sequence [Karreman, 1992].  For DNA, this requires 4+1

score vectors (1 extra for unknown symbols), and for protein 20+2+1 (20 amino acids, 2 for

ambiguity symbols and 1 for unknowns).  This makes execution faster since the few score

vectors only have to be calculated once and are later added to and removed from the sliding

window-sums.  The window-sums are calculated for consecutive windows along the diagonal

in a sliding manner by simply adding the next score and subtracting the last score inside the

window.  Instead of calculating the window-sums for one diagonal at a time however, we

keep a horizontal vector of all window-sums and add and subtract the precalculated score

vectors row by row.

The following pseudocode outlines the algorithm.  The score vectors are assumed to be

initialised with the scores from the pairwise score matrix used.

integers N, // Length of horizontal sequence
M, // Length of vertical sequence
α, // Size of alphabet
W // Span of sliding window

vectors scoreVec[1..α+1][1..N], // The score vectors
newsum[1..N], // Window-sum vector 1
oldsum[1..N], // Window-sum vector 2
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zeroVec[1..N], // Vector of zeros
symbVec[1..M] // Symbols in vertical sequence

pointers addVec, // Pointer to scoreVec to be added
delVec, // Pointer to scoreVec to be subtracted
tmp // Temporary pointer

for i ← 1 to N do
{

tmp ← oldsum
oldsum ← newsum
newsum ← tmp

addVec ← scoreVec[symbVec[i]]
if i > W then delVec ← scoreVec[symbVec[i-W]]
else delVec ← zeroVec

newsum[1] ← addVec[1]
for j ← 2 to W do

newsum[j] ← oldsum[j-1] + addVec[j]
for j ← W+1 to M do
{

newsum[j] ← oldsum[j-1] + addVec[j] - delVec[j-W]
if newsum[j] > 0 and i > W then

dot-matrix[i-W/2][ j-W/2] ← newsum[j]/W
}

}

It is worth noting that the main operations are all vector additions and subtractions, which

would make the program M times faster on an architecture allowing simultaneous vector op-

erations.  The above algorithm gives a performance of 5.7 milli on dots per second on a DEC

Alpha AXP 3000/700.  This means that a cosmid sequence of 40.000 basepairs can be com-

pared against itself in about 4.5 minutes.  Other programs have reported speeds of 0.0005

[Pustell and Kafatos, 1982], 0.1 [McLachlan, 1983], 0.005 [Argos, 1987] and 0.08 [Karre-

man, 1992] milli on dots/second, albeit on slower hardware.  The only program we could

benchmark on the same hardware as Dotter was DIAGON [Staden, 1982] which runs at 0.46

milli on dots/second.

The total memory usage of Dotter is (α+4)N + 2M plus the dot-matrix itself (1 byte/dot).

The memory usage of the dot-matrix is not O(NM) since if NM is large, we only keep a
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compressed matrix.  Dotter calculates the compression factor based on a user-settable option

S, the maximum memory usage of the dot-matrix (default 0.5 Mb).  If the product NM is

greater than S, we let each pixel represent a TxT region of the full matrix, where T is the

smallest integer that satisfies NM/T2 < S.  Although all the values in the full matrix are cal-

culated, only the maximum value in each TxT square is kept [Pustell and Kafatos, 1982].

This process increases the background noise, but this is readily compensated for by raising

the thresholds in the Greyramp tool (see below).  If either N or M is greater than the number

of horizontal or vertical pixels of the screen, scroll bars will appear to let the user pan

through the dot-matrix.

By default, Dotter sets the window-span to the length of the expected Maximal Segment

Pair (MSP), which is calculated for the given sequences and score matrix the following way.

Karlin and Altschul showed that for two sequences of length n and m, the MSP score M(nm)

has a distribution approximated by P(M(nm) - (ln nm)/λ > x) ≈ 1 - exp{-Ke-λx } , and provided

a method for solving K and λ [Karlin and Altschul, 1990].  The mode of this distribution, or

the expected MSP score is then (ln nm + ln K)/λ.  The expected score per residue in an MSP

is R = Σ qijSij; qij = pipj exp{λSij}, where pi and pj are the symbol frequencies in the se-

quences.  By dividing the expected MSP score with the expected score per residue we obtain

a simple approximation to the expected MSP length:

ln lnnm +

∑

K

p p e Si j
S

ij
ij

λ
λ

For typical sequences and score matrices such as BLOSUM62 for protein and {match =

+5; mismatch = -4} for DNA, this usually gives a window-span of about 25 residues.  If the

above method gives an undesired  window-span or fails because λ is undefined for the cho-

sen scoring scheme, it can also be set manually.  Because we are interested in local similari-

ties we set n and m to a constant value of 100.  This makes the noise density independent of

the sequence lengths.
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Dotter can also run in batch mode.  In both interactive and batch mode, the dot-matrix and

all used parameters can be saved to file and be inspected later.  The abilit y to load dot-

matrices from file also makes it possible to generate dot-matrices with other programs and

read them in Dotter for interactive inspection.  See the World Wide Web address below for

details of the format.

Visualising the dot-matrix with the Greyramp tool

The Greyramp tool was designed to enhance the visualisation of greyscale images, particu-

larly images with a delicately balanced mix of noise and signal.  The simplest form of dis-

playing the score of a dot as a greyscale is to let the intensity be directly proportional to the

value of the dot.  The Greyramp tool provides two additional features: A min cutoff score,

below which all dots get minimum intensity, and a max cutoff score, above which all dots get

maximum intensity.  For dots scoring between min and max, the dot intensity is linearly pro-

portional to the score.  The score shown in the Greyramp tool is the score per residue, i.e. the

total score of the sliding window divided by the window-span, multiplied by a scaling factor

to use the pixel intensity range 0-255 optimally.  By setting this scale factor  to 256/5R,

where R is the expected score per residue in an MSP (see above), we place the expected

noise level at a fifth (51.2) of the intensity range and thereby make the significance of the

pixel intensities roughly the same for different scoring schemes.  By starting the Greyramp

tool with min=40 and max=100, the top of the noise will be just visible, and all scores above

twice the expected significant level will be at maximum intensity.  Empirically this gives rea-

sonable starting points.

The min and max cutoffs can be changed dynamically and can be controlled independ-

ently by point-and-drag actions with the mouse on the littl e triangles seen in figure 5.1.  By

dragging the littl e box in the middle between min and max they are modified simultaneously

while keeping the difference between them constant.  Minimum intensity is usually white and

maximum black, but this can be reversed by the "swap" function.  For any setting of the min

and max thresholds, the rendered dot-matrix can be printed out on a postscript printer.
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Dotter changes the greyscales on the screen by modifying the colourmap cells of 8-bit X-

windows displays, which are the most common.  Since the colourmap cells are not needed on

24-bit graphics, Dotter will not work on such displays.  Dotter uses 128 colourmap cells,

which may be shared by simultaneous Dotter jobs on the same display.
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Figure 5.1a.  Dot-matrix analysis of the C. elegans cosmid (ZK1307, EMBL Z47358) with
Dotter.  The entire cosmid is compared to itself, with the forward and reverse direction di-
agonals superimposed.  Only half the dot-matrix is calculated since the other half is an iden-
tical mirror image.  Features that can be seen at this level are an inverted repeat at 4000-
6000, a region containing a multitude of small tandem direct and inverted repeats at 6700-
9500 and a duplicated gene repeat at 25000-28000.  The alignment in both directions at the
position of the crosshair is shown in the Alignment tool window in the middle.
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Figure 5.1b-c.  (b) Zoomed in detail of (a) in a tandem repeat region of about 100 10 bp re-
peats between 6700 and 8100.  The Greyramp Tool is used to view the dot-matrix at different
stringencies. The pixel values are 50 times the average residue-score in the window, meaning
that a 100% identical match would score 250, given the scoring scheme of +5 for matches
and -4 for mismatches. Any dot scoring below the min threshold of 10 will be invisible, dots
above the max threshold of 70 will be completely black, and dots in between will be drawn in
a greyscale proportional to their score.  (c) If the rendering thresholds are moved up to 70-
130, it becomes clear that every 4 of the 10 bp repeats have stronger similarity with each
other, suggesting a super-structure repeat unit of 40 bp.  (d) Moving the thresholds up to 130-
190 shows only the 40 bp repeat structure in the forward direction and only faint inverted di-
agonals, also with a pitch of 40 bp.  The calculation of (a) took 170 seconds and of (b), (c)
and (d), which are different renderings of one dot-matrix, 0.1 seconds.
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The crosshair and Alignment tool

A crosshair can be moved either with the mouse or cursor keys around the dot-plot.  The ex-

tent of a diagonal can be found either by reading the coordinates next to the crosshair or from

the rulers on the axes.  The sequence alignment of a diagonal can be displayed by moving the

crosshair onto it and launching the Alignment tool from Dotter's main menu (right mouse

button).  The Alignment tool displays a residue by residue alignment of the two sequences

corresponding to the diagonal around the crosshair.  Identical matches are highlighted in

bright blue and conservative substitutions in dark blue.  If both sequences are DNA, two

alignments are possible: of the original sequences and of the reverse complement of the hori-

zontal sequence to the vertical sequence.  The two alignments can be shown simultaneously

as in figure 5.1.  If the horizontal sequence is DNA and the vertical is protein, the three for-

ward frames are translated and superimposed in the dot-matrix, keeping the maximum value

in each pixel as described above for compressed matrices.  The only way of telli ng which

frame caused a diagonal is to use the Alignment tool, which displays all three reading frames

aligned to the protein sequence (figure 5.2).

If the nature of some segments in one or both of the sequences is already known, Dotter

can enhance the analysis by displaying such segments as coloured boxes along the border of

the dot-plot, as in figure 5.3.  The coloured segments seen in the border are read in from a

simple data file with one line per segment.  The format is: sequence (1=horizontal,

2=vertical), start, end, colour, annotation.  See the World Wide Web address below for more

details.  In combination with the crosshair, the coloured boxes are easy to relate to a particu-

lar diagonal.
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Figure 5.2. Dotter plot of DNA vs. protein with gene predictions from ACEDB. Shown here
is a stretch of genomic DNA from the C. elegans cosmid ZK637  (EMBL Z11115) compared
to the protein glutathione reductase from E. coli  (Swissprot P06715).  The gene prediction
(ZK637.10) was made in ACEDB, but some exons have only very weak homology.  Matches
found by BLAST/MSPcrunch (chapter 4) are superimposed in the dot-plot as red lines.  The
match at exon 3 was too weak to be reported by BLAST/MSPcrunch, but it is visible in the
dot-plot.  Also, the BLAST match at the end of exon 5 was extended past an insertion,
whereas the dot-plot shows the correct diagonal.  The Alignment tool shows the alignment of
the three translated forward frames of ZK637 with GSHR_ECOLI at the end of exon 5 (see
crosshair position).  Frame 2 contains the match missed by BLAST.  The calculation took 0.6
seconds.



92

Figure 5.3. Analysis of a highly repetiti ve protein with symbolic domain annotation.  The
protein UNC-22, or twitchin (PIR S07571) from C. elegans is compared to itself.  Pixel val-
ues are 50 times the average residue-score in the window.  The colours of the segments are:
green = fibronectin type III domain (FN3); red = immunoglobulin domain (IG); Blue = ki-
nase domain.  It is clear that all the FN3 domains are much more closely related to each other
than the IG domains, and that the FN3-FN3-IG cassettes between 1000 and 3000 are more
closely related than the other ones.  The calculation took 3 seconds.
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Zooming in

It is possible to zoom in to any region in a compressed dot-matrix by dragging with the mid-

dle mouse button to delimit a rectangle, or with exact coordinates via a dialogue window.  A

new Dotter job will t hen be spawned for the selected region only.  The parent Dotter job will

not be superseded but will remain intact on the screen.  The two dot-plots will be independ-

ent of each other so that either can be kill ed without affecting the other one.  Since all simul-

taneous Dotter jobs share the same colourmaps, any Greyramp tool will control the greyscale

rendering of all active dot-plots.

Displaying high-scoring segments

Calculating the full dot-matrix, as described above, has two drawbacks: it is slow for very

long sequences, and it does not display the maximum high-scoring extent of the diagonals.

Sometimes it is informative to try to extend a diagonal in both directions until the total score

doesn't increase further.  The ungapped alignment giving the maximum score is called a

high-scoring segment pair (HSP).  The BLAST programs [Altschul et al., 1990] search for

HSPs in a fast, heuristic fashion.  Instead of replicating the BLAST algorithm, Dotter simply

reads in HSPs reported by BLAST and draws them in the dot-plot as in figure 5.2, similarly

to PLFASTA [Pearson and Lipman, 1988] for FASTA output.  Here it is accomplished via

the BLAST output viewer Blixem (chapter 3), which constructs a multiple alignment of

HSPs reported by BLAST and displays it graphically in a scrollable window.  The advantage

of this is that Blixem first can give an overview of all sequences that match a given query.

The most interesting homologies can then be explored in much finer detail by calli ng up

Dotter "on the fly".  Blixem hands the HSPs over to Dotter, which can display the HSPs in

two different ways: by greyscale according the total HSP score, or by monochrome red lines

which can be superimposed over the full dot-matrix.  It is also possible to superimpose four

different shades of red to reflect the score of the HSP.

Using Dotter for gene prediction
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The genomic database ACEDB [Durbin and Thierry-Mieg, 1996] allows interactive gene

modelli ng, with full display of relevant features such as splice sites, open reading frames,

segments of high coding potential, sequence homology, etc.  If the gene in question has ho-

mologous sequences, the multiple alignment of the homologues can be viewed by calli ng up

Blixem from ACEDB, which also passes on the tentative gene prediction coordinates.  For a

more detailed analysis of how the homology fits with the gene prediction, the coordinates of

the predicted gene are also passed on from Blixem to Dotter, which then displays the dot-plot

comparison between the genomic DNA where the gene was predicted and the homologous

protein (figure 5.2).  Having the gene prediction displayed in the dot-plot significantly aids

the abilit y to accept weakly conserved exons, and to reject ones that are inconsistent with the

homology.

Using Dotter to assist genomic sequencing

Dotter can also be useful in the sequencing process.  If sequencing is done by a ‘shotgun’ ap-

proach, the reads have to be assembled into one contiguous sequence by looking for overlap-

ping ends of contigs.  In cases where the assembly algorithm fails to find overlaps, or when it

joins contigs incorrectly because of repeats, Dotter can be a useful tool to find which contigs

should be merged.  It will produce a mosaic dot-plot as shown in figure 5.4, if the input files

contain multiple sequence entries in Fasta format.  At the start of each subsequence, which

would correspond to the consensus sequence of a contig, a green separator line and the name

of the subsequence is drawn.  These features are inherited if a region is zoomed in.
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Figure 5.4.  Example of how Dotter can be used to assist the fragment assembly of a cosmid
sequence.  In this case, contigs from two cosmids that were initially assembled independently
are analysed for overlaps.
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5.4 Application

Sequenced cosmids from the C. elegans genome sequencing project [Wilson et al., 1994] are

routinely compared to themselves with Dotter for analysis of the extent and nature of direct

and inverted DNA repeats.  Such repeats are interspersed throughout the genome, and there

are many different recurring families [Naclerio et al., 1992].  For example, the C. elegans

cosmid ZK1307 (figure 5.1) contains several repeat families: 33+4 copies of a 40-mer, 22

copies of a 35-mer, 21 copies of a 15-mer and 2 copies of a 123-mer which contain 5 copies

of an 11-mer in the middle.  Naclerio et al. previously described the first 3 of these repeat

families and named them RcC9, Rc35 and RcD1, respectively.  The 40 bp repeat RcC9 [La-

Volpe et al., 1988], between 6750 and 8050, shown in detail i n figure 5.1b-d is especially

interesting since it has a less strongly conserved subunit of 10 bp which itself is palindromic,

giving a minimal repeat unit in alternate orientations of only 5 bp: -TTC-.  The smaller repeat

units are however much less conserved than the 40 bp repeat.  At very low stringency the

dot-plot hence shows 10 bp spaced diagonals in both orientations (figure 5.1b).  As the strin-

gency is raised (figure 5.1c-d), the 10 bp spaced diagonals fade away, leaving only the

strongest conserved 40 bp repeats in the dot-plot.

For arrays of tandem repeats such as this, Dotter makes it very easy to find the start and

end of the repetiti ve unit and the number of repeats, which is especially important for con-

structing high-quality multiple alignments.  As ill ustrated in figure 5.1, it is often far from

trivial to determine the length of the main repeat unit, since multiples or fractions thereof are

plausible units too.  With the Greyramp and Alignment tools, this becomes a relatively easy

task.

The need for a dot-plot program that can compare DNA to protein sequences was also

prompted by the C. elegans genome project, where most primary protein homology analysis

is carried out by comparing DNA to protein.  The reason for doing this is that using predicted

coding segments may miss homologies if the gene prediction was incorrect.  Database

searching is usually done with the program Blastx, in conjunction with the filtering program

MSPcrunch (chapter 4) to increase sensitivity and selectivity.  The DNA-protein HSPs are
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then aligned in the X-windows viewer Blixem.  Integration of Dotter into ACEDB and

Blixem hence made it natural to carry over the DNA vs. protein philosophy to Dotter, as

shown in figure 5.2.  One could envisage using a different colour for each translated frame,

but given that real homologies are normally confined to a single frame, and that the frame

can easily be determined with the Alignment tool, we found the best solution was to leave

them in the standard greyscale colours.  The exons and introns of the gene prediction are

shown just below the dot-plot border.

Figure 5.3 shows a self-comparison of the protein UNC-22 or twitchin, a large muscle

protein which probably interacts with myosin [Benian et al., 1989] [Benian et al., 1993].  It

consists of repeated fibronectin type III (FN3) and immunoglobulin (IG) domains and one

kinase domain.  At the N- and C-termini, five tandemly repeated IG domains are present,

while the interior contains repeated "cassettes" of usually two FN3 and one IG domain.  With

the coloured segment boxes, it is easy to see how the similarity levels vary for the different

domains.  For instance, while the FN3 and IG domains in the N-terminal portion of the cas-

sette repeat region are very similar, they are less conserved towards the ends.  Especially the

IG domains are very poorly conserved except in the middle of the cassette region.  The five

N-terminal IG domains are more similar to each other than to other ones, whereas for the five

C-terminal IG domains this is not the case.  The dot-plots in figure 5.2 and 3 were generated

using the score matrix BLOSUM62 [Henikoff and Henikoff , 1992].  Dotter can read an arbi-

trary score matrix from file.

5.5 Discussion

Dotter is a new type of dot-plot program which is well suited to handle demanding homology

analysis tasks involving weak and diff icult to assess matches in both traditional protein or

DNA comparisons and in more complex situations when genomic DNA is compared to pro-

teins or DNA.  Its main strength is that the dot-matrix only has to be calculated once, after

which the stringency thresholds are varied dynamically, avoiding tedious reiteration of the
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dot-matrix calculation.  This is particularly useful when no optimal stringency exists, for in-

stance if a diagonal can only be seen when the background noise is also visible.  Such diago-

nals may still be biologically significant if they make good sense with other diagonals and/or

if they contain important key residues.  In cases like this, it is desirable to view the dot-plot

under many different stringency conditions and be able to change them in a scrolli ng fashion.

The program XSauci [Nedde and Ward, 1993] also uses colourmaps for dynamic thresh-

old control, for a variant of dot-plots called "correlation images", which transforms diagonals

to horizontal li nes.  XSauci uses greyscales differently than Dotter however, in that the pixel

intensity reflects the length of a match instead of the score, and it employs only one thresh-

old.

The integration of Dotter into the multiple alignment viewer for BLAST matches, Blixem,

makes a very powerful combination.  With the add-on MSPcrunch, BLAST usually picks up

at least one local match to homologous sequences, but may miss weak matches or matches to

repeated domains.  Dotter can then be called up directly from Blixem for a particular protein

to show the true extent of the homology.  This system provides very eff icient and comfort-

able sequence homology analysis, with a minimal risk of overlooking similarities or assess-

ing them incorrectly.

Alignment algorithms based on dynamic programming are a popular method of pairwise

sequence similarity analysis which can be very sensitive if the gap weights are set correctly.

However, for weak similarities the alignment is often very vulnerable to small changes in the

gap weights, and often only a narrow range of parameters gives the correct alignment [Argos

and Vingron, 1990] [Vingron and Waterman, 1994].  Dot-plots do not suffer from this prob-

lem, since no attempt is made to string matching segments together with gaps in between.

Several users have asked if it would be possible to generate a gapped alignment by dynamic

programming from Dotter.  Since this would not improve over the standard implementations

of dynamic programming, we have not included this feature.  One might envisage however,

that the user could select a number of diagonals, which are considered relevant.  These seg-

ments could then be strung together in an alignment, possibly using dynamic programming to

fill i n the gaps, but allowing interactive control of the alignment path [Rechid et al., 1989].



99

Dotter is available by anonymous FTP from ftp.sanger.ac.uk in the directory /pub/dotter,

by World Wide Web on http://www.sanger.ac.uk/dotter.html or by sending E-mail to

esr@sanger.ac.uk.  ACEDB is available by anonymous FTP from ftp.sanger.ac.uk in

/pub/acedb.  Most of this chapter has previously been published [Sonnhammer and Durbin,

1996].
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6. Efetch: a database retrieval tool

6.1 Summary

Sequence similarity data is stored in ACEDB as links to entries in external sequence data-

bases.  These links are passed on to the analysis tools Blixem, Dotter and Belvu, which need

to retrieve the sequence or annotation information from the external database. Although

ACEDB can store data from other databases internally, it is often preferable to only store the

links to minimise the load.  Moreover, a method to retrieve this information is always needed

when the analysis tools are run stand-alone.  To this end, an indexed sequence database re-

trieval tool called Efetch was developed.  It is a general purpose program which supports a

wide range of database formats and output formats.

6.2 Introduction

ACEDB and the tools of the sequence similarity analysis workbench store and examine data-

base search results, and need to access the entries in the searched databases in an eff icient

way.  As a glue between the viewers and the databases, a general-purpose database retrieval

tool, Efetch, was developed.  It is based on a standard indexing system, which many EMBL

databases are released with.

Efetch serves several purposes.  It can either be used from the command line, in scripts, or

be called from other programs via a shell pipe.  The main usage is to retrieve the sequence or

annotation of single sequence entries in databases such as Swissprot, EMBL and TREMBL,

but it can also be used to retrieve multiple alignments of from protein family databases such

as Pfam (chapter 7) and Prodom [Sonnhammer and Kahn, 1994], or family annotation from

Prosite [Bairoch et al., 1996].  Efetch supports the flatfile format of all major sequence data-

bases and can produce output in a number of formats.
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When the workbench tools are called from ACEDB, the sequence data and annotation can

either be retrieved via Efetch, or be stored internally in ACEDB.  However, internal storage

means duplication of data, and slower operation of other ACEDB tasks.  Therefore, for large

projects, it is usually preferable to only store the names in ACEDB, so that the sequence en-

try can be retrieved only when it is needed.  To generate the Blixem alignment of a genomic

sequence and homologues, all that needs to be stored internally in ACEDB is thus the names

(or accession numbers) and positional coordinates of the BLAST matches.

6.3 Results

Efetch has been used extensively at the Sanger Centre and at the Genome Sequencing Center

in St. Louis, and at other institutes that have enough resources to maintain their own copies

of the sequence databases.  Below follows more detailed descriptions of the different modes

of Efetch usage.

Command line syntax

For ordinary command line usage, the syntax is:

efetch [options] database:entry

Each database needs to be stored in a separate directory.  There are two methods to link that

directory to a database prefix.  The first method is to set a predefined environment variable to

the directory.  This is available for all common databases such as Swissprot, EMBL, Gen-

bank, PIR, Prosite, etc..  The second method, which is general and can be used for any data-

base, is based on adding the prefix and directory to the environment variable

EFETCH_PREFIX.  For example, to link the prefix mydb to the directory /mydbdir, the

syntax would be:



102

setenv  EFETCH_PREFIX  "mydb:/mydbdir/;”

By default, mydb is assumed to be in Fasta format.  If it is not, but in ‘f latfile’ f ormat, e.g.

EMBL, this must be indicated by using “mydb(flat):” instead of “mydb:” in the prefix defini-

tion.  Any number of “prefix:dir;” entries can be added to EFETCH_PREFIX.  A prefix can

be up to 30 characters long.

Efetch can retrieve records using either entryname or accession number.  When using the

accession number, the option -a must be given.  By giving no arguments, or the option -h, the

syntax and all options are listed.

Output formats

The output format is controlled by the options on the command line.  There are four main

types of output:  1. The whole entry as in the flat file (default).  2. The sequence only, in the

flat file format (which may contain column formatting and residue numbers).  3. In Fasta

format (One line headers starting with “>“ followed by raw sequence).  4. Only the sequence,

on one line.  This is used to make parsing trivial when Efetch is called from other programs.

Blixem requirements

If Blixem does not get the sequences passed from MSPcrunch in the seqbl format, or from

ACEDB, it will resort to calli ng Efetch once for each unique sequence.  As shown in figure

6.1, calli ng up annotation for a matching sequence is done by simply double clicking on the

match.  Efetch is then asked to retrieve the annotation which appears in a separate window.

This can be done in three ways: 1. By calli ng a locally installed Efetch.  2. By starting a

WWW browser with a URL to the Sanger Centre Efetch server (see below).  3. If Blixem is

running within an ACEDB, that contains the annotation, ACEDB object can be displayed.
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Figure 6.1.  The ACEDB/Blixem environment is linked to external databases, providing se-
quence data and annotation, via Efetch.  The example shows a Blixem alignment of glutathi-
one reductases to ZK637.10.  The annotation of GSHR_ECOLI was retrieved by clicking on
it (reversed line in Blixem), which calls Efetch and displays the entry in a separate window,
labelled ‘efetch’ .  In this case, the 100% conserved histidine at position 32304 in ZK637
aligns with residue 439 in GSHR_ECOLI, which is annotated as the active site residue, and
thus strongly supports that ZK637.10 would be a glutathione reductase.  When Blixem is
passed sequence names only, it also calls Efetch to retrieve the sequence data.
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Dotter requirements

When Dotter is called from Blixem, the sequences are passed on to Dotter.  If Blixem is run-

ning on seqbl data, however, it only has incomplete database sequences, corresponding to the

matching segments.  It will t hen attempt to call Efetch to retrieve the entire sequence.  If this

fails, Dotter will produce a dotplot of the matching segment only, and give a clear warning of

this.

Belvu requirements

The multiple alignment viewer Belvu (chapter 8), is linked to annotation retrieval the same

way as Blixem is; double clicking on a sequence will efetch it.  The alignments displayed by

Belvu may be Efetched too, if they are from Prodom or Pfam (chapter 7), which can be in-

dexed for Efetch.  When Belvu is called from ACEDB, alignments can either be stored inter-

nally in the database, or be fetched from an external database.

Efetch via World Wide Web

When Blixem and Belvu call Efetch, the databases need to be installed locally.  If this is not

the case, the Sanger Centre WWW Efetch server can be used via the internet (URL:

http://www.sanger.ac.uk/cgi-bin/seq-query?seqname or .../seq-query_acc?accession).  Instead

of the usual Efetch window, a web browser will t hen be spawned with the appropriate URL.

Even for sites with Efetch installed, this can be of use, since the WWW browser can follow

references to other sequence databases and Medline abstracts.  Local Efetching is however

much faster.  The Efetch WWW server currently uses the NCBI server at

http://www3.ncbi.nlm.nih.gov/PubMed for linking to Medline abstracts.

Index files

The index system conforms to the standards proposed by the EMBL data library [Fuchs and

Stoehr, 1993].  This system is used on the EMBL CD-ROM distributions and in the Staden

package [Staden, 1990].  All i ndex files for one database must be stored in the same direc-

tory.  The index files used by Efetch are shown in figure 6.2.  The main entry index, entry-
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nam.idx, contains offsets and division numbers for each entry.  The division number points

to a particular flatfile as coded in the file division.lkp.  This way the database can consist of

many divisions in different files.  The accession number index acnum.trg points to records in

a ‘hit file’ acnum.hit, which in turn points to the main entry index.  The number of different

entries sharing one accession number is stored in the acnum.trg record, and pointers to all

these entries are stored consecutively in the hit file.  Efetch searches the accession number

and entry name indices by a binary search.  If the query is not unique in the database, a li st of

the entries that start with the query string is returned.

The tools for creating the indices are extensions to Staden's indexing programs [Staden

and Dear, 1992].  Currently these formats are supported for indexing: Genbank, EMBL,

Swissprot, PIR, Prosite (.doc and .dat) and Prodom, Pfam and any database in Fasta format.

New formats can easily be incorporated.

Compatibility with other retrieval software

If other retrieval systems than Efetch are already installed locally, that do not use the flat dis-

tribution files, installi ng Efetch would mean a duplication of the databases.  The GCG Fetch

[Devereux et al., 1984], Yank [White and FitzHugh, 1996] and Getz [Etzold and Argos,

1993] retrieval programs are examples of this.  In such cases, Efetch can be emulated with a

script that calls the other program when Blixem and Dotter calls Efetch.  A script for GCG is

available.

Availability
Efetch and the index making programs are available at ftp.sanger.ac.uk in
/pub/MSPcrunch/efetch.tar.Z.
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          acnum.trg                                     acnum.hit                                  entrynam.idx

            flatfile 1                                    division.lkp

          flatfile 2

                                                        Header:

Figure 6.2.  The system of indices used by Efetch.  The numbers within brackets are the
number of bytes a field contains.  When no number is given the size is variable, and is de-
rived from the record size in the header.

.......

......

......

......

......

            Header             Header             Header

            Header

Nr of hits           (4)
acnum.hit record(4)
Target string

Nr of hits           (4)
acnum.hit record(4)
Target string

entry name
annotaton offset (4)
sequence offset  (4)
division nr.         (2)

Record nr. in
entrynam.idx      (4)

Record nr. in
entrynam.idx      (4)

entry name
annotaton offset (4)
sequence offset  (4)
division nr         (2)

entry name
annotaton offset (4)
sequence offset  (4)
division nr.         (2)

ID   entryname
...
SQ   sequence
...
//

ID   entryname
...
SQ   sequence
...
//

......

ID   entryname
...
SQ   sequence
...
//

ID   entryname
...
SQ   sequence
...
//

division nr.         (2)
filename of f latfile1

division nr.         (2)
filename of f latfile2

Field Type bytes
file size unsigned int 4
Nr of records unsigned int 4
Record size unsigned short 2
database name char 20
database release char 10
database date char 4
free space 256

......
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Part 2: Pfam: a Comprehensive Database of Protein Domain
Families
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7. Construction and maintenance of Pfam

7.1 Summary

Databases of multiple sequence alignments are a valuable aid to protein sequence classifica-

tion and analysis.  One of the main challenges when constructing such a database is to si-

multaneously satisfy the conflicting demands of completeness on one hand and quality of

alignment and domain definitions on the other.  The latter properties are best dealt with by

manual approaches, while completeness in practise is only amenable to automatic methods.

Here we present a database based on hidden Markov model profiles (HMMs) which com-

bines high quality and completeness.

Our database, Pfam, consists of parts A and B.  Pfam-A is curated and contains well

characterised protein domain families with high-quality alignments, which are maintained by

using manually checked seed alignments and HMMs to find and align all members.  Pfam-B

contains sequence families that were generated automatically by applying the Domainer algo-

rithm to cluster and align the remaining protein sequences after removal of Pfam-A domains.

Using Pfam, many novel family memberships in known proteins were identified, includ-

ing new kazal, Fibronectin type III , and response regulator receiver domains.  Pfam-A fami-

lies have permanent accession numbers and form a library of HMMs available for searching

and automatic annotation of new protein sequences.

7.2 Introduction

Protein sequence databases such as Swissprot [Bairoch and Apweiler, 1996] and PIR

[George et al., 1996] are becoming increasingly large and unmanageable, mainly as a result

of the growing number of genome sequencing projects.  However, many of the newly added

proteins are new members of existing protein families.  Typically between 40% and 60% of

the proteins found by genomic sequencing show significant sequence similarity to proteins
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with known function, and usually a large fraction of the rest show similarity with each other

[Koonin et al., 1994; Casari et al., 1995; Hodgkin et al., 1995].  For classification of newly

found proteins, as well as orderly management of already known sequences, it would there-

fore be advantageous to organise known sequences in families and use multiple alignment

based approaches.  This requires a system for maintaining a comprehensive set of protein

clusters with multiple sequence alignments.

The problem breaks down into two parts: defining the clusters, i.e. a li st of members for

each family, and building multiple alignments of the members.  Previous approaches to con-

struct comprehensive family databases have either concentrated on aligning short conserved

regions [Gribskov et al., 1988; Attwood et al., 1996; Pietrokovski et al., 1996], often starting

from the manually constructed clusters in Prosite [Bairoch et al., 1996], or full -domain

alignments using either clusters that were derived manually from PIR [George et al., 1996] or

automatically [Sonnhammer and Kahn, 1994].  An issue here is whether to aim for conserved

regions only, or whole-domain alignments.  Using short conserved motifs, either in the form

of a pattern or an alignment, can indicate when a protein contains a known domain.  Motif

matches are often useful to indicate functional sites.  However, they usually do not give a

clear picture of the domain boundaries in the query sequence.  They may also lack sensitivity

when compared to whole-domain approaches, since information in less conserved regions is

ignored.  The whole-domain approach therefore seems preferable for detailed family-based

sequence analysis since it offers the potential for the most sensitive and informative domain

annotation.

To cope with the large number of families, the existing family databases made heavy use

of automatic methods to construct the multiple alignments.  Almost without exception, a

manually constructed alignment would have been preferred, but maintaining a comprehen-

sive collection of hand-built alignments is not feasible.  If the clustering is done at a high

level of similarity, such as 50% identity, the alignment can be generated relatively reliably

with automatic methods, but this will fragment true families and compromise the speed and

sensitivity of searching.  To avoid this, high-quality alignments of large superfamilies are

needed, which frequently require manual approaches.
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Apart from the multiple alignment construction problem, a fully automatic approach also

has to provide a clustering and, to work for multi -domain proteins, define domain bounda-

ries.  For instance, the Domainer algorithm [Sonnhammer and Kahn, 1994] which performs

the clustering of domain families based on all versus all Blastp matching, is a fully automatic

approach that we have used.  We are most familiar with its drawbacks and believe that other

automated sequence clustering approaches share similar drawbacks.  The clustering level of

Domainer depends on the score level of accepted pairwise Blastp matches.  Domain borders

are inferred by analysing the extent of the Blast matches and from N- and C-terminal ends.

The main problem with Domainer is that it does not scale well .  As the sequence database

grows, this will have several manifestations:  1) The computing time increases in the order of

N2.  2)  Either the clustering level must go up or the risk of false family fusions will i ncrease.

3) The domain boundaries become less reliable due to more noise in the Blastp data.  4) The

quality of the alignment drops as more members are added.  Further drawbacks of Domainer

are that it is sensitive to incorrect data, and that it i s a one-off process that does not allow in-

cremental updates but must be completely rerun at each source database update.  This is not

only very costly computationally, but also means that the families are volatile, due to the heu-

ristic character of the algorithm, and can not be permanently referenced from other databases.

It is not well -suited for classification, since the families lack family-level annotation.

Presently available fully automatic methods are thus not suitable for a high-quality family-

based classification system.  Could a combination of manual and automatic approaches be a

solution?  The question here is really how much manual work has to be done to achieve a

comprehensive database.  This depends on the distribution of protein family sizes.  Based on

sequence similarity, it is clear that the universe of proteins is dominated by a relatively small

number of common families [Green et al., 1993].  The same type of analysis on the structural

level reveals that there are a few families of very frequently occurring folds [Murzin et al.,

1995], and it has been estimated that a third of all proteins adopts one of nine ‘superfolds’

[Orengo et al., 1994].  This led us to believe that a semi-manual approach initially applied to

the largest families could capture a substantial fraction of all proteins.  For practical reasons

however, it is usually not possible to build correct alignments solely based on the sequence
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data from members sharing a common fold, since often there is essentially no sequence

similarity at this level.  The structural information required to produce a correct alignment is

available only for a fraction of proteins.  It therefore makes more sense to perform the clus-

tering at the superfamily or family level, where common ancestry and sequence similarity are

reasonably clear.

A major stumbling block of manual approaches is the problem of keeping the alignments

up to date with new releases of protein sequences.  A robust and eff icient updating scheme is

required to ensure stabilit y of the database.  These requirements are met in Pfam by using

two alignments:  a high quality seed alignment, which changes only littl e or not at all be-

tween releases, and a full alignment, which is built by automatically aligning all members to

a hidden Markov model based profile (HMM) derived from the seed alignment.  The method

that generates the best full alignment may vary slightly for different families, so the parame-

ters used are stored for reproducibilit y.  This split i nto seed/full i s the main novelty of Pfam’s

approach.  If a seed alignment is unable to produce an HMM which can find and properly

align all members, it is improved and the gathering process is iterated until a satisfactory re-

sult is achieved.

The seed and full alignments, accompanied by annotation and cross-references to other

family and structure databases and to the literature, and the HMMs, are what make up Pfam-

A.  Each family has a permanent accession number and can thus be referenced from other

databases.  We strived to include every family with more than 50 members in Pfam-A.  All

sequence domains not yet in Pfam-A were then clustered and aligned automatically by the

Domainer program into Pfam-B.  Together, Pfam-A and Pfam-B provide a complete cluster-

ing of all protein sequences.  The quality of the Pfam-B alignments is generally not suff icient

to construct useful HMMs.  The main purposes of Pfam-B are instead to function as a re-

pository of homology information and a buffer of yet uncharacterised protein families.  As

these families become larger they will benefit more from being incorporated into Pfam-A.

Our goal is to progressively introduce the largest Pfam-B families into Pfam-A.
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This chapter describes how Pfam was constructed and how it is maintained, and presents

results from applying the Pfam HMM library to analyse protein families in the Swissprot

protein database.

7.3 Methods

7.3.1 Pfam-A

HMMs

Hidden Markov model based profiles (HMMs) have been used extensively both for the con-

struction of Pfam, and for detecting matches to Pfam families in database sequences.  Al-

though hidden Markov models are a general probabili stic modelli ng technique, we will use

HMM in this chapter to mean a specific form of model which describes the sequence conser-

vation in a family.  This type of HMM consists of a linear chain of match, delete and insert

states as shown in figure 7.1 [Krogh et al., 1994a; Eddy, 1996].  The match state contains

probabiliti es for amino acids in a given column, while the transition probabiliti es to and from

insert and delete states reflect the propensity to insert a residue or skip one at a given posi-

tion.  The HMM parameters can either be estimated directly from a multiple alignment, or

iteratively by an Expectation-Maximisation procedure from unaligned sequences.  A protein

sequence can be aligned to an HMM using dynamic programming to find its most probable

path through the states.  The logarithm of this probabilit y over the probabilit y of a random

model gives the score of the match, usually expressed in bits (logarithm base 2).
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Figure 7.1.  Schematic representation of the hidden Markov model used for the families in
Pfam-A.  This example shows an HMM corresponding to the miniature alignment on top.
Circles represent states (M match; D delete; I insert) and arrows transitions between them.
Probabiliti es for each residue (only some are shown) are stored in each match state.  The
residue probabiliti es in the insert states are set to the residue frequencies in Swissprot (f(X)).

Score matrix based profiles [Gribskov et al., 1987] are similar and might also have been

used throughout.  However, there are reasons to believe that HMMs are a somewhat superior

approach to matrix based profiles [Krogh et al., 1994a].  A practical reason for choosing

HMMs was the suitabilit y to the task of the HMMER package [Eddy, 1995a], which includes

the programs hmmls for finding multiple non-overlapping complete domains in a target se-

quence, and hmmfs for finding multiple non-overlapping partial and/or full domains.

Seed and full alignments
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The philosophy behind Pfam-A is to construct a seed alignment for each family, from a non-

redundant representative set of full l ength domain sequences trusted to belong to the family.

The quality of each seed alignment was controlled by manual checking.  From the seed

alignment, an HMM was built , which then was used to find new members and to generate the

alignment of all detected members.  The process of seed alignment and member gathering

was iterated as outlined in figure 7.2 if the initial seed was unsatisfactory. The HMMs were

not built from the all -member alignment since this may contain incomplete or incorrect se-

quences which may affect the HMM adversely.  The full alignments were never edited; if

they were unacceptable, either the seed alignment was improved or the method to generate

the full alignment from the seed was changed.

Seed alignment construction

The initial members of a seed were collected from one of several sources: Swissprot, Prosite,

structural alignments [Overington, 1992], Prodom, Blast results, repeats found by Dotter

(chapter 5) or published alignments.  Families were chosen on an ad hoc basis, with a bias

towards families with many members.  If the source provided a complete alignment of the

seed members, this was used, but usually an alignment had to be built and compared to

known salient features such as active site residues or structurally important residues.  Of the

automated alignment methods used (Clustalw [Thompson et al., 1994], Clustalv [Higgins et

al., 1992], HMM training [Eddy, 1995b]), Clustalw most often produced the best alignment.

In a few cases, manual editing of the seed alignment was necessary.  Any sequence that was

suspected to contain an error such as truncation, frameshift or incorrect splicing was not in-

cluded in the seed alignment, to avoid adding noise to the HMM.  This is important since up

to 5% of the sequences in Swissprot may contain such errors (T. Gibson, personal communi-

cation).
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Figure 7.2.  The procedure to construct the alignments and HMM for a Pfam-A family.
1Initial seed alignments are taken either from a published alignment or are made by one of
the methods described in the text.  2By ‘ok’  we mean that known conserved features are cor-
rectly aligned and that the overall alignment has suff iciently high information content to
separate known positives from negatives.

Start with representative set of known members

Make seed alignment1

Build HMM from seed alignment

No

Search Swissprot

No

Save seed
alignment

Add or remove
members
in seed

Make full alignment by aligning all
members to HMM

Save full
alignment

No Improve
seed

Finish: Quality control, annotate,
link to other databases

Modify
alignment
method

Found all members?

Full alignment ok2?

Seed alignment ok2?
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HMM construction

From each seed alignment an HMM was built  using the hmmb program.  Although care was

taken to assure that the seed members did not include very similar sequences, one of two dif-

ferent weighting schemes [Gerstein et al., 1994] [Eddy et al., 1995] was applied to minimise

any potential bias towards a subgroup.

To avoid overfitting and to make the HMM more general, amino acid frequency priors

were normally derived according to an ad hoc pseudocount method [Tatusov et al., 1994]

using the BLOSUM62 substitution matrix.  However, for some families (e.g. EGF, ef-hand,

globin, ig), the less specific Laplace (‘plus one’)  priors gave better results, and were therefore

used.

Full alignment construction

Each HMM thus constructed was then compared to all sequences in Swissprot.  This was ei-

ther done directly with the search programs hmmls or hmmfs, or by converting the HMM to a

GCG profile [Devereux et al., 1984] in order to be able to use the very fast Bioccellerator

hardware from Compugen [Esterman, 1995].  These programs all perform variants of dy-

namic programming: the programs bic_profilesearch on the Bioccellerator and hmmfs use a

fully local algorithm, while hmmls is local in the query sequence but matches the entire

HMM.  A further difference is that bic_profilesearch only reports the highest score, while

hmmls and hmmfs report all scores above a threshold, with co-ordinates.  Although the Bioc-

cellerator is about 50 times faster than a workstation, the result has to be post-processed with

hmmfs or hmmls to extract the coordinates of all matches.  This was done by retrieving the

entire sequence of all proteins that match according to bic_profilesearch with the Efetch pro-

gram (chapter 6) into a mini-database, which was then searched with hmmfs or hmmls.

If a li st of known members of a family was available, the search result was compared to it

to make sure that no known members were missed inadvertently.  If the seed alignment is

very small , one can not expect to find all members at once.  In such cases, selected newly

found members were incorporated in a new seed alignment, and the search was iterated.  For
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the families where the initial seed alignment was derived from structural superpositions, the

new HMM was constructed with a modified training algorithm that constrains the known

structural alignment, allowing only the sequences of unknown structure to be realigned.

By extracting all matching sequence fragments and aligning them to the HMM with the

program hmma, a full alignment is created.  Depending on the nature of the family, either

hmmfs or hmmls will give more accurate matching segments.  Hmmfs occasionally breaks a

domain artificially into two or more fragments if unexpectedly large insertions or gaps are

encountered.  Hmmls does not do this, but may penalise partial matches (to fragments) so

much that they are not found at all .  Usually hmmfs is used, but in some cases hmmls was

preferred.  The method used for constructing the full alignment and the score cutoffs used

were recorded for each family.  The default score cutoff was 20 bits, but this was adjusted for

some families as described below.

Quality Control

Once the seed and full alignments of a family have been constructed, a number of quality

controls were performed.  False positives and negatives relative to a reference clustering,

usually from Prosite, were examined.  Since Prosite describes motifs, the clusterings can not

always agree completely.  It is made sure that neither the seed nor full alignment overlaps by

even a single residue with any other family.  Both the alignments and the annotation are

checked for format errors.

A problem with Pfam’s strategy is that there is no intrinsic protection against one protein

scoring high with two HMMs, if its sequence lies ‘ in between’ the two families.  This typi-

cally happens when two families are treated as separate, although they are known to be re-

lated.  One case of this are the EGF domains and the related EGF-like domains found in

laminins, where the laminin EGF-like modules are 20-30 residues longer than normal EGF

domains and have eight instead of six conserved cysteines, possibly forming a fourth disul-

phide bond.  When training an HMM on a cross-section of many EGF domains, this HMM

will t ypically give a high score to laminin EGF-like domains.  However, it was possible to

train a tight EGF HMM where the alignment was very strict about features that are different
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from laminin EGF-like domains, such as the exact spacing between some conserved cys-

teines.  This HMM would only recognise non-laminin EGF domains. Pfam-A is checked for

any overlaps between families and if this is found, either the seed alignment is modified or

the score cutoffs are raised slightly.

Format

The Pfam format for the alignments is for each sequence segment: name/start-end followed

by the padded sequence on one line.  The name is the Swissprot acronym and the start and

end are the co-ordinates of the first and last residues of the sequence segment.  In the release

flat file the Swissprot accession number is added to the end of each sequence line.  The an-

notation follows the Swissprot flatfile format closely; each family in Pfam-A has a perma-

nent referenceable accession number (Pfxxxxx), an ID name and a definition line.  An exam-

ple of annotation and alignment is shown in figure 7.3.  The field labels in figure 7.3A follow

the Swissprot syntax [Bairoch and Apweiler, 1996], with the addition of AU (alignment

author), SE (seed membership source), AL (seed alignment method), GA (gathering method

to find all members) and AM (alignment method of all members to HMM).
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 A

ID   response_reg
AC  PF00072
DE  Response regulator receiver domain
AU  Sonnhammer ELL
SE  Prodom
AL  Clustalw
GA  Bic_raw 25 hmmls 25
AM  hmma -qR
RA  Pao, G.M., Saier, M.H.
RL  J. Mol. Evol. 40:136-154(1995).
DR  SCOP; 3chy; fa;
CC  This domain receives the signal from the sensor partner in
CC  bacterial two-component systems.  It is usually found N-terminal
CC  to a DNA binding effector domain.

Figure 7.3.  Example of the Pfam-A family response_reg (PF00072) with annotation (A) and
alignment (B) (only part shown).
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Figure 7.3b.
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Figure 7.3c.  The Pfam domain organisation of the KFD3_YEAST and the middle domain of
RCAC_FREDI, where are novel member domains  of the response regulator receiver domain
family (see text).  Two other examples of modular proteins are shown.  This schematic repre-
sentation is provided for each protein in Pfam in the release file swissPfam.  The whole se-
quence is represented with ‘=’ and the Pfam domains with ‘-’ on the lines below.  The col-
umns of the domain lines are: Pfam ID, nr. of domains, schematic, nr. of members in the
family, Pfam accession nr., description (Pfam-A families only) and start and end co-ordinates
of the segments (not shown here).
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...........RSAMTVTKNGEDLQLTPTELRLLLELSRRPGQALSRQQLLRLVWEHDYLGDSRLVDACVQRLAFQ1_STRCO 137 198

...........NSRSLIGPDGEQYKLPRSEFRAMLHFCENPGKIQSRAELLKKMTGRELKPHDRTVDVTIRRIARCA_ECOLI 148 209

...........NSHSLITPEGQEFKLPRSEFRAMLHFCENPGKLQTREELLKKMTGRELKPQDRTVDVTIRRIARCA_HAEIN 147 208
QQDAESPLIIDEGRFQASWRGKMLDLTPAEFRLLKTLSHEPGKVFSREQLLNHLYDDYRVVTDRTIDSHIKNLBAER_ECOLI 137 209
SELIVGNLTLNMGRRQVWMGGEELILTPKEYALLSRLMLKAGSPVHREILYNDIYNWDNEPSTNTLEVHIHNLBASR_ECOLI 126 198
SELTVGNLTLNIGRHQAWRDGQELTLTPKEYALLSRLMLKAGSPVHREILYNDIYNWDNEPSTNTLEVHIHNLBASR_SALTY 126 198
PVVRVGEWLVTPSINQISRNGRQLTLEPRLIDLLVFFAQHSGEVLSRDELIDNVWKRSIVTNHVVTQSISELRCADC_ECOLI   5 77
TSLQIGDLQVDLLKRRATRGGKRIELTAKEFALLELLMRRQGEVLSKSLIASQVWDMNFDSDTNVIEVAIRRLCOPR_PSESM 127 199
PTLEVDALVLNPGRQEASFDGQTLELTGTEFTLLYLLAQHLGQVVSREHLSQEVLGKRLTPFDRAIDMHISNLCPXR_ECOLI 133 205
EILSFDGITLHFSHGIATYNEENLNLTDYEFKILCLLLKSKGNVVSREELSLEVMEKPLTPFDRSLDMHISNLCPXR_HAEIN 130 202
PVIRIGHFELNEPAAQISWFDTPLALTRYEFLLLKTLLKSPGRVWSRQQLMDSVWEDAQDTYDRTVDTHIKTLCREB_ECOLI 131 203
PVLERAGIKLDPNRREVFRDGKEVQLAPKEFAVLEVLMRSEGAVVSAEQLLEKAWDENTDPFTNVVRVTVMTLCUTR_STRLI 126 198
...........FENHQFVFNNYLVNLSNIELKILRCLYINLGRYVSKEELKKGVWDTEDFVDSNTINVYIHRLEPIQ_STAEP 116 177
MEIRNGDLSVDEATYSAKLKGRVLDLTFKEFELLKYLAQHPGRVFTRAQLLQEVWGYDYFGGTRTVDVHVRRLGLNR_STRCO 126 198
........................NIPPKEYAVLVILLEAAGKIVSKNTLLDQVWGDAEVNEESLTRCIYALRIAGA_SALTI  36 84
........................NIPPKEYAVLVILLEAAGEIVSKNTLLDQVWGDAEVNEESLTRCIYALRIAGA_SALTY  36 84
PLVKFSDVTVDLAARVIHRGEEEVHLTPIEFRLAGRCSTMPEKYSPSGPVLNQVWGPNAVEHSHYLRIYMGHLKDPE_ECOLI 128 200
IRRDLGPITFYLEERRVCVNGQTIPLTCREYDILELLSQRTSKVYTREDIYDDVYDEYSNALFRSISEYIYQINISR_LACLA 134 206
AVIAFGKFKLNLGTREMFREDEPMPLTSGEFAVLKALVSHPREPLSRDKLMNLARGREYSAMERSIDVQISRLOMPR_ECOLI 137 209
AVIAFGKFKLNLGTREMFREDEPMPLTSGEFAVLKALVSHPREPLSRDKLMNLARGREYSAMERSIDVQISRLOMPR_SALTY 137 209
...........LDRGELSQGDQPVRLTATEAALMRIFAAHAGEVIGRTEL........EAAGDRAVDVQITRLPETR_RHOCA 145 198
EVIEMQGLSLDPTSHRVMAGEEPLEMGPTEFKLLHFFMTHPERVYSREQLLNHVWGTNVYVEDRTVDVHIRRLPHOB_ECOLI 131 203
QFIQIDELSIDENAQRVFFQQQEINLSSTEFKLLHFFMRHPEKVYSREQLLNRIWHNDLEVEYRTVDSYIRRLPHOB_HAEIN 129 201
EVIEMQGLSLDPSSHRVMTGDSPLDMGPTEFKLLHFFMTHPERVYSREQLLNHVWGTNVYVEDRTVDVHIRRLPHOB_KLEPN 131 203
APIEVGGLLLDPISHRVTIDGKPAEMGPTEYGLLQFFMTHQERAYTRGQRRDQVWGGNVYVEERTVDMDIRRLPHOB_PSEAE 132 204
EVIEMQGLSLDPTSHRVMTGEEPLEMGPTEFKLLHFFMTHPERVYSREQLLNHVWGTNVYVEDRTVDVHIRRLPHOB_SHIDY 131 203
EVIKMQGLSLDPTSHRVMAGEEPLEMGPTEFKLLHFFMTHPELVYSREQLLNHVWGTNVYVEDRTVDVHIRRLPHOB_SHIFL 131 203
GQIVIGDLKILPDHYEAYFKESQLELTPKEFELLLYLGRHKGRVLTRDLLLSAVWNYDFAGDTRIVDVHISHLPHOP_BACSU 138 210
QVISLPPFQVDLSRRELSINDEVIKLTAFEYTIMETLIRNNGKVVSKDSLMLQLYPDAELRESHTIDVLMGRLPHOP_ECOLI 126 198
QVINIPPFQVDLSRRELSVNEEVIKLTAFEYTIMETLIRNNGKVVSKDSLMLQLYPDAELRESHTIDVLMGRLPHOP_SALTY 127 199
PLLTWGDLLLNPSTCEVTYNGCPLNLTTMEYDLLELLLRNCQHVFSSEELLDKLWSSEDFPSEATVRSHVRRLRCAC_FREDI 126 198
NVLVFSHLSIDHDAHRVTADGTEVSLTPKVYELLYFLAKTPDKVYDREKLLKEVWQYEFFGDLRTVDTHVKRLRESD_BACSU 139 211
SKRVISGFLFHFDSKEVFINNNKLNLTKNEYKICEFLAQHKGRTFSREQIYEEIYGLEGNALYSTITEFIRTISPAR_BACSU 126 198
AVLRYEGLKLFPEECRVLLDDRELTLSPKEFRLLELFMRHPRRVWSRDQLLEKIWGIDFMGDSKTIDVHIRWLSPHR_SYNP7 161 233
..VQQLGELIFHDEGYFLLQGQPLALTPREQALLTVLMYRRTRPVSRQQLFEQVFSLNDEVSPESIELYIHRLTCTD_SALTY 127 197
NLYRFAGYCLNVSRHTLERDGEPIKLTRAEYEMLVAFVTNPGEILSRERLLRMLSARRVENPDLRTVDVLIRRTORR_ECOLI 134 206
........................RLGSNESRILWLLAQRPNEVISRNDL........FEVDDSSLTQA....TOXR_VIBCH  47 83
........................RLGSNESRILLMLAERPNEVLTRNEL........FEVDDSSLTQA....TOXR_VIBPA  35 71
NVIVHSGLVINVNTHECYLNEKQLSLTPTEFSILRILCENKGNVVSSELL........FSKSNNTITVHIRHLVANR_ENTFC 133 197
...........RQRRLISEEGGEIKLTAGEFNLLVAFLEKPRDVLSREQLLIASRVREEEVYDRSIDVLIFRLVIRG_AGRRA 143 204
...........RRRRLISEEGSEVKLTAGEFNLLVAFLEKPRDVLSREQLLIASRVREEEVYDRSIDVLILRLVIRG_AGRT5 155 216
...........RQRRLMSEAGGEVKLTAGEFNLLLAFLEKPRDVLSREQLLIASRVRDEEVYDRSIDVLILRLVIRG_AGRT6 169 230
ENLQIGFLKIDINKRQVFKNGERIRLTGMEFSLLELLISKMGEPFSRAQI........RHIDTRVVDVHISRLYC27_CYAPA 137 201
GIINIGFLKIDINRKQVYKNEERIRLTGMEFNLLELLISNSGEPLSRTTI........RHLDTRVVDVHISRLYC27_GALSU 139 203
..INIGFLKIDVNKHQVYKNNERVRLTGMEFSLLELLISKAGQPFSRATI........RQVDTRVVDVHISRLYC27_PORAE 137 199
KVIRIHQLAIDIDNVSVLKNGEPLQLTSTEWQLLCLFASNPKKVFTKDQIYRSVWNEEYFDDQNIINVHMRRLYCBL_BACSU 128 200
SVIEQAGVKLDQNQRSVWLNNQPISLTSREYKLLELFMLNKDRVLSRSSIEEKLSSWDEEISSGALDVHIYNLYGIX_HAEIN 126 198
KVVEYAGVQLFVERFELRFQDEKSELSKKESKLLEVLLERGEKVTSRDRLMEKTWDTDIFIDDNTLNVYITRLYXDJ_BACSU 131 203
NEIHIGSLVIFPDAYVVSKRDETIELTHREFELLHYLAKHIGQVMTREHLLQTVWGYDYFGDVRTVDVTVRRLYYCF_BACSU 134 206

 

Figure 7.3d.  Example of a Pfam-B family produced by Domainer.  This family contains the
DNA binding effector domain of RCAC_FREDI.
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7.3.2 Pfam-B

To cluster all protein sequences not covered by Pfam-A, the Domainer program [Sonnham-

mer and Kahn, 1994], version 1.6, was run.  Domainer uses pairwise homology data reported

from Blastp [Altschul et al., 1990] to construct aligned families.  Blastp was only run on the

part of Swissprot that was not present in Pfam-A.  In release 1.0 of Pfam this was 81% of

Swissprot 33.  These sequences were prepared by extracting all sequence sections larger than

30 residues that were not covered in Pfam-A into separate entries. A protein with a Pfam-A

domain in the centre that has long flanking regions on either side, will t hus generate two en-

tries.  By doing this, Domainer will consider each section as an independent sequence, and

the boundary to the Pfam-A segment will be used as a real domain boundary.  All sequences

known to be fragments were omitted since these would induce false domain boundaries in

Domainer.

The Domainer process was further improved by filtering the Blastp output with

MSPcrunch (chapter 4) to remove biased composition matches, trim off overlapping ends of

consecutive Blast matches, and to reduce redundancy.  As can be seen in figure 7.4, the

growth of Homologous Sequence Sets (HSSs), is practically linear with the number of ho-

mologous Sequence Pairs (HSPs) processed, while running Domainer on all of Swissprot

gives rise to large plateaux in areas of large redundancy [Sonnhammer and Kahn, 1994].

Although Pfam 1.0 is based on release 33 of Swissprot, which contains more than twice as

many sequences as release 21, which Prodom 21 was based on, the number of HSPs was

slightly reduced.  Without reduction in redundancy by Pfam-A and MSPcrunch a quadrupling

would have been expected.  The time consumption for processing the HSPs into HSSs was

26.3 hours on one workstation.  Performing the Blastp all versus all comparison took a total

of 184.6 hours, but the elapsed time was reduced by running on a number of workstations in

parallel.  These timings show that it is clearly feasible to rerun the process periodically.
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Figure 7.4.  Construction of Pfam-B by Domainer.  Plot of Domainer run on Swissprot 33,
excluding sequences in Pfam-A.  Domainer groups the pairwise matches (HSPs) into stacks
of matches (HSSs) if different pairs share sequence regions.  46293 subsequences gave rise
to 392207 HSPs, which resulted in 98551 HSSs in 11929 families after subsequent clustering
by Domainer.  When Domainer is run on the entire Swissprot, much time is spent on proc-
essing redundant pairs generated by large families, generating long horizontal plateaux in the
plot (See [Sonnhammer and Kahn, 1994], figure 3).  In contrast, the Pfam plot is virtually
linear, since the most redundant families are already in Pfam and was thus removed before
running Domainer.  The sharp increase of the curve’s slope at the end is caused by adding all
full -length sequences as pseudo-matches after all the heterogeneous matches.
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The Pfam-B alignments are released together with Pfam-A in one flat file.  The format is

essentially the same, but each Pfam-B cluster is assigned a volatile accession number

(PDxxxxx), which is only valid for a particular release.  Information sparse alignments that

Domainer sometimes produces are avoided by excluding any alignment where more than

25% of the residues are gaps.  In Pfam 1.0 this eliminated 34 out of 11963 alignments.

Incremental updating

Pfam was designed with easy updating in mind.  When new sequences are released, they are

compared to the existing models and if they score above the cutoff they are automatically

added to the full alignment.  Normally the seed alignment is not altered, except for updating

of corrected seed sequences.  However, if new sequences give rise to problems, such as

strong cross-reaction between families, the seeds may have to be improved to become more

specific for the respective families.  Once Pfam-A is brought up to date, Pfam-B is regener-

ated on the rest of Swissprot as described above.

7.4 Results

We have constructed and made available a comprehensive library of protein domain families

as described in the Methods section.  Together with the HMM technology, this can provide

an advance over traditional database searching in sequence analysis for classification pur-

poses.  Figure 7.5A ill ustrates the proportions of Swissprot that are covered by Pfam-A and

Pfam-B.  A third of all Swissprot proteins have one or more domain in Pfam-A, and a fifth of

all residues are aligned in a Pfam-A family.  Pfam-B is roughly twice the size of Pfam-A,

leaving only 22% of all Swissprot proteins without any segment in Pfam at all .  Pfam is

available via anonymous FTP at ftp.sanger.ac.uk and genome.wustl.edu in

/pub/databases/Pfam.  There are two data files: pfam, which lists all the Pfam families with

annotation and alignment, and swissPfam, which contains the Pfam domain organisation for

each Swissprot entry in Pfam.  There are also World Wide Web servers on
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http://www.sanger.ac.uk/Pfam and http://genome.wustl.edu/Pfam which allow browsing and

HMM searching against Pfam-A with a query sequence.  Table 7.1 summarises the families

currently in Pfam-A and the sizes of the seed and full alignments.  On average, the full

alignments have four times as many members as the seed alignments.  The structure of 60%

of the Pfam-A families is known.  These families are cross-referenced to the structural classi-

fication database SCOP [Murzin et al., 1995] from the Pfam WWW servers (see section 8.3).

The main use of Pfam is as a tool to identify and classify domains in protein sequences.

We applied it to Wormpep 10, a database of 4874 predicted proteins from genomic se-

quencing of C. elegans [Hodgkin et al., 1995].  The 2973 proteins for which no informative

similarity has been found using the standard Blast/MSPcrunch approach (chapter 4) were

searched for Pfam matches.  As significance cutoffs, the previously recorded cutoffs that ex-

clude negatives for each Pfam family were used.  211 Pfam matches were found in 144 un-

annotated sequences.  Adding these to the already annotated C. elegans predicted proteins

yields a classification rate of about 42%.  As seen in figure 7.5B, already half that amount,

21%, is covered by matches to the Pfam-A HMM library.
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Table 7.1.  The families included in release 1.0 of Pfam-A.  Since the seed alignments are
smaller than the full alignments, quality control and maintenance become feasible tasks.

Pfam ID Acces-
sion nr.

Description HMM
Length

Seed
members

Seed
a.a.

Full
members

Full
a.a.

7tm_1 PF00001 7 transmembrane receptor (Rho-
dopsin family)

271 64 17169 530 140214

7tm_2 PF00002 7 transmembrane receptor (Secre-
tin family)

366 15 5339 36 12620

7tm_3 PF00003 7 transmembrane receptor (me-
tabotropic glutamate family)

830 8 6421 12 9682

AAA PF00004 ATPases Associated with various
cellular Activities (AAA )

189 42 7990 79 15111

ABC_tran PF00005 ABC transporters 192 63 11913 330 64017
ATP-synt_A PF00119 ATP synthase A chain 175 30 4827 79 12304
ATP-synt_C PF00137 ATP synthase subunit C 79 25 1884 62 4636
ATP-synt_ab PF00006 ATP synthase alpha and beta

subunits
428 47 16741 183 61617

C2 PF00168 C2 domain 92 34 2965 101 8856
COX1 PF00115 Cytochrome C oxidase subunit I 113 27 3016 80 8782
COX2 PF00116 Cytochrome C oxidase subunit II 234 36 8151 114 22075
COesterase PF00135 Carboxylesterases 589 27 14433 62 29042
Cys-protease PF00112 Cysteine proteases 246 36 7974 95 18000
Cys_knot PF00007 Cystine-knot domain 88 28 2320 61 5108
DAG_PE-bind PF00130 Phorbol esters / diacylglycerol

binding domain
50 34 1677 108 5347

DNA_methylase PF00145 C-5 cytosine-specific DNA meth-
ylases

353 31 10697 57 15915

DNA_pol PF00136 DNA polymerase family B 845 37 29538 51 33451
E1-E2_ATPase PF00122 E1-E2 ATPases 683 24 14568 117 62885
EGF PF00008 EGF-like domain 30 75 2627 676 22710
FGF PF00167 Fibroblast growth factors 136 10 1305 39 5087
GATase PF00117 Glutamine amidotransferases

class-I
201 39 7468 69 13051

GTP_EFTU PF00009 Elongation factor Tu family
(contains ATP/GTP binding P-
loop)

513 63 26793 184 75117

HLH PF00010 Helix-loop-helix DNA-binding
domain

55 35 1882 133 7187

HSP20 PF00011 Heat shock hsp20 proteins 113 52 5630 132 13855
HSP70 PF00012 Heat shock hsp70 proteins 625 34 20365 171 84638
HTH_1 PF00126 Bacterial regulatory helix-loop-

helix proteins, lysR family
143 65 9235 101 14331

HTH_2 PF00165 Bacterial regulatory helix-loop-
helix proteins, araC family

87 42 3639 65 5655

KH-domain PF00013 KH domain family of RNA bind-
ing proteins

50 20 984 51 2542

Kunitz_BPTI PF00014 Kunitz/Bovine pancreatic trypsin
inhibitor domain

51 44 2258 79 4062

MCPsignal PF00015 Methyl-accepting chemotaxis
protein (MCP) signaling domain

61 10 612 24 1468

MHC_I PF00129 Class I Histocompatibility anti-
gen, domains alpha 1 and 2

181 25 4465 151 26724

NADHdh PF00146 NADH dehydrogenases 332 25 7837 61 16402
PGK PF00162 Phosphoglycerate kinases 425 25 10369 51 20893
PH PF00169 PH (pleckstrin  homology) domain 104 41 4426 77 8256
Pribosyltran PF00156 Purine/pyrimidine phosphoribosyl

transferases
203 26 4857 45 8355

RIP PF00161 Ribosome inactivating proteins 222 19 4014 37 6529
RuBisCO_large PF00016 Ribulose bisphosphate carboxy-

lase, large chain
506 17 8131 311 135100

RuBisCO_small PF00101 Ribulose bisphosphate carboxy-
lase, small chain

126 49 5569 107 12325

S12 PF00164 Ribosomal protein S12 142 23 2913 60 7238
S4 PF00163 Ribosomal protein S4 211 19 3698 54 10542
SH2 PF00017 Src Homology domain 2 81 58 4564 150 11759
SH3 PF00018 Src Homology domain 3 57 62 3500 161 9285
STphosphatase PF00149 Ser/Thr protein phosphatases 295 17 4956 88 24549
TGF-beta PF00019 Transforming growth factor beta

like domain
108 16 1636 79 7837

TIM PF00121 Triosephosphate isomerase 257 20 5024 42 9781
TNFR_c6 PF00020 TNFR/NGFR cysteine-rich region 41 51 1942 91 3464
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UPAR_LY6 PF00021 u-PAR/Ly-6 domain 144 13 1713 18 2343
Y_phosphatase PF00102 Protein-tyrosine phosphatase 242 38 9010 122 20901
Zn_clus PF00172 Fungal Zn(2)-Cys(6) binuclear

cluster domain
41 29 1161 54 2159

actin PF00022 Actins 379 24 8997 160 50267
adh_short PF00106 Alcohol/other dehydrogenases,

short chain type
193 52 9931 186 35727

adh_zinc PF00107 Zinc-binding dehydrogenases 387 45 15999 129 46025
aldedh PF00171 Aldehyde dehydrogenases 484 34 15794 69 31826
alpha-amylase PF00128 Alpha amylases (family of glyco-

syl hydrolases)
471 54 23611 114 50162

aminotran PF00155 Aminotransferases class-I 433 29 11778 63 25487
ank PF00023 Ank repeat 28 83 2338 305 8577
apple PF00024 Apple domain 86 16 1344 16 1344
arf PF00025 Arf family (contains ATP/GTP

binding P-loop)
184 21 3816 43 7778

asp PF00026 Eukaryotic aspartyl proteases 341 26 8585 72 21847
bZIP PF00170 Basic region plus leucine zipper

transcription factors
65 22 1396 95 5948

beta-lactamase PF00144 Beta-lactamases 319 38 10288 51 13654
cNMP_binding PF00027 Cyclic nucleotide-binding domain 123 32 3797 69 8247
cadherin PF00028 Cadherin 104 58 5769 168 16875
cellulase PF00150 Cellulases (glycosyl hydrolases) 333 30 8721 40 11688
connexin PF00029 Connexin 250 16 3590 40 9005
copper-bind PF00127 Copper binding proteins, plasto-

cyanin/azurin family
129 31 3268 61 6261

cpn10 PF00166 Chaperonins 10 Kd subunit 96 29 2740 58 5426
cpn60 PF00118 Chaperonins 60 Kd subunit 527 32 16761 84 43948
crystall PF00030 Crystall ins beta and gamma 89 37 3061 103 8479
cyclin PF00134 Cyclins 273 48 12580 80 19839
cystatin PF00031 Cystatin domain 108 51 5124 88 8928
cytochrome_b_C PF00032 Cytochrome b(C-

terminal)/b6/petD
107 10 999 133 12724

cytochrome_b_N PF00033 Cytochrome b(N-
terminal)/b6/petB

215 9 1853 170 31806

cytochrome_c PF00034 Cytochrome c 113 58 5395 175 16925
dsrm PF00035 Double-stranded RNA binding

motif
70 16 1063 22 1470

efhand PF00036 EF hand 29 86 2493 739 21258
enolase PF00113 Enolases 445 12 5231 41 15893
fer2 PF00111 2Fe-2S iron-sulfur cluster binding

domains
89 18 1580 88 7581

fer4 PF00037 4Fe-4S ferredoxins and related
iron-sulfur cluster binding do-
mains.

64 60 3734 156 9529

fer4_NifH PF00142 4Fe-4S iron sulfur cluster binding
proteins, NifH/frxC family

280 16 4334 49 12324

fibrinogen_C PF00147 Fibrinogen beta and gamma
chains, C-terminal globular do-
main

255 17 4005 18 4166

filament PF00038 Intermediate filament proteins 352 36 11459 146 41235
fn1 PF00039 Fibronectin type I domain 41 21 802 49 1849
fn2 PF00040 Fibronectin type II domain 42 17 700 37 1540
fn3 PF00041 Fibronectin type III domain 84 109 9219 456 39385
gln-synt PF00120 Glutamine synthetase 376 35 11836 78 24502
globin PF00042 Globin 152 62 8876 683 97276
gluts PF00043 Glutathione S-transferases. 205 61 12034 144 28092
gpdh PF00044 glyceraldehyde 3-phosphate dehy-

drogenases
352 23 7672 117 37611

heme_1 PF00173 Heme-binding domain in cyto-
chrome b5 and oxidoreductases

79 16 1238 55 4271

hemopexin PF00045 Hemopexin 207 14 2682 37 7120
hexapep PF00132 Bacterial transferase hexapeptide

(four repeats)
29 61 1768 82 2376

histone PF00125 Core histones H2A, H2B, H3 and
H4

125 30 3427 178 20412

homeobox PF00046 Homeobox domain 60 64 3703 385 22470
hormone PF00103 Protein hormones (family of so-

matotropin, prolactin and others)
227 17 3631 111 22870

hormone2 PF00123 Peptide hormones (family of glu-
cagon, GIP, secretin, VIP)

28 29 810 110 3068

hormone3 PF00159 Pancreatic hormone peptides 36 15 541 53 1909
hormone_rec PF00104 Ligand-binding domain of nuclear 165 32 5180 127 20548
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hormone receptors
ig PF00047 IG superfamily 47 65 4376 1280 86496
il8 PF00048 Small cytokines (inte-

crine/chemokine), interleukin-8
like

70 33 2216 67 4426

ins PF00049 Insulin/IGF/Relaxin family 88 44 3042 132 8765
interferon PF00143 Interferon alpha and beta domains 190 17 3190 47 8834
kazal PF00050 Kazal-type serine protease in-

hibitor domain
60 53 2708 155 7814

ketoacyl-synt PF00109 Beta-ketoacyl synthases 442 11 4648 46 18969
kringle PF00051 Kringle domain 85 25 1970 126 9931
laminin_B PF00052 Laminin B (Domain IV) 148 9 1225 15 1749
laminin_EGF PF00053 Laminin EGF-like (Domains III

and V)
53 72 3641 134 6707

laminin_G PF00054 Laminin G domain 151 26 3858 41 6097
laminin_Nterm PF00055 Laminin N-terminal (Domain VI) 264 9 2133 10 2376
ldh PF00056 L-lactate dehydrogenases 335 30 9437 90 23842
ldl_recept_a PF00057 Low-density lipoprotein receptor

domain class A
44 43 1720 98 3914

ldl_recept_b PF00058 Low-density lipoprotein receptor
domain class B

48 23 1007 61 2651

lectin_c PF00059 Lectin C-type domain short and
long forms

128 44 4995 128 15425

lectin_legA PF00138 Legume lectins alpha domain 49 25 1192 43 2054
lectin_legB PF00139 Legume lectins beta domain 196 25 4634 40 6241
lig_chan PF00060 Ligand-gated ionic channels 914 11 9296 30 23453
lipase PF00151 Lipases 486 16 7284 23 8355
lipocalin PF00061 lipocalins 156 58 8210 115 15945
lys PF00062 C-type lysozymes and alpha-

lactabulmin
128 21 2607 72 8468

metalthio PF00131 Metallothioneins 74 21 1313 62 3807
mito_carr PF00153 Mitochondrial carrier proteins 303 32 9243 62 17310
myosin_head PF00063 Myosin head (motor domain)

(contains ATP/GTP binding P-
loop)

703 21 14297 52 29811

neur PF00064 Neuraminidases 402 7 2729 55 20320
neur_chan PF00065 Neurotransmitter-gated ion-

channel
401 51 23023 145 58059

notch PF00066 Notch 42 10 378 24 930
oxidored_fad PF00175 FAD/NAD-binding domain in

oxidoreductases
123 56 6534 101 11788

oxidored_molyb PF00174 Molybdopterin binding domain in
oxidoreductases

452 15 6291 35 14281

oxidored_nitro PF00148 Oxidoreductases, nitrogenase
component 1 and other families

457 31 13123 79 23287

p450 PF00067 Cytochrome P450 471 64 28850 204 92743
peroxidase PF00141 Peroxidases 431 26 8336 55 17313
phoslip PF00068 Phospholipase A2 128 37 4439 122 13886
photoRC PF00124 Photosynthetic reaction center

protein
323 27 8043 73 22068

pilin PF00114 Pilins (bacterial filaments) 160 23 3397 56 6250
pkinase PF00069 Protein kinase 247 67 18184 786 191228
pou PF00157 Pou domain - N-terminal to ho-

meobox domain
78 10 756 47 3359

pro_isomerase PF00160 Peptidyl-prolyl cis-trans isomer-
ases

181 28 4550 50 7966

pyr_redox PF00070 Pyridine nucleotide-disulphide
oxidoreductases class-I

496 23 10665 43 19820

ras PF00071 Ras family (contains ATP/GTP
binding P-loop)

192 61 11753 213 40953

recA PF00154 recA bacterial DNA recombina-
tion proteins

337 31 10244 74 22012

response_reg PF00072 Response regulator receiver do-
main

115 55 6256 130 14711

rhv PF00073 picornavirus capsid proteins 306 108 27428 117 28207
rnaseA PF00074 Pancreatic ribonucleases 128 30 3608 71 8635
rnaseH PF00075 RNase H 157 31 4131 87 11403
rrm PF00076 RNA recognition motif. (aka

RRM, RBD, or RNP domain)
72 70 4979 279 19961

rvp PF00077 Retroviral aspartyl proteases 113 34 3497 82 8106
rvt PF00078 Reverse transcriptase (RNA-

dependent DNA polymerase)
238 50 11031 147 31069

serpin PF00079 Serpins (serine protease inhibi- 391 43 16190 105 34597
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tors)
sigma54 PF00158 Sigma-54 transcription factors 323 41 12923 56 16115
sigma70 PF00140 Sigma-70 factors 236 33 7288 61 13547
sodcu PF00080 Copper/zinc superoxide dismu-

tases (SODC)
161 29 4411 68 9262

sodfe PF00081 Iron/manganese superoxide dis-
mutases (SODM)

207 28 5508 69 12029

subtilase PF00082 Subtilase family of serine prote-
ases

334 43 13142 91 25086

sugar_tr PF00083 Sugar (and other) transporters 484 51 23055 107 47894
sushi PF00084 Sushi domain 55 80 4575 346 19872
tRNA-synt_1 PF00133 tRNA synthetases class I 750 19 12728 35 22935
tRNA-synt_2 PF00152 tRNA synthetases class II 363 20 6731 29 10442
thiolase PF00108 Thiolases 405 24 9375 25 9799
thiored PF00085 Thioredoxins 113 52 5600 103 10850
thyroglobulin_1 PF00086 Thyroglobulin type-1 repeat 50 22 1011 49 2303
toxin PF00087 Snake toxins 69 48 3015 172 10570
trefoil PF00088 Trefoil (P-type) domain 43 28 1190 39 1678
trypsin PF00089 Trypsin 230 65 14779 246 56153
tsp_1 PF00090 Thrombospondin type 1 domain 52 32 1556 91 4439
tubulin PF00091 Tubulin 445 26 11230 197 78792
vwa PF00092 von Willebrand factor type A

domain
181 37 6634 50 9024

vwc PF00093 von Willebrand factor type C
domain

69 17 1000 25 1498

vwd PF00094 von Willebrand factor type D
domain

370 6 2133 15 4130

wap PF00095 WAP-type (Whey Acidic Protein)
'four-disulfide core'

51 18 821 19 861

wnt PF00110 wnt family of developmental
signaling proteins

329 15 4765 105 19453

zf-C2H2 PF00096 Zinc finger, C2H2 type 23 165 3622 1452 31083
zf-C3HC4 PF00097 Zinc finger, C3HC4 type 40 52 2120 69 2796
zf-C4 PF00105 Zinc finger, C4 type (two do-

mains)
77 27 2059 139 10500

zf-CCHC PF00098 Zinc finger, CCHC class 18 122 2196 188 3384
zn-protease PF00099 Zinc-binding metalloprotease

domain
16 45 656 152 2274

zona_pellucida PF00100 Zona pellucida-like domain 290 11 2936 26 6914
Total 38622 6300 1149475 22306 3561430
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Figure 7.5.  A. Proportion of Swissprot 33 in Pfam, based on sequences and residues.  The
portion of unique sequences is slightly overestimated due to the exclusion of fragments and
sequences shorter than 30 residues from Pfam-B.  B. Proportion of Wormpep 10, comprising
4874 predicted C. elegans proteins that is covered by Pfam matches.
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An interesting case of family merging which ill ustrates the level of clustering in Pfam is

shown in figure 7.6.  Here two families that were previously not considered related could be

merged.  One family is the glycoprotein hormones (Prosite: PDOC00234), and the other is a

family of connective tissue growth factor-like and C-terminal domains in extracellular pro-

teins [Bork, 1993].  None of these references mention the other family.  After we had noticed

this family-merger, which gives a good quality alignment (figure 7.6), we learned that the

structure of a glycoprotein hormone had recently been determined to be a cystine-knot fold

[Lapthorn et al., 1994], which is the fold adopted by TGF-ß2 [Schlunegger and Gruetter,

1993], NGF [McDonald et al., 1991] and PDGF-B [Oefner et al., 1992].  The link between

these growth factors and the family had already been made [Bork, 1993], but ironically the

sequences of TGF-ß2, NGF and PDGF-B share so few sequence features with the glycopro-

tein hormones and the other growth factors and extracellular C-terminal domains that they

could not be included in the Pfam family.
 

CKPSP...VNVTV........RYNGCT..IKVEMARCVGECKKTV..TYDYDIFQLKNSCL.....CCQEEDYEFRDIVLDCPDGSTLPYRYRHITACSCLD.PCAPMU_PIG 1062 1145
CTKTKKsPSPVRF........TYAGCSSVKKYRPKYC.GSCV.........DGR............CCTPQQTRTVKIRFRCDDGETFTKSVMMIQSCRCNY.NCCE10_CHICK  281 354
CRPIN...ATLAV........EKEGCPVCITVNTTICAGYCPTMT..RVLQGVLPALPQVV.....CNYRDVRFESIRLPGCPRGVNPVVSYAVALSCQCA..LCCGHB_HUMAN   29 113
CRPIN...ATLAA........EKEACPVCVTVNTTICAGYCPTMM..RVLQAVLPPVPQVV.....CNYREVRFESIRLPGCPPGVDPMVSVPVALSCRCA..LCCGHB_PAPAN   29 113
CIRTPKiSKPIKF........ELSGCTSMKTYRAKFC.GVCT.........DGR............CCTPHRTTTLPVEFKCPDGEVMKKNMMFIKTCACHY.NCCTGF_HUMAN  256 329
CIRTPKiAKPVKF........ELSGCTSVKTYRAKFC.GVCT.........DGR............CCTPHRTTTLPVEFKCPDGEIMKKNMMFIKTCACHY.NCCTGF_MOUSE  255 328
CSKTKKsPEPVRF........TYAGCSSVKKYRPKYC.GSCV.........DGR............CCTPLQTRTVKMRFRCEDGEMFSKNVMMIQSCKCNY.NCCYR6_MOUSE  284 357
CELTN...ITITV........EKEECGFCISINTTWCAGYCYTRD..LVYRDPARPNIQKT.....CTFKELVYETVKVPGCAHHADSLYTYPVATECHCS..KCFSHB_BOVIN   21 105
CZLTN...ITIAV........EKEGCRFCITINTTWCAGYCYTRD..LVYKDPARPKIQKT.....CTFKELVYETVKVPGCAHHADSLYTYPVATZCHCG..KCFSHB_HORSE    3 87
CELTN...ITIAI........EKEECRFCISINTTWCAGYCYTRD..LVYKDPARPKIQKT.....CTFKELVYETVRVPGCAHHADSLYTYPVATQCHCG..KCFSHB_HUMAN   21 105
CELTN...ITITV........EKEECNFCISINTTWCAGYCYTRD..LVYKDPARPNIQKT.....CTFKELVYETVKVPGCAHHADSLYTYPVATECHCG..KCFSHB_PIG   21 105
CELTN...ITISV........EKEECRFCISINTTWCEGYCYTRD..LVYKDPARPNTQKV.....CTFKELVYETIRLPGCARHSDSLYTYPVATECHCG..KCFSHB_RAT   22 106
CELTN...ITITV........EKEECSFCISINTTWCAGYCYTRD..LVYKDPARPNIQKA.....CTFKELVYETVKVPGCAHHADSLYTYPVATECHCG..KCFSHB_SHEEP   21 105
CRLNN...MTITV........EREDCHG..SITITTCAGLCETTD..LNYQSTWLPRSQGA.....CNFKEWSYEEVYLEGCPPGANP.FFIPVAKSCDCI..KCGTH1_CORAU   32 113
CRLNN...MTIIV........EREDCHG..SITITTCAGLCETTD..LNYQSTWLPRSQGV.....CNFKEWSYEKVYLEGCPSGVEP.FFIPVAKSCDCI..KCGTH1_ONCKE   32 113
CRLNN...MTITV........EREDCHG..SITITTCAGLCETTD..LNYQSTWLPRSQGV.....CNFKEWSYEKVYLEGCPSGVEP.FFIPVAKSCDCI..KCGTH1_ONCMA   32 113
CHPKN...ISISV........ES..CGITEFILTTICEGQCYLED..PVYISHD...EQKI.....CNG.DWSYEVKHIEGCPVG....VTYPVARNCECT..ACGTH1_THUOB    8 82
CQPIN...QTVSL........EKEGCPTCLVIQTPICSGHCVTKE..PVFKSPFSTVYQHV.....CTYRDVRYETIRLPDCPPWVDPHVTYPVALSCDCS..LCGTH2_ONCKE   29 113
CQPIN...QTVSL........EKEGCPTCLVIQTPICSGHCITKE..PVFRSPFSTVYQHV.....CTYRDVRYEMIRLPDCPPWVDPHVTYPVALSCDCS..LCGTH2_ONCMA   29 113
CQPIN...ETISV........EKDGCPKCLVFQTSICSGHCITKD..PSYKSPLSTVYQRV.....CTYRDVRYETVRLPDCRPGVDPHVTFPVALSCDCN..LCGTHB_MURCI    6 90
CQPIN...QTVSL........EKEGCPTCLVIRAPICSGHCVTKE..PVFKSPFSTVYQHV.....CTYRDVRYEMIRLPDCPPWSDPHVTYPVALSCDCS..LCGTHB_ONCTS   29 113
CRPIN...VTVAV........EKEECPQCMAVTTTACGGYCRTRE..PVYRSPLGPPPQSS.....CTYGALRYERWDLWGCPIGSDPKVILPVALSCRCA..RCLSHB_COTJA   56 140
CRPIN...ATLAA........EKEACPICITFTTSICAGYCRSMV..RVMPAALPPIPQPV.....CTYRELRFGSIRLPGCPPGVDPMVSFPVALSCHCG..PCLSHB_EQUAS   29 113
CHPIN...AILAV........EKEGCPVCITVNTTICAGYCPTMM..RVLQAVLPPLPQVV.....CTYRDVRFESIRLPGCPRGVDPVVSFPVALSCRCG..PCLSHB_HUMAN   29 113
CRPIN...VTVAV........EKDECPQCMAVTTTACGGYCRTRE..PVYRSPLGRPPQSS.....CTYGALRYERWALWGCPIGSDPRVLLPVALSCRCA..RCLSHB_MELGA   48 132
CRPIN...ATLAA........ENEACPVCITFTTSICAGYCPSMV..RVLPAALPPVPQPV.....CTYRELSFASIRLPGCPPGVDPTVSFPVALSCHCG..PCLSHB_PIG   29 113
CQPIN...ATLAA........EKEACPVCITFTTSICAGYCLSMK..RVLPVILPPMPQRV.....CTYHELRFASVRLPGCPPGVDPMVSFPVALSCHCG..PCLSHB_SHEEP   29 113
CKPVP...ATVGIqgeydyqnEKTNCS..ANIIMAKCSGQCQHKL..TYDTIDNKVVTKCR.....CCKADRVEPRKAHLVCDNGKKKIYKYKHITSCKCT..SCMUB1_XENLA  301 391
CSTVP...VTTEV........SYAGCT..KTVLMNHCSGSCGTFV..MYSAKAQALDHSCS.....CCKEEKTSQREVVLSCPNGGSLTHTYTHIESCQCQDtVCMUC2_HUMAN 2170 2254
CAVYH...RSLII........QQQGSSSSEPVRLAYCRGNCGDSSs.MYSLEGNTVEHRCQ.....CCQELRTSLRNVTLHCTDGSSRAFSYTEVEECGCMGrRCMUC5_HUMAN  917 1004
CSAIP...VMKEI........SYNGCA..KNISMNFCAGSCGTFA..MYSAQAQDLDHGCS.....CCREERTSVRMVSLDCPDGSKLSHSYTHIESCLCQGtVCMUCL_RAT  732 816
CRSSS...VNVTV........NYNGCK..KKVEMARCAGECKKTI..KYDYDIFQLKNSCL.....CCQEENYEYREIDLDCPDGGTIPYRYRHIITCSCLD.ICMUCS_BOVIN  471 554
CMRHHY.VDSISH........PLYKCSS.KMVLLARCEGHCSQASrsEPLVSFSTVLKQPFrsschCCRPQTSKLKALRLRCSGGMRLTATYRYILSCHCE..ECNDP_HUMAN   39 131
CMRHHY.VDSISH........PLYKCSS.KMVLLARCEGHCSQASrsEPLVSFSTVLKQPFrsschCCRPQTSKLKALRLRCSGGMRLTATYRYILSCHCE..ECNDP_MOUSE   37 129
CIQTKKsMKAVRF........EYKNCTSVQTYKPRYC.GLCN.........DGR............CCTPHNTKTIQVEFRCPQGKFLKKPMMLINTCVCHG.NCNOV_CHICK  258 331
CIRTKKsMKAVRF........EYKNCTSVQTYKPRYC.GLCN.........DGR............CCTPHNTKTIQVEFRCPQGKFLKKPMMLINTCVCHG.NCNOV_COTJA  260 333
CLRTKKsLKAIHL........QFKNCTSLHTYKPRFC.GVCS.........DGR............CCTPHNTKTIQAEFQCSPGQIVKKPVMVIGTCTCHT.NCNOV_HUMAN  264 337
CRKEQ...VREYY........TENDCRSRQPLKYAKCVGGCGN.................Q.....CCAAKIVRRRKVRMVCSNNRKYIKNLDIVRKCGCTK.KCSLIT_DROME 1409 1479
CIPTE...YMMHV........ERKECAYCLTINTTVCAGYCMTRDvnGKLFLPKYALSQDV.....CTYRDFMYKTAEIPGCPRHVTPYFSYPVAISCKCG..KCTSHB_BOVIN   22 108
CIPTE...YTMHI........ERRECAYCLTINTTICAGYCMTRDinGKLFLPKYALSQDV.....CTYRDFIYRTVEIPGCPLHVAPYFSYPVALSCKCG..KCTSHB_HUMAN   22 108
CVPTD...YTLYE........ERRECDFCVAINTTICMGFCYSRDsnMKELAGPRFLIQRG.....CTYDQVEYRTVILPGCPLHANPLFTYPVALSCHCG..TCTSHB_ONCMY   22 108
CIPTE...YMMHV........ERKECAYCLTINTTICAGYCMTRDfnGKLFLPKYALSQDV.....CTYRDFMYKTVEIPGCPHHVTPYFSYPVAISCKCG..KCTSHB_PIG   22 108
CIPTE...YMMYV........DRRECAYCLTINTTICAGYCMTRDinGKLFLPKYALSQDV.....CTYRDFTYRTVEIPGCPHHVAPYFSYPVALSCKCG..KCTSHB_RAT   22 108
CNDIT..ARLQYV........KVGSCKSEVEVDIHYCQGKCASKA..MYSIDINDVQDQCS.....CCSPTRTEPMQVALHCTNGSVVYHEVLNAMECKCSPrKCVWF_HUMAN 2724 2811

 

Figure 7.6. The full alignment of Pfam:Cys_knot (accession nr PF0007).  This family clus-
ters the two previously described subfamilies CTGF-like (Connective Tissue Growth Factor)
and glycoprotein hormones in one single superfamily.  The similarity has recently been
structurally confirmed.
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During the construction of Pfam,  a number of strong matches were found that despite

good sequence similarity had not been classified as true members before.  The alignment in

figure 7.3B and C contain two examples of this.  This domain is usually found as a single N-

terminal domain in response regulators of two-component systems, where it receives a signal

by phosphorylation by a sensor molecule.  The signal is then usually transduced to a C-

terminal DNA binding transcription factor which turns on the expression of a set of down-

stream genes.  Sometimes the receiver domain is not combined with any other domains on

the same chain, or is combined with other types of modules, such as kinase domains.  The

cyanobacterial protein rcaC (Swissprot: RCAC_FREDI Q01473), was previously found to

have a duplicated receiver domain [Sonnhammer and Kahn, 1994].  We now report a third

receiver-like domain between the two previously described ones.  Most of the conserved

features are still clearly recognisable in this third domain, although it has diverged further

from the other two domains.  The other novel annotation in figure 7.3B and C is in the yeast

protein KFD3_YEAST (Swissprot P43565), which was found as ORF YFL033c by genomic

sequencing of S. cerevisiae chromosome VI [Murakami et al., 1995].  As seen in figure 7.3C,

this protein has a protein kinase domain (split up in two matches) and one receiver domain.

In the original analysis, it was only described as “protein kinase”.  It further shares domains

with the protein CEK1_SCHPO (Swissprot P38938), in the families Pfam-B_9674 and

Pfam-B_9675, which in addition also contains one protein kinase domain, but lacks the re-

ceiver domain.

Another example is the finding of a new fibronectin type III (FN3) domain [Bazan, 1990]

in a mammalian glycohydrolase.  FN3 domains have already been found in many bacterial

glycohydrolases [Little et al., 1994] [Bork and Doolittl e, 1992], but since this domain com-

bination was found to be limited to the bacterial kingdom it was assumed that horizontal

gene transfer had taken place from animal proteins with a completely different function.  We

have detected an FN3 domain in the C-terminal part of human, dog and mouse alpha-l-

iduronidase (Swissprot IDUA_HUMAN P35475, IDUA_CANFA Q01634 and

IDUA_MOUSE P48441) (see figure 7.7A).  The closest homologue is ß-xylosidase from the

bacterium Thermoanaerobacter saccharolyticum, which lacks the FN3 domain.  The discov-
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ery of an animal glycohydrolase linked to an FN3 domain raises questions about the conclu-

sion that all FN3 domains in bacterial glycohydrolases have arisen by horizontal transfer of

the FN3 domain from an animal source.  The alternative scenario is that some ancestral gly-

cohydrolases also possessed FN3 domains.

We have also detected previously undescribed Kazal-type protease inhibitor domains [Ka-

zal et al., 1948] in human and rat organic anion transporters (Swissprot OATP_HUMAN

P46721 and OATP_RAT P46720), and in rat prostaglandin transporter (Swissprot

PGT_RAT Q00910), as shown in figure 7.8.  As far as we know, this is the first time a Kazal

domain has been described in transmembrane proteins.  From the hydrophobicity profile of

these transporters [Kanai et al., 1995], it is clear that the predicted Kazal domain lies in a re-

gion of about 90 residues between transmembrane helices 9 and 10.  This region was pre-

dicted to protrude on the outside of the membrane by the program TopPred II [Claros and

von-Heijne, 1994] for both PGT and OATP.  This supports the existence of a disulphide-rich

globular Kazal domain, which may well be important for substrate binding.
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S.YAPlPPLQLIEL.NAYGMTLAWPGT.....PDALSSLTLEC.QSLREQ...........LQFN..VAGNHT..QMRLAPLQPKTRYSCRLA.LAYAATp....GAPI7LES_DROVI 1917 1997
P.TAP.V.LQQPGI.ESSRVTLNWSPSA...DDVAIFGYEIYK.SSSETGPf........IKIAT..VSDSVY..NYVDTDVVNGNVYYYKVV.AVDTSYn....RTASAPU_THETY 1165 1248
PrRPP.GNISWTF..SSSSLSLKWDPVVplrNESTVTGYKMLY.QNDLHPTptlhltsknWIEIP..VPEDIG..HALVQIRTTGPGGDGIPA.EVHIVRn....GGTSAXO1_RAT  914 1009
P.SAP.GTPTASNI.TDTSVKLSWSAAT...DDKGVKNYDV.LR...DGA...........KVAT..VTGTT....YTDNGLTKGTAYSYSVK.ARDTADq...tGPASCHIT_STRLI  142 219
P.DPP.QSVRVTSV.GEDWAVLSWEAPPf.dGGMPITGYLMER.KKKGSMRw.......mKLNFE..VFPDT...TYESTKMIEGVFYEMRVF.AVNAIGv....SQPSCPSF_CHICK  491 577
P.GPP.QAVRVMEV.WGSNALLQWEPPKd.dGNAEISGYTVQK.ADTRTME.........WFTVL..EHSRPT..RCTVSELVMGNEYRFRVY.SENVCGt....SQEPCPSF_CHICK  784 869
P.SAV.LQVKMDVM.TATTVTFKFFGPGn.dGGLPTKNYAVQY.KQDSQGW.........EDALN..RTWPVDs.PYILENLKPQTRYNFRFA.AQNEVGf....GPWSFAS2_SCHAM  530 616
P.VVA.TSESVTEI.TASSFVVSWVSA.....SDTVSGFRVEY.ELSEEGDe........PQYLD..LPSTAT..SVNIPDLLPGRKYTVNVY.EISEE.......GEQFINC_BOVIN  689 768
P.DAP.PDPTVDQV.DDTSIVVRWSRP.....RAPITGYRIVY.SPSVEGS.........STELN..LPETAN..SVTLSDLQPGVQYNITIY.AVEEN.......QESFINC_BOVIN  780 858
I.DKP.SQMQVTDV.QDNSISVRWLPS.....SSPVTGYRVTT.APKNGPGp........SKTKT..VGPDQT..EMTIEGLQPTVEYVVSVY.AQNQN.......GESFINC_BOVIN 1511 1590
P.TTP.GTPVATGV.TTVGASLSWAASTd..AGSGVAGYEL.YR.VQGTTQ.........TLVGT..TTAAA....YILRDLTPGTAYSYVVK.AKDVAGn...vSAASGUNB_CELFI  651 733
P.DPP.KNLQLKPLkNSRQVEVSWEYPDt..WSTPHSYFSLTF.CVQVQGK.........SKREK..KDRVFT..DKTSATVICRKNASISVR.AQDRYYs....SSWSI12B_HUMAN  235 320
P.GPV.TRLRALPL.TRGQVLLVWSDERv..GSKCLWTYEIQF.SADGEV..........YTPIS..RKPSTFn.LFVFSPESAVTSGSYRVR.AVDYWAr...pGPFSIDUA_CANFA  547 632
P.GQV.TRLRALPL.TQGQLVLVWSDEHv..GSKCLWTYEIQF.SQDGKA..........YTPVS..RKPSTFn.LFVFSPDTGAVSGSYRVR.ALDYWAr...pGPFSIDUA_HUMAN  548 633
P.EAP.FDLSVIYReGANDFVVTFNTSHlqkKYVKVLMHDVAYRQEKDENK.........WTHVN..LSSTKL..TLLQRKLQPAAMYEIKVR.SIPDHYfkgfwSEWSIL7R_HUMAN  129 221
L.GAP.QNPNAKAA.GSRKIHFNWLPP.....SGKPMGYRVKY.WIQGDSEs........EAHLL..DSKVP...SVELTNLYPYCDYEMKVC.AYGAQGe....GPYSITB4_HUMAN 1127 1208
P.DTP.TRLVFSAL.GPTSLRVSWQEPR...CERPLQGYSVEY.QLLNGGE.........LHRLN..IPNPAQt.SVVVEDLLPNHSYVFRVR.AQSQEGw....GRERITB4_HUMAN 1581 1665
Q.TEP.PKVRLEGR.STTSLSVSWSIPPp..QQSRVWKYEVTYR.KKGDS...........NSYN..VRRTEGf.SVTLDDLAPDTTYLVQVQ.ALTQEGq....GAGSKECK_HUMAN  436 519
P.SAV.SIMHQVSR.TVDSITLSWSQPDq..PNGVILDYELQY.YEKNLSE.........LNSTA..VKSPTN..TVTVQNLKAGTIYVFQVR.ARTVAGy....GRYSKEK5_CHICK  444 528
P.DPPaGTPCASDI.RSSSLTLSWYGSSy.dGGSAVQSYTVEI.WNSVDNK.........WTDLT..TCRST...SFNVQDLQADREYKFRVR.AANVYGi....SEPSKMLC_CHICK   60 145
P.SSI.ALVQAKEV.TRYSVALAWLEPDr..PNGVILEYEVKY.YEKDQN..........ERSYR..IVRTAAr.NTDIKGLNPLTSYVFHVR.ARTAAGy....GDFSKSEK_MOUSE  441 525
P.TAP.TDVQISEV.TATSVRLEWSYK....GPEDLQYYVIQY.KPKNANQ.........AFSEI..SGIITM..YYVVRALSPYTEYEFYVI.AVNNIGr....GPPSLAR_DROME  322 404
P.GAP.MDVKCHDA.NRDYVIVTWKPPNt.tSQNPVIGYFVDK.CEVGLEN.........WVQCN..DAPVKIc.KYPVTGLYEGRSYIFRVR.AVNSAGi....SRPSMPSF_CHICK  371 457
P.SSP.SIDQVEP..YSSTAQVQFDEPEa.tGGVPILKYKAEWR.AMGEEVw.......hSKWYD..AKEASMegIVTIVGLKPETTYAVRLA.ALNGKGl....GEISNCA1_BOVIN  509 597
P.SPP.SFLKITNP.TLDSLTLEWGSPTh..PNGVLTSYILKF.QPINNTHel.....gpLVEIR..IPANES..SLILKNLNYSTRYKFYFN.AQTSV......GSGSNRCA_CHICK  928 1014
G.SAP.TGLAVTAT.TSTSVSLSWNAV......ANASSYGV.YR...NGS...........KVGS..ATATA....YTDSGLIAGTTYSYTVT.AVDPTAg...eSQPSPHB_ALCFA  344 418
P.DPP.SNLSVQVR.SGKNAIILWSPPT....QGSYTAFKIKV.LGLSEASss......yNRTFQ..VNDNTF..QHSVKELTPGATYQVQAY.TIYDG.......KESPTP1_DROME  123 205
P.AQV.TDLHVANQgMTSSLFTNWTQA.....QGDVEFYQVLL.IHENVV..........IKNES..ISSETS..RYSFHSLKSGSLYSVVVT.TVSGG.......ISSPTPB_HUMAN  554 632
P.PRPiAPPQLLGV.GPTYLLIQLNANSi.iGDGPIILKEVEYR.MT.SGS.........WTETH..AVNAP...TYKLWHLDPDTEYEIRVLlTRPGEGg...tGLPGPTPK_MOUSE  290 376
V.SPP.TELTVTNV.TDKTVNLEWKHE......NLVNEYLVTY.VPTSSGGl........DLQFT..VPGNQT..SATIHELEPGVEYFIRVF.AILKN.......KKSTENA_CHICK  593 671
P.PVPlAAPRLLTK.QSRQLVVSPLVSFs..GDGPISTVRLHYRPQDSTMD.........WSTIV..VDPSE...NVTLMNLRPKTGYSVRVQlSRPGEGg...eGAWGTIE1_HUMAN  446 533
L.PKPlNAPNVIDT.GHNFAVINISSEPy.fGDGPIKSKKLLY.KPVNHYEa........WQHIQ..VTNEI....VTLNYLEPRTEYELCVQ.LVRRGEg....GEGHTIE2_HUMAN  444 529
P.PQP.ENIKISNI.THSSAVISWTILD....GYSISSITIRY.KVQGKNE.........DQHVDvkIKNATIi.QYQLKGLEPETAYQVDIF.AENNIGs....SNPATIE2_HUMAN  639 724
L.GPP.ENISATR..NGSQAFVHWQEPRa.pLQGTLLGYRLAY.QGQDTPE.........VLMDI..GLRQEV..TLELQGDGSVSNLTVCVA.AYTAAGd....GPWSUFO_HUMAN  327 411
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Glycohydrolase FN3IDUA_HUMAN:

Figure 7.7.  A. Selected members of the family Pfam:fn3 (accession nr. PF00041).  B. The
domain organisation of iduronidase from human and dog (IDUA_HUMAN and
IDUA_CANFA), the first examples of a mammalian glycohydrolase combined with a fibro-
nectin type III  domain.
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CVCPAS..........CS....GVa.ESIVCGSDGKDYRSECDLNKHAC.....DK.......QENVFKKFDGACAGRI_CHICK 154 201
CLCPTT..........CF....GAp.DGTVCGSDGVDYPSECQLLSHAC.....AS.......QEHIFKKFNGPCAGRI_RAT 165 212
CVCAPD..........CS....NItwKGPVCGLDGKTYRNECALLKARC.....KE.......QPELEVQYQGRCFSA_HUMAN 116 164
CVCAPD..........CS....NItwKGPVCGLDGKTYRNECALLKARC.....KE.......QPELEVQYQGKCFSA_PIG 116 164
CVCAPD..........CS....NItwKGPVCGLDGKTYRNECALLKARC.....KE.......QPELEVQYQGKCFSA_RAT 116 164
CVCAPD..........CS....NItwKGPVCGLDGKTYRNECALLKARC.....KE.......QPELEVQYQGKCFSA_SHEEP 109 157
CKVYTEA.........CT....RE..YNPICDSAAKTYSNECTF....CNEKM.NN.......DADIHFNHFGECIAC1_BOVIN  14 61
CAEFKDP......KVYCT....RE..SNPHCGSNGETYGNKCAF....CKAVM.KS.......GGKINLKHRGKCIAC2_BOVIN   7 57
CNVYRSH......LFFCT....RQ..MDPICGTNGKSYANPCIF....CSEKG.LR.......NQKFDFGHWGHCIACA_PIG   7 57
CDVYRSH......LFFCT....RE..MDPICGTNGKSYANPCIF....CSEKL.GR.......NEKFDFGHWGHCIACS_PIG  12 62
CARYQLPG........CP....RD..FNPVCGTDMITYPNECTL....CMKIR.ES.......GQNIKILRRGPCIAC_MACFA  33 81
CSPYLQVVRDGNtMVACP....RI..LKPVCGSDSFTYDNECGI....CAYNA.EH.......HTNISKLHDGECIOV7_CHICK  94 150
CSDHPKP........ACL....QE..QKPLCGSDNKTYDNKCSF....CNAVV.DS.......NGTLTLSHFGKCIOVO_ABUPI   8 56
CSEYPKP........ACT....LE..YRPLCGSDSKTYGNKCNF....CNAVV.ES.......NGTLTLSHFGKCIOVO_ALECH   6 54
CTEYSDM.........CT....MD..YRPLCGSDGKNYSNKCIF....CNAVV.RS.......RGTIFLAKHGECIPSG_VULVU  68 115
CGEMSAMHA.......CP....MN..FAPVCGTDGNTYPNECSL....CFQRQ.NT.......KTDILITKDDRCIPST_ANGAN  12 61
CTNEVNG.........CP....RI..YNPVCGTDGVTYSNECLL....CMENK.ER.......QTPVLIQKSGPCIPST_BOVIN   9 56
CTSEVSG.........CP....KI..YNPVCGTDGITYSNECVL....CSENK.KR.......QTPVLIQKSGPCIPST_PIG   9 56
CTNEVNG.........CP....RI..YNPVCGTDGVTYANECLL....CMENK.ER.......QTPVLIQKSGPCIPST_SHEEP   9 56
CNVDCN..........CPs...KI..WDPVCGNNGLSYLSACLA...GC..ET.SI.......GTGINMVFQNCSOATP_HUMAN 439 485
CNTRCS..........CS....TNt.WDPVCGDNGVAYMSACLA...GCKKFV.GT.......GTNM.VFQDCSCOATP_RAT 439 486
CEHMTESPD.......CS....RI..YDPVCGTDGVTYESECKL....CLARI.EN.......KQDIQIVKDGECPE60_PIG  37 86
CRRDCS..........CP....DSf.FHPVCGDNGVEYVSPCHA...GC.....SS.......TNTSSEASKEPIPGT_RAT 444 488
CHDAVAG.........CP....RI..YDPVCGTDGITYANECVL....CFENR.KR.......IEPVLIRKGGPCPSG1_MOUSE  33 80
CICQDPA........ACPs..tKD..YKRVCGTDNKTYDGTCQLFGTKCQLEGtKM.......GRQLHLDYMGACQR1_COTJA 466 521
CVCQDPET........CPp..aKI..LDQACGTDNQTYASSCHLFATKCMLEGtKK.......GHQLQLDYFGACSC1_RAT 424 479
CVCQDP.TS.......CPap.iGE..FEKVCSNDNKTFDSSCHFFATKCTLEGtKK.......GHKLHLDYIGPCSPRC_BOVIN  93 149
CECISK..........CPeldgDP..MDKVCANNNQTFTSLCDLYRERCLCKR.KSkecskafNAKVHLEYLGECSPRC_CAEEL  74 135
CVCQDP.TS.......CPap.iGE..FEKVCSNDNKTFDSSCHFFATKCTLEGtKK.......GHKLHLDYIGPCSPRC_MOUSE  92 148
CVCQDPST........CPts.vGE..FEKICGTDNKTYDSSCHFFATKCTLEGtKK.......GHKLHLDYIGPCSPRC_XENLA  90 146

 

Figure 7.8.  Alignment of Pfam:kazal (accession nr. PF00050), showing the novel members
OATP_HUMAN, OATP_RAT and PGT_RAT, organic anion and prostaglandin transporters.

To what extent are proteins modular?  With Pfam, we can address this problem with

higher accuracy than before.  Of the proteins in Swissprot 33 containing at least one Pfam-A

domain, 17% have two or more domains.  This is only a lower bound since (1) not all do-

mains are present in Pfam-A, (2) HMMs are not perfectly sensitive and (3) it is based on

proteins in Swissprot, which probably is biased towards single-domain proteins.  We have

done the same analysis on Wormpep 10, which should represent a relatively unbiased set of

proteins.  28% of the proteins that matched Pfam-A families, matched two or more domains.

We expect that this number is higher for the nematode C. elegans than it would be for single

cell organisms.  The distributions of both Pfam-A and Wormpep data are shown in figure

7.9.
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Figure 7.9.  Distribution of the number of domains found per protein.  A. All proteins in
Pfam-A.  B. Wormpep 10 proteins that match Pfam-A.  The number of proteins with two or
more domains is 17% for all proteins in Pfam-A and 28% among Wormpep 10 proteins.
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7.5 Discussion

We have presented a database which combines high-quality alignment information with

high coverage of known protein sequences.  The level of clustering in Pfam-A is largely a

result of the sort of alignments we aimed at: full -domain alignments.  If subfamilies are too

diverse, aligning them together will produce a poor alignment with poor discriminative

power.  The clusters are thus on a level which gives maximum cluster sizes without disrupt-

ing the alignment.  In many Pfam-A families the overall sequence similarity is discernible,

but not very strong.  Clustering at a higher similarity level, li ke PIRALN [George et al.,

1996] where the average family only has 6.7 members (see table 7.2) would give alignments

of very tight subfamilies where littl e evolutionary information is contained.  This would di-

minish the advantages of multiple alignment based search methods like HMMs by rendering

them less sensitive to recognising distant members.  In Pfam, related subfamilies are gener-

ally merged into one family to achieve as diverse clusters as possible without compromising

alignment quality.

We have chosen a flat structure of families for Pfam, rather than a hierarchy of clusters.

Maintaining a hierarchy of clearly related families would have the advantage of more fine-

grained classification.  The current clustering of Pfam will often not permit functional infer-

ence of a match, since proteins with a common structural origin but diverged functions may

be bundled in one family.  However, there were a number of reasons not to choose hierarchi-

cal clustering.  Creating the hierarchy of clusters for each family remains a hard and labour-

intense problem, for which no eff icient and robust algorithm is known to us.  Subgroups of

one superfamily would often be very similar to each other, which would significantly in-

crease the complexity of maintaining the families in a non-overlapping manner.  Further-

more, using subgroups for similarity searching will i ncrease the search time substantially but

preliminary experiments suggest that no significant increase in sensitivity is gained by

searching with subfamilies (data not shown).
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Table 7.2.  Comparison of databases that contain protein family clusters and multiple align-
ments.  1[Murvai et al., 1996], 2[Gribskov et al, 1988], 3[Seto et al., 1990].

Pfam-A
1.0

Pfam-B
1.0

ProDom
28.0

PIRALN
11.0

BLOCKS
13.0

PRINTS
10.0

Alignment
construction

Manual, Clustal,
HMM Domainer Domainer Pileup Motif SOPMA

Source data-
base

Swissprot 33 Swissprot 33 Swissprot
28

PIR 48 Swissprot 32 OWL 26

Nr. clusters 175 11929 8031 2059 872 500

Nr. sequences 15,604 31,931 23,048 11,367 18,593 16,231

Nr. residues 3,560,959 8,957,230 6,632,274 4,376,550 1,858,812 1,634,436

Average
alignment
width

297 180 154 354 32 18

Average
cluster size 127 5.7 3.3 6.5 19 37

Cross-
referenced to

Swissprot, Pro-
site, SCOP,

Medline

Swissprot Swissprot PIR Swissprot,
Prosite

Prosite,
Blocks, Sbase1,

Gribskov2,
Kanehisa3

It is interesting to compare Pfam clusters to those in Prosite.  Although often very similar,

they sometimes differ substantially.  The reason is that Prosite clusters are usually con-

structed with a different goal in mind, i.e. describing very short motifs important for func-

tion.  Prosite clusters therefore tend to include as many members as possible without de-

stroying the pattern.  The level of Prosite clustering thus depends on how well a pattern can

be developed, which in turn depends on the conservation characteristics throughout the fam-

ily.  In some cases, several Prosite families are merged together into one Pfam family.  For

instance Pfam:lipocalin contains the members of both Prosite:PDOC00187 (lipocalin) and

PDOC00188 (Cytosolic fatty-acid binding proteins).  In other cases Pfam extends Prosite

families with new members, e.g. Pfam:Cys_knot contains both Prosite:PDOC00234 (Glyco-

protein hormones beta chain) and cystine knot domains from mainly growth factors and ex-

tracellular proteins (figure 7.5).  Prosite families are often overlapping in the sense that one

family corresponds to most members, but additional subfamilies are needed to find all mem-

bers of divergent subfamilies.  For example, there are four Prosite patterns for protein kinases
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(PDOC00100, PDOC00212, PDOC00213 and PDOC00629), but only one Pfam HMM is

needed.  On the other hand, families that share only a tiny motif of only a few residues, li ke

e.g. the P-loop [Saraste et al., 1990]  (defined in Prosite PDOC00017 as [AG]xxxxGK[ST]),

are not merged in Pfam if there is no inter-family similarity beyond the common motif.  Of-

ten such patterns are in any case too short to discriminate true matches from false, as is the

case for the P-loop.  Pfam-A 1.0 contains some 35 families that are absent from Prosite, pos-

sibly because no discriminative pattern could be found. Some of these families are currently

being added to Prosite as ‘matrix’ entries instead of patterns [Bairoch et al., 1996].

The protein family databases Prints [Attwood and Beck, 1994] and Blocks [Henikoff and

Henikoff , 1994] are both based on a set of short ungapped blocks of aligned residues to de-

scribe each family.  While the Blocks alignments were generated automatically for all Prosite

families, Prints was constructed using a more manual approach to define the family clusters,

similar to the Pfam member gathering step (see figure 7.1).  Hence Prints also contains many

clusters that are either absent from Prosite, or have a different clustering level.  The ungap-

ped block approach has the advantage that robust and fast methods can be used both to dis-

cover conserved regions within a family and to search a database for more members [Neu-

wald and Green, 1994].  By not allowing gaps, hard to align regions that could easily cause

misalignments are avoided.  However, gaps also occur in conserved regions, and not allow-

ing them may cause either misalignments or truncation of the domain.  The principal practi-

cal difference from Pfam’s approach is that PRINTS and BLOCKS contain short conserved

regions, whereas Pfam alignments represent complete domains, facilit ating automated anno-

tation.

Prodom is a protein family database that was entirely generated by the Domainer program

[Sonnhammer and Kahn, 1994] purely from pairwise sequence homology data with no hu-

man knowledge to guide clustering or domain boundary definition.  It is useful as a catalogue

of comprehensive low-quality alignments, but the quality of the alignments and clusters is

generally too low to produce information-rich HMMs.  Unfortunately, the quality is inversely

proportional to the number of family members and very poor for short domain families.  For
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instance, nearly all zinc finger domains were lost due to the crude ‘edge trimming’ of domain

boundaries.

There are a number of other databases that contain valuable aspects of protein family clas-

sification but were excluded from the comparison in table 7.2 for a variety of reasons.  For

instance, Sbase [Murvai et al., 1996] and the matrix entries in Prosite [Bairoch et al., 1996]

do not provide multiple alignments for the families.  The structural clustering in FSSP [Holm

and Sander, 1996] could in theory be combined with the structure-sequence alignments in

HSSP [Schneider and Sander, 1996] to produce a protein family clustering with multiple

alignments, but since this is not explicitl y provided, and since a wide choice of different

clustering levels are supplied, we have not attempted to generate this.  The Conserved Re-

gions database [Worley et al., 1995], is only indirectly accessible via the Beauty Blast server

on WWW and not as a complete aligned family database.  The MBCRR [Smith and Smith,

1990] and Taylor’s [Taylor, 1990] databases were not included since they were based on

relatively small datasets and have not been updated for many years.

The seed/full alignment strategy of Pfam was intended make updates easy; our aim is to

make a new Pfam release for each new release of Swissprot.  To make Pfam an integral part

of the analysis process of genomic sequencing project, tools to store and display matches to

Pfam families are currently being added to ACEDB [Durbin and Thierry-Mieg, 1996].  This

will allow inspection of HMM matches aligned to Pfam seed alignments and significantly

improve large scale classification of proteins.

Our results suggest that Pfam is valuable for genomic sequence analysis.  The improve-

ment in protein annotation relative to a human expert annotator using an integrated analysis

workbench based on pairwise similarities is more than just an increase in percentage anno-

tated proteins.  It avoids many problems inherent to single sequence database searching, such

as over-reliance on the annotation of the highest-scoring match and misannotation caused by

multidomain proteins.  Pfam thus significantly reduces the task of annotators, and helps es-

tablish a coherent nomenclature.
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8. Tools for analysis of protein sequences and families

8.1 Summary

Presented in this chapter are a number of graphical tools for protein sequence analysis us-

ing the Pfam collection of Protein families.  A multiple alignment viewer for X-windows,

Belvu, was developed, which can show the match of a query sequence aligned to a Pfam

alignment.  It is a general purpose tool with flexible colouring schemes based on conserva-

tion or residue types, and has simple editing capabiliti es.

Belvu was integrated with the ACEDB via the PEPmap, which was developed as a general

purpose protein sequence feature display tool.  It has built -in sequence and hydrophobicity

profile displays, and generic columns for any type of feature that can be displayed as a seg-

ment.  The PEPmap is linked to Blixem for analysis of BLAST matches, to Dotter for dot-

plot analysis, and to the Pfam World Wide Web server for family browsing.

The Pfam web server also supports HMM searching of a query against all Pfam families,

and domain analysis of all Swissprot proteins in Pfam.

8.2 Introduction

The ACEDB DNAmap forms the basis for the graphical genomic sequence analysis work-

bench described in part I.  Although the DNAmap was primarily designed for DNA sequence

analysis, it can also be used for protein analysis.  For protein homology analysis, this relies

on searching protein databases with Blastx, which translates the DNA query.  In many cases,

it would be better to use a protein sequence map display instead of the DNAmap.  For in-

stance, patterns or features in the protein sequence may be split by introns and therefore go

undetected or be diff icult to visualise.  Also, a number of similarity searching programs, par-

ticularly those based on dynamic programming, do not work well on translated DNA inter-

rupted by introns.
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Furthermore, using the protein instead of the DNA sequence is often more sensitive, since

the level of the background noise is lower.  Blastp therefore finds more relevant similarities

than Blastx.  Also, most available profile-based search programs can only be applied to pro-

tein queries. To compare a protein alignment to a DNA sequence requires mechanisms for

handling introns and frameshifts.  Such programs are starting to appear [Birney et al., 1996],

but are not in mainstream use yet.

We are particularly interested in profile-based methods, since they allow us to exploit the

Pfam collection of protein domain families for genomic classification (see chapter 7).

Searching a query against a database of pre-built multiple alignments has the advantages of

improved domain identification, which assists the annotation process, and often increased

sensitivity.

To use Pfam eff iciently for genomic analysis, tools for both pairwise and multiple align-

ment based analysis were integrated into ACEDB.  To this end, a new ACEDB display, the

PEPmap, was developed, which functions as an overview map and a launch pad for more

specialised tools.  These include Blixem, for analysis of Blast matches, Dotter, for dot-plot

analysis, and Belvu, for inspection of matches to multiple alignments.

Belvu was developed as a stand-alone multiple alignment viewer.  Although a number of

such viewers and editors exist [Parry-Smith and Attwood, 1991; De Rijk and Wachter, 1993;

Smith et al., 1994], the particular demands for integration with ACEDB and display capa-

biliti es motivated the development of a new program.  Belvu is also an essential tool for the

construction and maintenance of Pfam.  Many of its features, such as the simple editing

commands, were incorporated in particular for the needs of Pfam.

For occasional Pfam users, a World Wide Web server has been set up.  This allows the

user to browse documentation and alignments of all Pfam families.  Similarity searching

against the HMMs (hidden Markov models) of all Pfam-A families is provided, and the Pfam

domain organisation of all Swissprot proteins in Pfam can be looked up.  Since the Pfam web

server acts as a central resource for the Pfam documentation, and provides links to other

WWW resources, we have linked Pfam matches displayed in the PEPmap to the corre-

sponding family page on the Pfam web server.  This way the workbench for analysing intrin-
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sic and extrinsic properties of amino acid sequences is also integrated with external informa-

tion resources.

8.3 A graphical genomic sequence analysis workbench for Pfam

The components of the workbench, and how they are coupled together is shown in figure 8.1.

Blixem and Dotter have been described in chapters 3 and 5, and will not be treated in detail

here.  Dotter can be used either to analyse the similarity to a particular database match, or to

make a self-comparison dot-plot of the protein in question.

When Belvu is called from the PEPmap, previously stored matches to Pfam are added to

the Pfam alignment.  (It is also possible to call Belvu from ACEDB with the alignment only.)

Similarly, the Pfam web server may also use Belvu to display either the alignment only, or

with a matching query segment.  The link from Belvu to Medline abstracts is only possible

for sequences from a database that is linked to Medline, such as Swissprot, PIR or

EMBL/Genbank.  If this is the case, a WWW browser can be called up with the sequence

entry, which in turn is linked to Medline abstracts at http://www3.ncbi.nlm.nih.gov/PubMed.
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Figure 8.1.  Overview of the components in the protein sequence analysis workbench.
Rounded corners signifies a graphical analysis tool.  Underlined components were developed
as part of this work.
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BELVU

The general layout of Belvu is shown in figure 8.2.  On the left are four columns, containing

sequence name, start and end coordinates, and (optionally) score to an HMM or profile.  By

clicking on a residue, its position in the sequence is displayed on the blue status bar at the

top.  The row that was clicked also becomes highlighted, and all rows of the same protein

become highlighted in the leftmost column.  The number of rows (matches) of the picked

sequences is displayed on the status bar.  If a sequence is highlighted, a crosshair can be acti-

vated by pressing the middle mouse button, and dragging to the left and the right can be used

to locate a position in the sequence.  The alignment is centred at the last position of the

crosshair when the mouse button is li fted.  Double clicking on a sequence will call Efetch

(chapter 6) to retrieve its database annotation, either as a read-only text window, or in a

WWW browser.

Belvu’s main menu is activated under X-windows by pressing the right mouse button

anywhere in the window, except on the buttons at the top, which are separate pull -down

menus.  The main menu contains general items such as save, print and exit.  The pull -down

menu ‘Edit’ contains commands for removing rows or columns, and has functions for mak-

ing the alignment non-redundant to a user-settable level of identity, removing sequences be-

low a certain score, and to remove outliers.  The alignment can be sorted by name or by score

(if scores are used).
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A

B

Figure 8.2a-b.  The Belvu multiple alignment viewer, showing a the alignment of SH2 do-
mains.  The columns are, from the left: sequence name, start of segment, end of segment and
score.  Clicking on a residue shows the sequence segment and the position of the picked resi-
due in the blue status bar at the top.   A. Residue colouring by conservation according to av-
erage BLOSUM62 scores.  The colours and cutoffs of the three levels are controlled in the
‘Colour Codes’ window.  B. Residue colouring by conservation according to pure percent
identity.  Colouring by average BLOSUM62 score enhances columns with similar residues.
An example of this is column 50, which mainly contains phenylalanines and tyrosines.
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C

D

Figure 8.2c-d.  C. Colouring by residue type.  The colour of each residue is controlled from
the ‘Colour Codes’ window, which also shows the currently defined groups.  D. Colouring
by residue type, where only residues more conserved than a user-settable identity cutoff are
displayed (set to 20% here).
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The alignment can be coloured according to a number of different colour schemes, as

shown in figure 8.2.  There are two main types of colouring: by conservation or by amino

acid residue type.  Perhaps the simplest way of determining the conservation is by calculating

the fraction of rows that contain each residue. There is an option to colour similar residues

according to BLOSUM62 [Henikoff and Henikoff , 1992], where the colour of the highest

conservation dominates.  This does not always give the wanted result.  For instance, columns

that have four types of hydrophobic residues will be no more than 25% conserved, which

normally does not give any colour.  To capture columns with a spread of similar residues,

Belvu calculates the average pairwise score of all rows [Sander and Schneider, 1991].  This

method normally produces intuitive conservation values, and is the default colouring mode.

Three conservation levels are supported and the colours and thresholds can be changed inter-

actively in the ‘Colour Codes’ tool.  The thresholds for colouring by average score depends

on the score matrix used.  For BLOSUM62, average score cutoff levels of 0.5, 1.5 and 3.0

are usually suitable.

If the alignment is incorrect, or other features than conservation are of interest, it is also

possible to colour residues by amino acid type.  This is particularly useful for analysing fixed

sequence patterns or the overall pattern of hydrophobic regions.  Belvu has two built -in col-

our schemes, one of which was suggested elsewhere [Gibson et al., 1994].  It is possible to

conceive an arbitrary colour scheme, save it to file, and later load it into a new Belvu session.

All residue colours can be selected interactively in the ‘Colour Codes’ tool.  There is also a

facilit y to only colour residues that are more conserved than a user-settable cutoff .

For printing of the entire alignment for publications, Belvu can make a wrapped alignment

in a separate window, which only contains the alignment and a title.  The current colour

scheme is used, and local sequence coordinates are drawn to the left and the right of each

line.  The user can control the width of the lines and give a title.  All alignments in chapters 7

and 9 were printed this way.

Belvu as a standalone program that can read multiple alignments in the MSF, HMMER

and Pfam formats.  It is available by anonymous FTP at ftp.sanger.ac.uk in /pub/esr/belvu,

and on line documentation is available at http://www.sanger.ac.uk/~esr/Belvu.html.  For im-
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proved eff iciency in large scale sequence analysis projects, Belvu has been coupled to the

PEPmap display in ACEDB.

The ACEDB PEPmap

ACEDB contains graphical displays for genetic and physical maps, and for DNA sequence

features.  The latter in particular contains a large number of configurable columns, which can

display most types of data as generic segments in a column.  Segments from each analysis

method are displayed in a separate column, and features such as colour and drawing method

to reflect the score (by width or offset) are configurable.

The PEPmap works essentially as the ACEDB DNAmap.  It embodies the same generic

column philosophy, but also contains some protein-specific columns as well , such as hydro-

phobicity plots.  The main reason to have a separate PEPmap, apart from modularity consid-

erations, is that many features in the amino acid sequence are diff icult to display when they

are split by introns.  In this chapter, we show how two types of protein similarity data can be

stored in ACEDB and displayed in the PEPmap: Pairwise matches form BLAST, and HMM

matches to Pfam families.

Figure 8.3a shows how the PEPmap and the integrated analysis tools can be used to ana-

lyse a newly determined protein sequence.  The blue boxes (Blastp matches) and the green

boxes (Pfam HMM matches) have shortcut menus.  By pressing the right mouse button one

of these boxes, a menu gives a choice of Blixem, Dotter or Belvu (Pfam HMM matches only)

analysis.  Pfam matches are also passed on to Blixem and Dotter, where they are drawn as

green boxes.  Blixem and Dotter are normally linked in with the ACEDB executable, while

Belvu is spawned as a separate process.  It is immaterial whether a viewing tool is external or

internal, as long as it does not need to communicate with the ACEDB database, for which it

has to be internal.  Blixem can thus be used to retrieve a sequence annotation with the inter-

nal ACEDB object display, while Belvu can only retrieve it from an external database using

Efetch.  Using the analysis tools as external programs makes the system more modular, and

more easily maintainable, however.  Data is passed from ACEDB to external programs via
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UNIX pipes.  Blixem can also be called as an external program, which has the advantage of

allowing multiple simultaneous sessions.

For proteins with matches to Pfam families, annotation and 3D structures can be accessed

via the Pfam WWW server (see below).  This is also an item on the shortcut menu on the

(green) Pfam HMM match boxes in the PEPmap.  Each family has a page in the web server,

which is linked to other databases such as Prosite and Medline for documentation, and to the

SCOP database [Murzin et al., 1995] for structural information.  The SCOP WWW server

provides a hierarchical classification of the protein fold, and 3-dimensional views of the

structure using either static images from the Expasy WWW server [Appel et al., 1994] or

RasMol [Sayle et al., 1995].  An example of this is shown in figure 8.3b.

The PEPmap uses a set of generic software modules in ACEDB for drawing and control-

ling maps.  The appearance of the columns is controlled in two ways.  An object of the class

‘Method’ that is associated with each segment, determines in which column it is drawn, and

some general features of the segments, such as the colour and the linking to analysis tools.

Each column can also be configured to some extent by clicking on the green horizontal bar at

the bottom of the column, which brings up a configuration window (see for example the hy-

drophobicity plot configuration window in figure 8.4).  The general layout of the PEPmap,

i.e. which columns are turned on and their relative order, is stored in a ‘view’ .  The view is

controlled in the ‘Column Control’ window (see figure 8.4).  A particular view can be stored

and be re-used at a later stage.
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A

Figure 8.3a.  The main graphical tools of the analysis workbench are linked together.  This
example shows how the C. elegans protein C02B4.2 can be analysed in the ACEDB PEPmap
(top right), in Blixem and Dotter for pairwise protein comparison, and in Belvu for family
comparison.  The PEPmap shows the sequence, hydrophobicity plot, Blastp matches (blue
boxes) and Pfam matches (green boxes).  This protein matches the Pfam family of C4 type
zinc fingers in the N-terminal part, and the family of ligand binding domains of hormone re-
ceptors in the C-terminal part.
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B

Figure 8.3b.  The Pfam WWW server can act as a link between the PEPmap and protein
structures, since the Pfam web pages are linked to the SCOP server.  SCOP contains struc-
tural classification and provides 3D visualisation using RasMol.
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Figure 8.4.  Examples of column configuration tools of the ACEDB PEPmap.
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Storing matches to proteins and protein families in ACEDB

Proteins are objects of the class ‘Protein’ in ACEDB, and can store homology information to

other proteins and protein families.  Blast matches are stored under the ‘Pep_homol’ tag,

which contains the score and extent of a match between two Protein objects (see figure 8.5a).

Matches to multiple alignments are stored under the ‘Align_homol’ tag.  Since these contain

gaps, the matching segments between the gaps also need to be stored in addition to the start

and end coordinates (see figure 8.5b).

The actual sequence of a protein is stored in a separate class ‘Peptide’ , which is linked to

the Protein objects.  Corresponding Protein and Peptide objects must have the same name.

The matching proteins do not require an internally stored peptide sequence for display in

Blixem: if it is not present, Blixem will t ry to Efetch it.  Multiple alignments are stored as

‘Alignment’ objects in ACEDB, and are passed on to Belvu in the Pfam format.

Matching query segments are appended to Belvu’s input stream, and any insertions in the

alignment are made by Belvu.  We normally store the match coordinates relative to the Pfam

seed alignment, which have to be calculated from the HMM match coordinates and the map-

ping between the HMM and the alignment it was derived from.  Alternatively, one could

store match coordinates relative to the HMM consensus in ACEDB.  Although this would be

more compact, it would require storing the HMM-alignment mapping in ACEDB, and the

alignment coordinates would have to be reconstructed every time Belvu was called.

Two UNIX scripts, hmmPfam and belvuMatch, were developed to automate the searching

of queries against Pfam and converting the output to .ace format for input into ACEDB (see

figure 8.5).  HmmPfam uses the HMM searching programs in the HMMER package [Eddy,

1995a].  ACEDB is available by anonymous FTP at ftp.sanger.ac.uk in /pub/acedb.  A data-

base containing Pfam and HMM matches to C. elegans proteins is also available (see section

Pfamace below), which contains all the mentioned class models.  The scripts hmmPfam and

belvuMatch are also included.
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A
Protein : C02B4.2
Pep_homol  YKC8_CAEEL BlastP 286.0 27 105 14 92
Pep_homol  YKC8_CAEEL BlastP 119.0 182 246 193 257
Pep_homol  YKC8_CAEEL BlastP 73.0  265 333 268 336
Pep_homol  HNF4_HUMAN BlastP 234.0 30 118 50 138
Pep_homol  HNF4_HUMAN BlastP 58.0  192 227 186 221
Pep_homol  HNF4_HUMAN BlastP 86.0  274 314 257 297
Pep_homol  RRXA_MOUSE BlastP 244.0 30 111 139 220
Pep_homol  RRXA_MOUSE BlastP 56.0  182 213 271 302
Pep_homol  RRXA_MOUSE BlastP 61.0  276 311 354 389
Pep_homol  AD4B_BOVIN BlastP 203.0 29 107 11 89
Pep_homol  THAB_XENLA BlastP 105.0 29 62 59 92
Pep_homol  THAB_XENLA BlastP 112.0 64 96 96 128

B
Protein C02B4.2
Corresponding_DNA C02B4.2
DB_searched Pfam 1.0
Align_homol hormone_rec Pfam-hmmls 59.48 186 361 1 178 Segs  1 55 \

1 55 56 66 57 67 67 77 70 80 88 120 81 113 121 127 122 128 130 \ 
154 131 155 157 176 159 178

Protein C02B4.2
Corresponding_DNA C02B4.2
DB_searched Pfam 1.0
Align_homol zf-C4 Pfam-hmmfs 130.76 29 104 1 80 Segs  1 36 1 36 37 \  
44 39 46 45 76 49 80

Figure 8.5.  Examples of Blastp (A) and Pfam (B) matches in .ace format, ready to be read in
to ACEDB for display in the PEPmap.  The tags (fields) of the Pep_homol and Align_homol
lines are: <matching object> <method> <score> <query start> <query end> <subject start>
<subject end>.  Since Align_homols are gapped alignments, this is followed by a list of all
the matching segments in the form <query start> <query end> <subject start> <subject end>.
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8.4 Public access to Pfam

World Wide Web

There are two Pfam web servers: at http://www.sanger.ac.uk/Pfam (Cambridge, UK), and

http://genome.wustl.edu/Pfam (St. Louis).  All figures here are taken from the Cambridge

server.  Figure 8.6 shows the home page and an example of a family page.  Clicking on

‘Browse families gives a list of the names and short descriptions of all families.  Clicking on

a family gives a page like in figure 8.6b, from which the full and seed alignments, and other

information can be accessed.  The alignments can either be displayed as text in the browser,

or be viewed in Belvu, which can be run either locally or at the Sanger Centre.  To install

Belvu for local use from the web server, a special MIME type ‘x-belvu’ has to be defined.

(Instructions are provided on the web page.)

Figure 8.7. ill ustrates how the server can be used for HMM searching of a query sequence

versus the Pfam-A HMMs.  At present, this facilit y is available on the Cambridge server

only.  Setting the score cutoff and the search method to default will generally only find clear

similarities, that often could be found with other methods.  For more sensitive searching, the

cutoff should be lowered to 15 or 10 bits or even less, and both hmmls and hmmfs should be

tried.  Note that the example in figure 8.7 contains two ‘half’ PH domains, which are only

found when the score cutoff is lowered below 7 bits, using the hmmfs program.  These

matches would each be marginal by themselves, but the alignment indicates that a whole PH

domain indeed has been split up by the SH2 and SH3 domains.  The search results are sum-

marised in a table and in a graphical schematic.  For each match, links to the Pfam family

page and to the alignment of the match are provided.  The alignment can be viewed either as

a pairwise alignment of the query and the HMM consensus sequence in ASCII format, or in

Belvu, with the matching segment aligned in the Pfam seed alignment.

The Pfam web server also allows inspection of the domain organisation of all proteins in

Swissprot that are part of Pfam.  Each protein is stored as a line-drawing schematic of the

segments corresponding to Pfam families, as shown in figure 8.8.  Pfam-B segments are also

included.  Clicking on a Pfam-A family leads to the WWW page of that family, while click-
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ing on a Pfam-B family displays that family as text in the browser.  When Pfam alignments

are displayed in the browser, the sequence names are linked to these schematics, which

makes it relatively easy to get a picture of the modularity of a particular family.  All of these

pages are based on marking up text retrieved by Efetch.

Anonymous FTP

A number of f lat format and other files pertaining to Pfam are available by anonymous FTP

at  ftp.sanger.ac.uk in /pub/databases/Pfam.  All files are compressed by gzip.

The flat file ‘Pfam’ contains all annotation and seed and full alignments as ASCII text.

The Pfam format follows the Swissprot syntax, with the addition of AU (alignment author),

SE (seed membership source), AL (seed alignment method), GA (gathering method to find

all members) and AM (alignment method of all members to HMM) fields.  The format of the

multiple alignment is for each sequence segment: name/start-end   padded sequence   Swis-

sprot accession number, all on one line.

The file ‘swissPfam’ contains the schematic line-drawings of the Pfam domain organisa-

tion of all Swissprot proteins in Pfam.

The HMM files are released separately in binary HMMER format in the file

‘hmmPfam.tar’ , which also contains a simple script to search them using the Pfam default

cutoffs and search programs.  The HMM search programs are available separately [Eddy,

1995a].

For ACEDB curators that want to incorporate Pfam analysis in their system, a sample

ACEDB database is released in the file ‘Pfamace.tar’ .  This contains all the Pfam families

stored internally and examples of proteins with Pfam matches from C. elegans.  The ACEDB

executable contains a fully functional version of the PEPmap
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A

B

Figure 8.6.  The Pfam WWW server in Cambridge.  A. The home page.  B. An example of a
Pfam family page.
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A

B

Figure 8.7.  HMM searching of a query sequence versus Pfam on the Pfam WWW server.
A. The query dialogue page.  B. The results of an HMM search.  The table of matches at the
top is translated into the schematic at the bottom.  Clicking on the ‘alignment’ lines returns
the pairwise alignment of the HMM consensus sequence and the query.  Clicking on the ‘ in
Belvu’ part calls Belvu with the matching query segment incorporated in the multiple align-
ment of the Pfam seed.
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A

B

Figure 8.8. Swissprot browsing on the Pfam WWW server.  The domain organisation of all
proteins in Swissprot that are part of Pfam can be inspected schematically by entering their
name or accession number.  The blue lines are linked to WWW pages of the full Swissprot
entry and the Pfam families.
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8.5 Discussion

Belvu was primarily intended as an interactive tool.  Its capabilit y for printing alignments

relies on colour printing, and is relatively primitive compared to e.g. Alscript [Barton,

1993a], which can use different fonts to highlight certain residues, and has a range of options

for drawing consensus sequences and histograms.  Belvu can of course display pre-calculated

consensus sequences in the alignment, but a more flexible system that can display consen-

suses at different levels of conservation would be preferable.

The ACEDB PEPmap is currently an adequate platform for managing matches to database

sequences and families, and for launching the analysis tools Blixem, Dotter and Belvu.  The

PEPmap as an analysis tool in its own right should be seen as a prototype which is still under

development however.  A number of improvements, such as flexible colouring and dynamic

scaling of the amino acid sequence, hyperlinking of boxes representing other objects, and

general layout aspects are currently being worked on.  We are also investigating ways to link

to the PEPmap to other external programs through a generic interface, to make it a general

purpose display tool.  This would be more flexible and eff icient than adding new algorithms

by hard coding them in the program.  Any external program that can analyse a protein se-

quence and produce segments containing a particular type of information could in principle

be engaged.  For instance, predictions of secondary structure or transmembrane helices

would be very useful tools to link in.
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9. Analysis of protein domain families in C. elegans

9.1 Summary

The C. elegans genome sequencing project has completed over half of this nematode’s 100

Mb genome.  Proteins predicted in the finished sequence are compiled and released in the

database Wormpep.  Presented here is a comprehensive analysis of protein domain families

in Wormpep 11, which comprises 7299 proteins.

Common domains in Wormpep proteins were analysed by comparison to the Pfam collec-

tion of protein families, which is based on recognition by hidden Markov models.  This

identified a number of previously unannotated domains, and is a valuable complement to

manual classification.

To investigate new protein families, Wormpep was clustered using several methods,

which were compared to each other.  Some of the new clusters were analysed in detail to as-

sign a putative function despite lack of clear homology.

Finally, the proteins in the C. elegans are compared to proteins in the human, S. cerevisiae

and H. influenzae genomes.

9.2 Introduction

Complete genome sequencing produces data that opens up many new areas of investigation.

One of them is the analysis of all the proteins encoded in a genome.  Knowing the complete

set of proteins is important for studies of protein evolution and function, and for comparison

of the proteins present in different organisms.  This chapter addresses perhaps the most im-

mediately interesting aspects of genome-scale protein sequence analysis: the systematic

functional classification and characterisation of protein families.
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Functional classification exploits the pre-existing annotation of homologous protein se-

quences with a known function.  To carry over the annotation from other proteins, the simi-

larity should be analysed by careful manual inspection, which for genome-scale projects

preferably should be assisted by an integrated analysis/gene prediction workbench.  This is

important both for eff iciency reasons and because the sequence similarity may influence the

gene prediction (see part 1 of this thesis).

A different approach, which is not as comprehensive but is generally less ambiguous re-

garding the extent of homologous domains, is to search a database of pre-assembled multiple

alignments of protein families.  An example of such a database is Pfam, described in chapter

7.  These families may also provide a more general level of annotation.  This approach has

been employed here to classify the proteins predicted so far in the C. elegans genome.

It is a principle of protein evolution that new protein functions can arise by the duplication

of a gene and subsequent specialisation of the ‘daughters’ .  In these cases of course the de-

tailed functions are different, although the mechanisms may be the same.  In fact, the major-

ity of proteins in higher eukaryotic genomes, and 30-50 percent in prokaryotes [Brenner et

al., 1995; Koonin et al., 1995] have clearly recognisable ‘siblings’ that are products of gene

duplication.  Such homologues are called paralogues, while proteins in different organisms

that diverged due to speciation, and which normally have identical functions, are called

orthologues.

To study groups of similar proteins within a genome, they first need to be clustered into

families of paralogues.  Many clustering methods are known  (see e.g. [Romesburg, 1989]),

but only a few are appropriate for protein sequences. Additional complexity for clustering

proteins is caused by sequences that contain more than one protein domain, hence belonging

to more than one family, and the lack of certainty in defining the relationships [States, Harris

and Hunter, 1993].  At present, no clustering algorithm can solve all these problems without

compromise.  A choice has to be made between using a simple algorithm which ignores the

nature of protein sequences, and one that tries to resolve the problems, but has other side-

effects.  The choice depends on the set of proteins (prokaryotic proteins seldom contain mul-

tiple domains) and what the purpose of the clustering is.  If it is mainly to get an idea of the
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number of clusters, particularly in prokaryotes, a simple clustering method might give the

best approximation. To cluster a set of proteins from a higher eukaryote, with the aim to use

multiple alignments of the clusters, a method that explicitl y takes multiple domain proteins

into account is necessary, such as the HHS [Hunter et al., 1992] or the Domainer [Sonn-

hammer and Kahn, 1994] algorithms.  This chapter presents results from the clustering of C.

elegans proteins with Domainer.

Over half the C. elegans genome has been sequenced.  The predicted protein sequences

are periodically compiled and released in the database Wormpep, which is introduced in the

first section.  Wormpep is then analysed for content of known domains in Pfam, and is clus-

tered in two ways, completely or only regions not matching Pfam.  The paralogue clusters are

then searched for homology with other proteins, and some of the largest clusters that appear

to be unique to C. elegans are analysed in further detail .  In some cases, this resulted in a

tentative functional assignment.  Finally, Wormpep is compared to the complete genomes of

Saccharomyces cerevisiae and Hemophilus influenzae, and to a set of human proteins, to in-

vestigate the amount of conservation throughout the three kingdoms bacteria, fungi and ani-

malia, and to examine how useful knowledge of the C. elegans genome will be for under-

standing human biology.

9.3 Wormpep - a database of predicted C. elegans proteins

All proteins predicted in the sequence produced by the C. elegans genome sequencing project

are released at regular intervals as the Wormpep database, which is available at

ftp.sanger.ac.uk in /pub/databases/wormpep.  The data is also available in EMBL and Gen-

bank, as cosmid DNA sequences, and in Swissprot and PIR as proteins.  However, Wormpep

has a number of advantages.  The protein predictions are more up to date, since they are ex-

tracted directly from the latest version of ACEDB.  During this process a number of quality

control checks are carried out to remove erroneous predictions.  For example, genes that span

two cosmids are correctly represented in ACEDB, but not in the EMBL/Genbank sequence
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entries, which makes it diff icult to extract the complete protein sequence.  A few proteins in

Wormpep may still be fragments if they span two cosmids of which only one has been se-

quenced, or two cosmids that were sequenced in different sequencing centres, since the

working ACEDB databases in Cambridge and St. Louis are not directly linked to each other.

The C. elegans World Wide Web server (http://www.sanger.ac.uk;

http://genome.wustl.edu/gsc) is the most up to date source of sequence data, but only on the

DNA level.

Currently, Wormpep is released in Fasta format, which contains one line of annotation for

each protein, and the sequence.  The annotation line contains two compulsory fields: entry

name (cosmid name.number) and Wormpep accession number, and three optional fields: lo-

cus, functional annotation and a reference to the corresponding Swissprot entry.  The func-

tional annotation is extracted from the “Brief_identification” field in ACEDB, which is the

functional annotation derived from the homologues.  This field is exported to

EMBL/Genbank with a “similar to” prefix.  In the annotation process, no distinction is made

between functional inference from orthologues, i.e. when the precise function is known with

high confidence, and inference from paralogues, when only general properties can be pre-

dicted, such as “ transporter” , or “dehydrogenase”.  2868 (39%) of the 7299  proteins in re-

lease 11 are functionally annotated.

The growth of Wormpep since 1993 is plotted in figure 9.1.  It has grown exponentially

due to the increase in sequencing throughput, but will t ail off as the sequencing project will

move into less gene rich areas towards the end.  These areas are harder to sequence due to

repetiti ve DNA elements and scarcity of cosmid clones, and the overall throughput rate is

also scheduled to slow down.  The distribution of protein lengths in Wormpep is very

skewed, as seen if f igure 9.2.  The mean length is 450, while the median is only 342.  This is

due to a small number of very long proteins.  19 predicted proteins have more than 3000

amino acid residues.  The largest protein so far is K07E12.1, with 13055 residues.  It con-

tains some 10 fibronectin type 3 domains, 6 immunoglobulin superfamily domains (cell -

adhesion molecule-like), 1 epidermal growth factor-like domain, 3 von Will ebrand factor
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type A domains, and some 60 repeats of a new type.  Such multiple domain giants are nearly

always extracellular proteins that often have a role in cell -cell binding.

The accuracy of the gene predictions in Wormpep depends on the amount of evidence

available.  Genes for which ESTs have been sequenced can be considered experimentally

verified in the regions that match, and genes with strong similarity to other proteins are usu-

ally close to 100% correct.  For genes that lack these extrinsic pieces of evidence, one must

rely on the intrinsic properties in the DNA sequence, such as coding potential and splicing

signals, for the entire prediction.  The program used, Genefinder [P. Green, unpublished],

generally predicts most of the exons in the middle of genes correctly.  Exons at the start and

end often contain weaker signals, however, and are frequently mispredicted.  Occasionally,

close neighbouring genes may be fused, and single genes with long introns may be frag-

mented.  About one third of the genes have at least one EST match, and over half are similar

to proteins from C. elegans or other organisms, so less than half of the predictions in Worm-

pep relied solely on intrinsic properties.
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Figure 9.1.  Previous and projected growth of Wormpep.
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9.4 Classification of Wormpep entries by Pfam

All proteins in Wormpep have been annotated manually, using the analysis workbench de-

scribed in part 1.  This annotation is not always easy to use for summary purposes, because

the nomenclature used is variable, and it is not always complete.  For example, over 20% of

the eukaryotic protein kinases found by Pfam did not have the word ‘kinase’ in the annota-

tion.  About half of these lacked annotation completely, while the other half had other anno-

tations, such as ‘receptor’ or ‘cell division control protein’ .  Guanylate cyclases also match

the protein kinase family.

A more systematic approach, which is convenient for summarising the families, is using

the Pfam database (chapter 7).  We compared all Wormpep 11 sequences to all Pfam fami-

lies, using as significance cutoffs Pfam’s previously recorded family-specific cutoffs that

proved to exclude negatives.  All protein domains with more than 5 examples are listed in

table 9.1.  Many of the most frequent domains are multiply repeated in single proteins.  For

example, 38 laminin type EGF domains are spread in only 5 proteins, and the 184 ank repeats

in only 40 proteins.  A few common C. elegans families are not listed in table 9.1 because the

were not part of Pfam 1.0.  These include DEAD/DEAH box helicases, annexin domains and

collagens.

Table 9.1.  The most frequent Pfam domains (n > 5) occurring in Wormpep 11, comprising
about half of the proteins in C. elegans.  The number of domains is somewhat overestimated
for some families due to multiple fragment matches, and because multiple alternative splic-
ing products were included the number of proteins may be slightly too high.

Nr. of
domains

Nr. of
proteins

Pfam
accession

Pfam annotation

216 202 PF00069 Protein kinase
184 40 PF00023 Ank repeat
160 67 PF00096 Zinc finger, C2H2 type
158 37 PF00008 EGF-like domain
120 21 PF00041 Fibronectin type III domain
115 26 PF00047 IG superfamily
81 21 PF00090 Thrombospondin type 1 domain
74 48 PF00076 RNA recognition motif. (aka RRM, RBD, or RNP domain)
71 64 PF00001 7 transmembrane receptor (Rhodopsin family)
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69 14 PF00057 Low-density lipoprotein receptor domain class A
59 41 PF00065 Neurotransmitter-gated ion-channel
57 55 PF00105 Zinc finger, C4 type (two domains)
57 15 PF00014 Kunitz/Bovine pancreatic trypsin inhibitor domain
46 45 PF00046 Homeobox domain
46 29 PF00005 ABC transporters
43 5 PF00028 Cadherin
41 31 PF00102 Protein-tyrosine phosphatase
38 5 PF00053 Laminin EGF-like (Domains III and V)
37 36 PF00099 Zinc-binding metalloprotease domain
33 22 PF00149 Ser/Thr protein phosphatases
33 16 PF00036 EF hand
32 10 PF00013 KH domain family of RNA binding proteins
31 24 PF00059 Lectin C-type domain short and long forms
31 24 PF00018 Src Homology domain 3
30 30 PF00106 Alcohol/other dehydrogenases, short chain type
28 28 PF00097 Zinc finger, C3HC4 type
27 27 PF00125 Core histones H2A, H2B, H3 and H4
26 26 PF00104 Ligand-binding domain of nuclear hormone receptors
24 24 PF00067 Cytochrome P450
24 24 PF00010 Helix-loop-helix DNA-binding domain
24 16 PF00168 C2 domain
22 21 PF00153 Mitochondrial carrier proteins
21 18 PF00017 Src Homology domain 2
20 20 PF00071 Ras family (contains ATP/GTP binding P-loop)
19 16 PF00092 von Will ebrand factor type A domain
18 18 PF00083 Sugar (and other) transporters
18 18 PF00043 Glutathione S-transferases.
18 12 PF00135 Carboxylesterases
17 16 PF00078 Reverse transcriptase (RNA-dependent DNA polymerase)
16 7 PF00054 Laminin G domain
15 4 PF00084 Sushi domain
15 13 PF00004 ATPases Associated with various cellular Activities (AAA )
15 10 PF00085 Thioredoxins
14 12 PF00130 Phorbol esters / diacylglycerol binding domain
13 9 PF00038 Intermediate filament proteins
13 13 PF00169 PH (pleckstrin  homology) domain
11 8 PF00060 Ligand-gated ionic channels
9 9 PF00063 Myosin head (motor domain)
9 7 PF00012 Heat shock hsp70 proteins
9 1 PF00050 Kazal-type serine protease inhibitor domain
8 8 PF00170 Basic region plus leucine zipper transcription factors
8 8 PF00011 Heat shock hsp20 proteins
8 6 PF00091 Tubulin
8 4 PF00122 E1-E2 ATPases
8 2 PF00058 Low-density lipoprotein receptor domain class B
7 7 PF00025 Arf family (contains ATP/GTP binding P-loop)
7 6 PF00112 Cysteine proteases
6 6 PF00160 Peptidyl-prolyl cis-trans isomerases
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6 6 PF00155 Aminotransferases class-I
6 6 PF00171 Aldehyde dehydrogenases
6 3 PF00137 ATP synthase subunit C
6 2 PF00066 Notch

To look specifically for novel Pfam classifications, the 4431 proteins in Wormpep 11 for

which no informative similarity has been found using the standard Blast/MSPcrunch ap-

proach [Sonnhammer & Durbin, 1994] were searched for Pfam matches.  As significance

cutoffs, the previously recorded cutoffs that exclude negatives for each Pfam family were

used.  Table 9.2 lists the 416 matches to 238 previously unannotated C. elegans sequences.

A number of these matches had very high scores, indicating that they would probably have

been found by Blast too, but had been missed due to human error.  We have found empiri-

cally that most matches found by Pfam but not by Blast have scores below approximately 35

bits.  Roughly half of the matches scored lower than this, thus representing genuinely novel

classifications that are likely to have been missed because of the similarity to any one other

protein was too weak.  The matches above this score are more likely to have been missed due

to mistakes, such as adding the annotation to the wrong field in ACEDB, or not inspecting

Blastp matches, which are more sensitive than Blastx since the alignments are not disrupted

by introns.

Table 9.2.  Novel Wormpep classifications found by Pfam-A.

Pfam family accession
number and description

C. elegans protein (score)

PF00001:7 transmembrane
receptor (Rhodopsin family)

B0244.7(27.9) B0563.6(24.8) C01F1.4(68.0) C02H7.2(64.3)
C26F1.6(89.4) C30B5.5(92.6) D1014.2(24.2) F10D7.1(24.5)
F36D4.4(52.6) R11F4.2(63.7) T07F8.2(24.4) T14C1.1(55.7)
T19F4.1(30.0) ZK418.6(62.7) ZK418.7(27.9) C54A12.2(33.1)
F21C10.9(80.4) F47D12.1(93.9) F55E10.7(52.1) ZK1307.7(85.6)

PF00002:7 transmembrane
receptor (Secretin family)

B0286.2(26.9)

PF00004:ATPases Associ-
ated with various cellular
Activities (AAA )

F54B3.3(75.5)

PF00005:ABC transporters C56E6.1(90.6) F43E2.4(45.9) C05D10.3(226.7)
PF00137:ATP synthase
subunit C

R10E11.8(146.6)

PF00168:C2 domain 2xF07A5.5(67.3-82.9) K07G5.3(30.7) T12A2.4(20.5) 3xT12A7.1(22.6-
86.1)
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PF00135:Carboxylesterases 2xC01B10.4(26.4-36.0) 2xC01B10.10(40.4-53.0)
PF00130:Phorbol esters /
diacylglycerol binding do-
main

2xF13B9.5(46.3-86.4) F42A9.1A(29.0) F42A9.1B(53.8)

PF00122:E1-E2 ATPases W09C2.3(53.8)
PF00008:EGF-like domain 2xC37C3.7(76.3-343.7) C54D1.5(17.9) F09E8.2(18.4) F35D2.3(17.0)

F58B3.8(17.6) F58G4.4(20.8) K06A9.3(25.5) K07D8.2(26.1)
R05G6.9(22.3) 5xR13F6.4(24.2-30.6) 5xZK783.1(18.2-27.1)
13xF28E10.2(17.4-30.4) F40F11.4(25.5) F55G1.13(17.3)

PF00010:Helix-loop-helix
DNA-binding domain

7xC17C3.7(17.8-30.1) C17C3.8(26.4) C43H6.8(25.5) F31A3.2(60.0)
F31A3.4(31.8) F48D6.3(31.8) T01E8.2(66.9) C17C3.10(43.5)
C28C12.8(26.4) C44C10.8(62.7) F46G10.6(54.3)

PF00011:Heat shock hsp20
proteins

F43D9.4(76.1)

PF00012:Heat shock hsp70
proteins

F43E2.8(88.4) T24H7.2(1276.0)

PF00013:KH domain fam-
ily of RNA binding proteins

C56G2.1(214.1)

PF00014:Kunitz/Bovine
pancreatic trypsin inhibitor
domain

B0222.5(44.0) C37C3.5(38.1) 3xC37C3.6(80.4-92.5) 8xT22F7.3(53.9-
103.4)

PF00169:PH (pleckstrin
homology) domain

5xF38B7.3(41.8-100.3) F41F3.2(34.9) K10B2.5(33.9) F52D10.6(44.1)
ZK1248.10(40.8)

PF00017:Src Homology
domain 2

T27F7.2(34.8) T06C10.3(28.1)

PF00018:Src Homology
domain 3

B0336.6(34.5) F32A5.6(92.0) F35A5.8(67.1) F49E2.3(40.2)
K11E4.4(35.4) F09E10.8(60.8)

PF00020:TNFR/NGFR
cysteine-rich region

T02C5.1(51.6)

PF00102:Protein-tyrosine
phosphatase

C07E3.4(35.7)

PF00022:Actins F42C5.9(77.3)
PF00023:Ank repeat M60.7(86.8) 4xC01H6.2(28.4-40.7) 2xC18H2.1(38.4-39.2)

C18H2.3(49.5) 2xC43H6.3(39.5-40.4) 2xK04C2.4(36.1-37.0)
2xC18F10.7(33.1-40.5)

PF00028:Cadherin B0034.3(41.8)
PF00134:Cyclins 2xR02F2.1(27.7-41.8) T12C9.4(29.6)
PF00037:4Fe-4S ferredox-
ins and related iron-sulfur
cluster binding domains.

C25F6.3(56.9)

PF00147:Fibrinogen beta
and gamma chains, C-
terminal globular domain

D1009.3(23.7)

PF00041:Fibronectin type
III domain

C36B1.2(70.4) 2xK09E2.4(33.5-73.7) 2xR07E4.2(28.6-50.7)
T22E5.3(36.7) ZC374.2(45.2) 3xZK617.1B(34.3-40.3)

PF00043:Glutathione S-
transferases.

31xC25H3.7(39.4-97.1)

PF00125:Core histones
H2A, H2B, H3 and H4

F17E9.12(25.4) F17E9.13(69.5) W05B10.1(206.9)

PF00046:Homeobox do-
main

K03A11.3(120.6) W05E10.3(109.3)

PF00104:Ligand-binding
domain of nuclear hormone
receptors

C25B8.6(33.8) F16H9.2(43.3) F25E5.6(32.3) T07C5.2(38.5)
T07C5.3(50.3) T07C5.5(25.8) ZK418.1(40.5)

PF00047:IG superfamily C18F3.3(45.0) C37C3.5(23.9) C53B7.1(27.6) 2xF48C5.1(15.0-17.3)
K09E2.4(16.0) 3xT02C5.3(15.9-30.2) C18A11.7(22.8) F21C10.7(18.1)
3xK02E10.8(15.9-22.2) 4xZK617.1B(17.8-25.4)
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PF00052:Laminin B (Do-
main IV)

15xC54D1.5(15.7-34.8)

PF00053:Laminin EGF-like
(Domains III and V)

C54D1.5(104.6)

PF00054:Laminin G do-
main

10xF41G3.12(39.5-80.9)

PF00055:Laminin N-
terminal (Domain VI)

C54D1.5(76.2)

PF00057:Low-density lipo-
protein receptor domain
class A

F44C4.1(335.9)

PF00059:Lectin C-type
domain short and long
forms

B0218.6(30.6) 2xB0218.8(81.5-94.0) 2xB0286.2(69.6-100.1)
C25G4.1(81.7) 2xF09G8.8(55.0-56.1) F52E1.2(35.1) K02F3.5(84.5)
M02F4.7(50.6) 2xT05A7.2(44.9-53.9) T19E7.1(55.2) ZK666.7(113.5)
ZK1193.2(30.5)

PF00061:lipocalins ZK742.5(84.8)
PF00153:Mitochondrial
carrier proteins

K01C8.7(29.4) K02F3.2(189.3)

PF00065:Neurotransmitter-
gated ion-channel

C35C5.5(242.0) 2xF17E9.7(138.3-236.7) F17E9.8(100.7)

PF00067:Cytochrome P450 K09A11.3(93.2)
PF00069:Protein kinase B0496.3(417.6) C25H3.1(320.6) D2024.1(87.8) EEED8.9(65.0)

F22D6.5(73.0) F35C8.1(176.4) F35C8.2(119.4) F35C8.3(74.1)
F54H5.2(192.7) K10D3.5(90.0) R13F6.7(34.9) R13H9.5(240.5)
R13H9.6(70.4) W03A5.1(79.9) C36B1.10(186.9) F59E12.2(150.6)
T06C10.3(204.5) W07A12.4(196.4) ZK617.1B(32.1)

PF00160:Peptidyl-prolyl
cis-trans isomerases

D1009.2(274.2)

PF00071:Ras family C35C5.4(312.9) F43D9.2(265.7)
PF00075:RNase H ZK1290.6(200.3)
PF00076:RNA recognition
motif. (aka RRM, RBD, or
RNP domain)

M18.7(53.5) C01F6.5(26.5) EEED8.1(26.0) K08F4.2(27.1)
T04A8.6(27.9) T11G6.8(68.3) W04D2.6(66.4) C26E6.9A(56.8)
F07A11.6(30.9) F18H3.3B(27.5)

PF00078:Reverse tran-
scriptase (RNA-dependent
DNA polymerase)

4xB0478.2(82.7-103.7) F56C9.2(49.1) T07E3.1(87.5) F28E10.3(107.9)

PF00083:Sugar (and other)
transporters

F14B8.3(108.8) K05F1.6(61.8) T22F7.1(93.6)

PF00084:Sushi domain T07H6.5(46.7)
PF00085:Thioredoxins 7xC06A6.5(29.0-68.8) F47B7.2(27.3) C35D10.10(50.5)
PF00086:Thyroglobulin
type-1 repeat

B0222.5(23.3)

PF00088:Trefoil (P-type)
domain

D2096.3(58.8)

PF00090:Thrombospondin
type 1 domain

C11H1.1(50.5) C37C3.6(27.4) 5xD1022.2(17.6-35.5) F11C7.2(20.0)
2xF53B7.5(18.9-39.3) F58F9.6(44.8) T19D2.1(23.0) 4xF01F1.13(18.3-
55.4) 2xF14H12.3(30.5-41.1) 3xF23H12.5(35.2-64.0) F57C12.1(28.1)

PF00091:Tubulin C54C6.2(27.2)
PF00092:von Will ebrand
factor type A domain

C16E9.1(1005.8) 2xF09G8.8(92.6-102.7) ZK666.3(152.8)
ZK666.6(31.2) ZK666.7(38.8) ZK673.9(33.9) R10H10.3(32.8)
T19D12.4(43.7) T25C12.3(74.4) ZK1193.2(39.7)

PF00096:Zinc finger, C2H2
type

B0035.1(45.9) C09F5.3(26.0) 2xC28H8.9(23.7-25.6) D1046.2(20.9)
F21D5.9(20.6) F26F4.8(28.1) 2xF52E4.7(24.2-31.1) F53B3.1(21.7)
4xK04C1.3(22.3-32.9) T20H4.2(26.6) T21C9.2(26.6) W04D2.4(21.3)
ZC395.9(21.3) 2xF15C11.1(23.1-31.4)

PF00097:Zinc finger,
C3HC4 type

7xC01B7.6(23.6-39.1) C11H1.3(21.1) C26B9.6(34.4) EEED8.9(27.8)
F26F4.7(30.4) F47G9.4(27.5) C32D5.10(30.4) C32D5.11(42.8)
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F19G12.1(42.8) F54B11.5(31.6) T13A10.2(35.6)
PF00105:Zinc finger, C4
type (two domains)

C26B2.4(27.1) F16H9.2(39.5) F54D1.4(41.9) T07C5.2(67.7)
T07C5.5(34.8) ZK418.1(67.3) F36A4.14(53.3) F21D12.1B(68.4)

PF00098:Zinc finger,
CCHC type

C27B7.5(32.7)

PF00099:Zinc-binding met-
alloprotease domain

F53A9.2(24.2) F57B7.4(21.2) F58A6.4(30.2) T19D2.1(23.5)
F57C12.1(32.2) K11G12.1(28.6) K11G12.1(22.8)

About 20% of all Wormpep proteins have at least one domain that matches a Pfam-A

family.  The matching regions are on average about half the length of the proteins, so about

10% of the residues in Wormpep are covered by Pfam-A.  Since Pfam-A only contains the

most common protein domain families, these numbers are necessarily much lower than the

fraction of Wormpep that has matches found by all -protein searches using BLAST.  Figure

9.3 ill ustrates the relative proportions of annotation in Wormpep.  Overall , about 40% of the

proteins have functional annotation based on BLAST/MSPcrunch analysis.  Some 3% of the

Pfam matches are to previously unannotated proteins.   Some of these were not annotated due

to human error, and not because BLAST failed to pick up any similarity.  Although Pfam-A

currently adds only a few more percent to the fraction annotated proteins, the analysis of

proteins with BLAST matches benefits from Pfam matches too, by clearer indication of do-

mains and family annotation.  Furthermore, cases where Pfam detected previously unidenti-

fied domains in previously annotated proteins are not reflected in figure 9.3.  Considering

that this analysis is based on the first release of Pfam, already a substantial fraction of

Wormpep is covered. The two approaches thus complement each other well , and the best

analysis is achieved by combining them.

 BLAST+MSPcrunch
only

BLAST+MSPcrunch
and

Pfam-A

Pfam
only

No
match
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Figure 9.3.  Fractions of C. elegans proteins that can be annotated based on homology, using
the pairwise BLAST+MSPcrunch approach (chapters 3-6) and the family-based Pfam ap-
proach (chapters 7-8).  Together they add up to an annotation level of about 42%.

9.5 Clustering of Wormpep proteins

Many Wormpep proteins do not match a Pfam family.  To examine the complete distribution

of paralogue families in Wormpep, a clustering analysis was performed.  The nature of pro-

tein sequences renders many standard clustering techniques inappropriate.

To ill ustrate this, let us consider the simplest clustering method, ‘single linkage’ [Watanabe

and Otsuka, 1995].  The principle works as follows: All proteins are compared to each other

and all significant pairwise matches are stored.  The proteins are then linked together in

clumps by joining all proteins that have at least one match to one of the proteins in the group.

This procedure would work perfectly if all proteins only had a single domain, and if a

clear significance cutoff to separate related from unrelated proteins existed.  Unfortunately,

neither of these is true: unrelated clusters may be joined by multi -domain proteins, or by false

links.  As a consequence, it may be diff icult to generate multiple alignments from the result-

ing clusters, especially if the proteins only share a domain.

An algorithm which reduces the space requirements of the clustering, and to some extent

the joining of unrelated clusters is the Hunter, Harris and States ‘minimal spanning tree’

method [States et al., 1993], which add sequences incrementally and only stores the highest

scoring link for each new sequence.  However, this method has the opposite effect, that re-

lated families are sometimes not merged with each other.

The first drawback, false linkage due to multiple domains, has been tackled by the

CLUSDOM program [Koonin et al., 1996b], which only clusters on links that overlap in se-

quence.  However, CLUSDOM does not indicate which part of multi -domain proteins belong

to which cluster, so the alignment problem remains unsolved.  Also, the program was un-

available for this study.
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We applied single linkage clustering to Wormpep 11.  Using Blastp filtered by

MSPcrunch (chapter 4) with a cutoff that is normally considered stringent (twili ght zone

between scores 40 and 80) resulted in a super-cluster of about a third of all sequences.

MSPcrunch effectively removes biased composition matches, but some spurious links will be

accepted with these parameters.  By raising the stringency to not include any matches scoring

below 90 eliminates all spurious matches, but extensive joining of unrelated clusters oc-

curred due to multi -domain proteins.  The largest cluster contained 585 proteins, including

such diverse protein families as protein kinases, phosphatases, proteases, protease inhibitors,

transcription factors, extracellular domains, etc.

To make the clustering useful for further studies, ideally the clustering algorithm should

not only avoid these drawbacks as much as possible, but also generate multiple alignments of

the resulting clusters.  This is important for generating consensus sequences or profiles for

further characterisation of the clusters.  To produce useful multiple alignments, a strict defi-

nition of homology domains is needed.

A method that explicitl y attempts to find domain boundaries and that produces multiple

alignments of the found domains is the Domainer algorithm [Sonnhammer and Kahn, 1994].

It also takes repeated domains within one protein into account.  Domainer first lets multi -

domain proteins join unrelated clusters, and then analyses the resulting graph of clusters for

likely domain boundaries, at which the super-cluster is cleaved.  The main drawback of Do-

mainer is that is vulnerable to imperfections in its input of pairwise similarity data.  Incom-

plete matching regions can cause Domainer to infer too many domain boundaries, resulting

in fragmentation of real domains.  On a dataset such as Wormpep, which contains predicted

genes with unverified N and C-termini, the fragmentation will be compounded.  However,

the core domains are usually of reasonable quality to use as a starting point, and the risk of

merging unrelated families is small .  Because of the fragmentation, the Domainer output

overestimates the number of domain families.  These ‘pseudo-domains’ often need to be

processed manually to produce true domain families.

Domainwise clustering of entire Wormpep
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About 60 % of all C. elegans proteins match another C. elegans protein.  There is thus an

abundance of paralogue clusters.  When the Domainer program was applied to Wormpep 11,

this generated 1818 clusters in the range of 2-89 members.  This is probably more than the

true number of domain families because of over-fragmentation in Domainer however.  The

distribution of the cluster sizes is plotted in figure 9.4.  To analyse what proportion of these

are specific for C. elegans and other species in the family rhabditida, the consensus sequence

of each cluster was searched against Swissprot 33 with Blastp and was filtered by

MSPcrunch.  It appears that most of the large clusters are domains that are found in other

phyla, while a large fraction of the smaller clusters appear to be specific for nematodes.
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Figure 9.4.  Histogram of Wormpep 11 family sizes based on Domainer clustering and
BLAST analysis of the domain family consensus sequences.  Families for which similarity to
proteins outside rhabditida was detected are fill ed columns; apparently nematode-specific
families are empty columns.

Domainwise clustering of Wormpep using Pfam
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The main problem with the above cluster analysis is that it depends on Blastp and Domainer,

which do not produce perfect data.  For a rough estimate of how many proteins have para-

logues and the size range of the largest clusters, Domainer analysis is adequate, but the num-

ber of domain clusters is li kely to be overestimated.

In this case however, we can improve the Domainer clustering by using the previously

found matches to Pfam-A families, as described above.  By removing these matching seg-

ments, most of the large families, which are most prone to errors, are avoided, and correct

domain boundaries are introduced.  The procedure is to extract all sequence sections larger than

30 residues that were not covered in Pfam-A into separate entries.  A protein with a Pfam-A do-

main in the centre that has long flanking regions on either side, will t hus generate two entries.

By doing this, Domainer will consider each section as an independent sequence, and the bound-

ary to the Pfam-A segment will be used as a real domain boundary.  Furthermore, members of

previously found nematode-specific families were removed.

After extracting these segments from  Wormpep,  the remaining 8221 segments (90% of

Wormpep 11) were clustered by running Blastp and Domainer, in the same way as described

in the previous section.  As shown in figure 9.5, the nematode-specific families become

larger this way, and most of the large families that match outside rhabditida are no longer

present.
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Figure 9.5.  Histogram of Wormpep 11 family sizes based on Domainer clustering after re-
moval of known protein families and BLAST analysis of the domain family consensus se-
quences.

9.6 Nematode-specific protein families

The largest C. elegans protein clusters that were found to be unique to rhabditida in the pre-

vious section were analysed in further detail . To improve the quality of the alignments they

were rebuilt from complete sequences.  These alignments were searched against Swissprot

and Swissprot-TREMBL using sensitive HMM (hidden Markov model) methods as a second

pass to look for matches to other organisms.  Only families lacking clear homology outside

rhabditida were considered.  Hydrophobicity patterns, coiled-coil predictions and Prosite

pattern matches were inspected too.  This way we have collected 10 nematode-specific fami-

lies, which are listed in table 9.3.

Three of the families are probably G-protein coupled receptors.  Although the sequence

similarity is weak, it is supported by alternating hydrophobic/hydrophili c regions typical for

receptors, and there is also a characteristically conserved arginine at the end of the third pre-
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dicted transmembrane helix.  Some of the members have been found to be expressed in sen-

sory neurons, and are likely to function as olfactory receptors [Troemel et al., 1995].  The

fact that so many G-protein coupled receptor families appear to be nematode-specific is not

surprising, since divergence rates of transmembrane proteins is much higher than for globular

proteins.

Three examples of these families are shown in figures 9.6-8.  Family nr. 2 has weak simi-

larity to transthyretin (formerly called prealbumin), which transports thyroid hormones.  The

hydropathy plot of family nr. 8 suggests it may have a transmembrane location, but there is

no detectable sequence similarity to G-protein coupled receptors.

The members in family nr. 9 are not randomly distributed throughout the genome.  As

seen in figure 9.8b, large clusters are present on chromosomes V and X, while chromosome I

and III only contain one member together.  This indicates that these families arose by local

gene duplication.  There is also a strong correlation between the similarity and the distance

between two members, which is ill ustrated in figure 9.8.  Members on the same cosmid are

nearly always most similar to each other.  In only one case of the ten cosmids that have more

than one member, are they not all very similar to each other (C42D4.4, which does not clus-

ter with the three other members on C42D4).

Multiple alignments of these families are available by anonymous FTP at ftp.sanger.ac.uk

in /pub/databases/wormpep/wormPfam.
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A

 

SVQAVRVTGKVTCNGQPAENIKVKLYEKEI........VLDKLLDEKSTDGRGSFTLAGNKK....ELTAB0334.1  22 79
RKQAVGVKGKLMCGGRPVRNATVKLWDNDM.......FDPDDLIAETHVNEDGTFEVSGFAI....SITAC04G2.1  57 115
RKQSVSVTGRLTCLGKPAEGVKIKLYEKEK........IKDIKMDQTYTDANGVFTVSGYKT....EITNC12D8.4  26 83
KFKTFKIRGMLTCRGDPIKGNIIMVDDNWS........FTDHLLSERKVTEDGKFSLAGEPD....D.DCC27D9.2  21 77
GDGAFHVRGKLLCNGKPYENAEIELYEKNI.......IGKDTHLVTTNTTSLGFFSMKAAVS....EWIGC33A12.7 181 239
FTQSAGVKGVLMCGDKPLANTKVKLYDDDTGP......DLDDLLAEGTTDSLGQFLLTGHTS....EVMTC37C3.7 176 235
NTQSAGVRGKLICNGKPAVGVLVKLYDDDRG......IDADDLMASGKTNGNGDFEISGHED....EVTPC40H1.5  19 78
NSHSLTVKGRLLCAEYPASAVTVKLLKNSE..........KSIVDETHADKQGNFQLSAETT....EKDYE02C12.4  18 73
RKQGVAVKGVLKCGTAFANNTKVRIVDIDTGP......DPDDTLDEKRTGEDGAFALTGSTH....ELTSF10G7.10  18 77
RTQSTGVKGRLMCGSKPAAGVNLKLFDEDNGP......DPDDVLDQKTTDDDGNFLLSGSSM....ELTPF22A3.2  18 77
GRQNYRVKGAFRCGNVPVKNVQVKLIDDDFGS......DPDDDLGSGYTNANGEFELSGSTT....ELTTF22A3.2 153 212
RLQSVAVSGRLICDGRPAAGVKVKMYEKEF........FLDRKMAEVYTDVNGVFQITGRKR....EISTF36A4.8  27 84
.MNSCWAKGKLMCEGRPASGVKVKLMESDN.SflpgFLDRDDKMASGKADSNGEFNLSGSTK....EITGF40F12.1   1 64
RTQWAAAKGKLMCEGRPASGVKVKLMESDN.SflpgFLDRDDKMASGKADSNGEFNLSGSTK....EITGK03H1.3  23 87
RTQSAAIKGRLVCEGKPASGVKVKLMESDN.SfgpgFLDSDDKMASGKADSHGEFNLSGSTK....EITGK03H1.4  23 87
RLQSVAVSGQLNCLGKPAVGVRIDLMESDNNGeetgIIDDNDFMGYTYTDSAGFFNMSGSEV....EISGK03H1.6  22 87
FKQSVAVKGKLICNDDPAKDVRVKMYDKDV........LMDTKLDDKSTDGNGEFYLTGGDS....EISSR13A5.3  19 76
RTQSVGVKGQLICEDKPAVGVKIKIYDEDK.......LSPDELMVSGKTDSSGRFDLKGSAD....EFTSR13A5.6  19 77
RTQSVAVSGRVICNGQPASGVKLKLYEKES........TFDVLLEEATSDANGQFRLSGSKT....EISTR90.2  26 83
.MQSAAVSGRLICNGRPAVDVKLKLYENEI........FFDRLMEEGRTDSNGQFRVLGSKR....EITTR90.3   1 57
.MQAVAVSGRLICNGRPATNIKIKLYENEI........LFDRLMEESRTDSNGQFRVSGSKR....EISRR90.4   1 57
SQQAVTVKGIVNCRGHRQPGTFVQLYDEDS......IFDSDDLLGSVVADHRGVFCVKGSTE....EFTAT05A10.3  20 79
RDQSIAVKGRLLCGNGPAANVRVKLWEEDTGP......DPDDLLDQGYTDANGEFSLQGGTA....ELTPT07C12.7  19 78
SEQSVAVTGKLTCNGEPAAHVRVKLYEKET........TLDVLLDEGTTDENGEFKLQGHKV....EVSTT08A9.2  27 84
SDQYVTVTGRLICDGQPASDVLVKLYEDGT........IYDTKLDSTRTSYDGTFRVSGHYT....KVFDT21C9.8  23 80
ANRTMAVKGQLYCGKKPFEGAKIRLFRTFQPNa...ADDLAELLDVKNTYITGMFQVEGGTArfprTKTDZC64.2  29 95

IDPHVNIY..HKCNYNG.....VCYKKLKIKIPKSF.ISEGE.TADRTFDIGELNLAG.SFSGESTDCLNB0334.1  80 139
IDPQLRIY..HNCRSSSK....VCRRKITFTVPDNY.VNKGM.QVNKWFDLGVPNMEIgVKHKEEPHC.YC04G2.1 116 176
IDPKVNIY..HKCNTIG.....LCYQKFGITIPDNF.ISIGS.IPQKTFDIGEIHLAN.IFQCQTTDCINC12D8.4  84 143
LNVKLIVQ..HRCHD.MKT....GRSDSRIKGFSEFsIHLED.LIRSNYD...LEMNI.ELVGNSVRMSSC27D9.2  78 135
FSPNPYIHfaNFCDPSNTIrsmQCAKTIKIFIPQEF.VSDGH.IPKMIFNIGDVELTK.IETENSTALANC33A12.7 240 306
IDPKLNIY..HDCDDGLK....PCQRRVTFNIPKSF.VSSGE.NPKTFFNIGTINMQI.EFESESHNVALC37C3.7 236 296
IDPKLNIY..HDCNDGIK....PCQRKFTIKIPDSY.INKGK.TVRNIYDAGVIQLAG.SFPGEGRDCLHC40H1.5  79 139
V.PIIAVY..HDCDDGVK....PGQRKLKFQIPKYY.VGSGN.....TFDLGEFNL.......ETRVKHNE02C12.4  74 123
IDPVLYIW..HECRDEQT....PCSRKIKFVIPKKY.IHGGTpTDEQWVNIGVLNLEG.SFDNEGPCHTDF10G7.10  78 139
IDPELRIF..HDCNDQGS....PCQREWVIRIPAKY.ITNGP.EVKEIMDLGVLNLEV.EMISKLLILGTF22A3.2  78 138
IDPHLKIY..HDCDDGIN....PCQRRWKFELPNNY.IYSDT.DTPKTFDIGIWNLEG.ILPGESRDCNHF22A3.2 213 273
IDPKVNVY..HKCNYAG.....ICYKKFGITIPDDY.ITWGY.SPNRNYDIGTLNLAN.KYTGTTTDCLNF36A4.8  85 144
IEPYLAVF..HDCKDGIT....PCQRVLRINIPKSY.ANWGS.SAEKTFNAGNLELAG.KFPGETRSCFNF40F12.1  65 125
IEPYLAVF..HDCKDGIT....PCQRVLRINIPKSY.ANWGS.SAEKTFNAGNLELAG.KFPGETRSCFNK03H1.3  88 148
IEPYLVVF..HDCKDGIT....PCQRVFRVNVPKSY.TNSGS.SAKKTYDAGVIELAG.KYPGETRSCLNK03H1.4  88 148
IEPYVNIF..HKCNDGLS....PCQRQLRVDIPKSA.TASGP.APNETFSIGTLELSSrKVIGERRSCAYK03H1.6  88 149
IDPRVNIY..HDCDDGWT....PCQRRLTIGVPDKY.ITNSD.KPTKVFDLGTIQLAG.KWVGETRDCIHR13A5.3  77 137
IEPKINIY..HDCDDGIK....PCQRKITVYIPSQY.ISSGK.DPKKIFDFGTLQLAG.KFSGETRDCLNR13A5.6  78 138
IDPKLNIY..HKCNYNG.....LCYKKIGITIPDNY.VSSGK.TPSKTYDIGTLNLAN.QYTGQTTDCINR90.2  84 143
IDPKLNVY..HKCNYNG.....LCDQKFTIHIPKDY.VTSGS.QPSRTFDIGTLNLAN.NFPGQSTDCLNR90.3  58 117
IDPKVNVY..HKCNYNG.....LCSKKFTIKIPKDY.INRGS.QAERTYDIGTLNLAN.KYPGESTDCINR90.4  58 117
IEPYVFIE..HNCGYEGLN....EKRVFSKMIPAEY.ITEGA.KAKHVYHLGDIEL..............T05A10.3  80 127
IDPVFKVY..HKCDDSKLK...PGARKVKLALPKSY.ITSGK.VAKKTFDIGVLNLET.VFAKEERELLVT07C12.7  79 140
IDPKLNIY..HKCNYKGVSysnICYQKSSLTIPDNF.VTEGE.VPQKTFNVGIINLAN.KFSDVIRILMPT08A9.2  85 149
MDPKVNIY..HSCNHYG.....MCDKKLRIDIPHYA.INSGQnFGVDNYDIGTLNLAD.QFSGETTDCIHT21C9.8  81 141
IQPYVTIH..HNCGMDNKQtsnYGYKRIGVRLPEDY.VTLGI.KARKVYDFGILNLEL.EFPQETHDLKFZC64.2  96 160

 

B

 

MSKYAILGLVLVGTVASLDFIG..RTQSAAIKGRLVCEGKPASGVKVKLMESDNSFG.PGFLDSDDKMASGKADSHGK03H1.4   1 74
MRLLLVSIALFIGSTSAINLIG..RTQWAAAKGKLMCEGRPASGVKVKLMESDNSFL.PGFLDRDDKMASGKADSNGK03H1.3   1 74
.MKIALSFLFLTSTFSNAGKIG..RLQSVAVSGQLNCLGKPAVGVRIDLMESDNNGEETGIIDDNDFMGYTYTDSAGK03H1.6   1 74
....MKLIILLCLVASSYALIG..NTQSAGVRGKLICNGKPAVGVLVKLYDDDR......GIDADDLMASGKTNGNGC40H1.5   1 65
..LLCLAGLLFVSEAGPVAHGGEDSKCPLMVKVLDAVRGRPAVNVDVKVFKKTE......KQTWELFAS.GKTNDNGTTHY_PETBR   8 75
..LLCLAGLVFLSEAGPVAHGAEDSKCPLMVKVLDSVRGSPAVNVDVKVFKKTE......EQTWELFAS.GKTNNNGTTHY_SMIMA   8 75

EFNLSGSTKEITGIEPYLVVFHDCKDGITPCQRVFRVNVPKSYTNSGSSAKKTYDAGVIELAG.KYPGETRSCLN..K03H1.4  75 148
EFNLSGSTKEITGIEPYLAVFHDCKDGITPCQRVLRINIPKSYANWGSSAEKTFNAGNLELAG.KFPGETRSCFN..K03H1.3  75 148
FFNMSGSEVEISGIEPYVNIFHKCNDGLSPCQRQLRVDIPKSATASGPAPNETFSIGTLELSSRKVIGERRSCAYRNK03H1.6  75 151
DFEISGHEDEVTPIDPKLNIYHDCNDGIKPCQRKFTIKIPDSYINKGKTVRNIYDAGVIQLAG.SFPGEGRDCLH..C40H1.5  66 139
EIHELTSDDKFG..EGLYKVEFDTISYWKALGVSPFHEYADVVFTANDAGHRHY.TIAAQLSPYSFSTTAIVSN...TTHY_PETBR  76 146
EIHELTSDDQFG..EGLYKVEFDTVSYWKTFGISPFHEYADVVFTANDAGHRHY.TIAAQLSPFSFSTTAVVSN...TTHY_SMIMA  76 146

 

Figure 9.6  A. Alignment of a selection of the members in nematode-specific family nr 2.
This family has weak similarity to transthyretins (B), suggesting a putative function as hor-
mone transporter.
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A

 

MTINYHKEIMTSHPWTFFLLLFKWKGSIWKAVYMETIIFLICYGIISVIYKTAMGESS..QR....TFESLVRYFDKRLSY.IPLEFVLGFFVTTVVNRWTKLYQTIGB0564.3   1 101
MTINYHKEIKTSHTWKFFVLLFRWKGSIWKAIYMETIIFLICYGIISVVYRTAMSEPS..QR....TFESVIRYCDKRLSF.IPLEFVLGFFVTIVVDRWTKLWRTVGB0564.4   1 101
LSYNYNYDLATSKSLMIVRMIFKWRGSLWQAVYKELIVWICAYSLVSVIYRFALTRSQKEQNkeiiIFERFGEYCDARMGY.LPLNFVLGFFCNIIIRRWLKLYTSLGC07A9.8  44 150
.......................................................................................MLSFFVTTIVQRWNNVFTNMGC09B9.3   1 21
.........STYKNNIIFQILFRWKGSVWKSIWKELALWIVTYYTIKAVYMT.LDDDR..KI....IFDKNFLPKIANFDL.SVLTFMLTFFVTTIVARWNKIFDNMGC09B9.3 261 351
KSAEVLTAFFYYYFQVILKLIFKWKGSLWKAIYLDLIVWCFCYAFISVIYRYALDRSQ..QD....TFERFMQFCNRRLDY.IPINFMLGFFVTTVINRWMTQFANLGC29F4.2  45 145
MTISYD........EEFSSLMLRWRGSIWKAVLKDLIGFYIAYYIVLAFQWYLLDEKG..KE....YFTGWIMWCEIGAQY.IPLSFLLGFFVSLIVARWWEQFNCISF32G8.4   1 93
MTVNYNLDVSSASIFSFLRLQLRWKGSIWKYLLKELFMFIIAFITVSSVYRSNLIIGEKTRK....IWDNFAALFDQNMDF.IPLTFMLGFFVTIIVRRWNDIFANLGR13.3   1 103
MTVSYQLDVSSGNPLLFLRLLGRWRGSIWKSVVGDLFVWLLFYYAIYFAYRYAFSKQL..QT....VFEEISIHTDDRMKY.LPLTFMLGFFVTTVFERWRSALNVMPT19C3.1 135 235
MTVSYNQSVATSRPWTFLALIFRWRGSVWSAIWIQYSVWLGLYFLVSAIYRFILSAYQ..QQ....IFVRLVDYVNSRMSY.VPLDWMLGFFIAGVLRRFWYLYDIIGT20G5.4   1 101
MTISYTLDVSQTNLQSFFSLLLRWRGSVWKAVFGQLAVWTAVFLLISCIYRYMLSPSQ..QD....VFEQLIRYFDNKLDAnIPLTFLLGFFVSFVVARWGSILNGIGZC518.1   1 102
MTISYS........DTFLKLLFRWKGSLWKAIWKHLLIFLTMYYIINAYYRFGMTKEQ..QN....EFIKYVMLVDGWTKE.IPLTFLLGFYVAMIVRRWWDCCQLISZK675.3   1 93
MTINYNLAVSTSKPWTLFKLLLKWRGSIWKAVILELAVWLVLYGILSVIYRTALNPGQ..QR....TFERIVQYCDSRLSY.IPLNFMLGFFVTAVVNRWTYLYQIIGZK688.2   1 101

FIDNVGLMANCYIRGATEKARIYRRNIMRYCELVQILVFRDMSMRTRRRFPTMETVVAAGFMNKHELELYNSYDTKYNSklGTKYWIPANWALCMTYKAR.......KB0564.3 102 202
FIDDVCLLANLYVRGTSEKAIIYRRNIARYCALTQLLVFRDVSMRTRRRFPTMETVVAAGFMSKDELDLYNSYTTKNNSrlGKKYWIPANWALCMTYKAR.......KB0564.4 102 202
NIDNIALFVSAYVRGTDDRARQIRRNIIRYCVISQCLVFRDIHVGVRRRFPTLEAVAQAGIMLPHELEKFNSIKSRYQ.....KYWVSFNWALELLNVAK.......TC07A9.8 151 246
FIENAAYAVSSFMKNG.EDVRRAQRTVIRYLVASQILVMRSISIKALRRFPNYESIVTAGFLTKEESTIIQNTDLSYD.....SSCVPIRWAIQVLRHQY.......RC09B9.3  22 116
FIESAAYAIAAFMDDKNDE.........................................................................................C09B9.3 352 370
....................RMARRTIIRYLVASQVLVLRTISMRTLRRFPNYTSIVAAGFLHQDEADIIENMDFEYD.....RTWVPIRWATEILREQFmavsatnKC09B9.3 465 547
MIDNIALFTSMYLSGNDERGRILRRSIVRMCVMSQTMVFRDIHIGVRKRFPTLETMVAAGIMTSSELKKYNEVESRYA.....KYWLGFNWTFNLLNEAR.......RC29F4.2 146 241
WPDKMMIMVSACLPGN..ENMVVRQTIARWSSLQAAIAWSGVSVKTLKRFPTERHMVASKLMTEEEYDLYMNTDAPHG.....KWFIPILWIVNLIKKQK.......QF32G8.4  94 187
WVENTAITVANYIRGTDDRTRMIRRNVIRYMVLAQVLVFRDCSIQVRKRFPTMESIVSAGSFS....QCLGSSATEYY............WSTGLLVDAR.......AR13.3 104 188
FIESVALSVAVLLPGKGREDRLTRRAIIRYVVLHQILVFRDISMRVRRRFPTLKYVVDAGFMRQEELDVLESVNQESS....QTYWVPINWANSLALVAH.......QT19C3.1 236 332
FIDNIACSTATYIRGDSERAKQYRRNIIRYCELTQVLIFRDLSMKARKRFPTLDTVAAAGFMMPHEKANFDLIQYNYN.....KYFLPFNWAWALVYNAR.......KT20G5.4 102 197
WIDDASLLFATYIRGADEETRVIRRNLVRYLVLSQALVLRDISMQVRKRFPTMDTLAASGLMTHEEMDILDHIKDPYS.....RYWTSIQWSLNLVYECQ.......KZC518.1 103 198
WPDHLLYNVSALIRGQDPETRIIRKTIARYTILTSVLAWRSISLRVLARYPTDDHLVDSGLMTKEEMVMFKSILVHVDP..HQKWWVPLNWIQTMMVRCF.......EZK675.3  94 192
FIDNIGLMAAEYVRGRTEQARMYRRNIVRYCELAQVLVFRDISMRTRRRFPTLDTVVAAGFMMPHEKDRFDEIQYKYS.....KYWVPFQWAFSLTYEAR.......KZK688.2 102 197

DGYIESDYFKAQMEGEIRTWRTNIEWVCNYDWVPLPLMYPQLVCLAVNLYFLVSIIARQLVIEKHKM.VDE.....VDVYFP....VMTFLQFIFYMGWLKVIDVMLNB0564.3 203 300
DGYIESDYFKAQMEGEIRTWRTNIEWVCNYDWVPLPLMYPQLVCLAVNLYFLVSIIARQLVIEKHKM.VDE.....VDVYFP....VMTFLQFIFYMGWLKVIEVMLNB0564.4 203 300
EKSIDGDNARNAIAQEISKFRSALTTVSMYDWVPIPLMYPQLVNMAVHTYFFLCIFTRQFFISADAHNKTE.....VDLYIP....FMTIIEFIFYMGWLKVAMELLNC07A9.8 247 345
SGNFFSHSVYRATWKEVSDFETHLSRVRKVDWVPIPLAYPQVIFFAVRLYFVICAFAKQYFDLDDDDARYV.....IHYYFP....IVTVFQFICLMGWLKVAEALLNC09B9.3 117 215
DHPFAAPSLYSAAWQEIKNFQASISVVKNADWVPIPLAYPQVIFFAVRLYFIFCTFTRQHMLTDPEIDRTIdssnyITYYIP....LGNIFQFICLMGWVKVSEALLNC09B9.3 548 651
EGRIESAYTQNAIAEEIRTFRSGLSLIWTYDWVPIPLMYPQLVFMAIHCYYLVCLVSRQFVINSDAVNTTE.....IDLGVP....FMTIIEFIFYMGWLKVAMDLLNC29F4.2 242 340
KGIIDS.IQMDMLLKQVYSYRDGFAMLFVYDWIKIPLVYTQVVAIATYGYFFICLIGRQPKLDQRSM.EKE.....ITILFP....IFTTFQMLFYLGWLKVGQFSIRF32G8.4 188 284
EGKIAADLLMNEIGKHIIEFRKMLALLSNYDWVPIPLAYPQVVFLAVRSYFFMALIARQSVLLDGKE.PEQ.....PSILYPtvpfVMSILQFIFVVGWMKVAESMINR13.3 189 290
QKLIDQPTAFNNVIFAIKEFRVAMETLIKFDAIPIPIAYPQVVFLAVRVYFAICLVSRQFLISDMKS.KTQ.....MDWPVP....IMTVLEFIFVIGWMKVAEVLLNT19C3.1 333 430
EGLIEGDYYVTVISEDIKKFRTGLAWVCNYDWVPLPIIYPTIVCLAVHMYFFVGILARQYVKGSEID.PDM.....IDLVFP....FMTSIQFVFYMGWLKVGEGLLNT20G5.4 198 295
KGKVDSYYLMNKIVDEIGKFRHGLASLLKYDWVPVPLVYPQVIFLAVRIYFMICLIGRQFIVTGPNP..SG.....IDLWLP....ITTMVQFLVYMGWMKVAEALLNZC518.1 199 295
KGTLTHTNELRVLLDALEKYRNGFFQLFIYDWIAIPLVYTQVSTISVYGYFLFALIGRQYPSKNENE..EI.....VDVYVP....IFTILQFLFYVGWLKVGEDLMFZK675.3 193 289
KGLIESDYYQVVVQDEIKKFRTGLAWICNYDWVPIPIMYPQLVCLAVHTYFLVCLLARQYVVSEHADNKTE.....IDLYFP....IMSTLQFIFYMGWMKVAEAMLNZK688.2 198 296

PFGEDDDDFETNALIDRNITMGLMIADN...............PMSTPELRK........DPFYDEVDVPLLYSEESSNIPNHHYHGSVSEVRLEQKG.NAPVMMMPHB0564.3 301 384
PFGEDDDDFETNALIDRNITMGLKMVDN...............TMKTPELLK........DQFFDEVLVSLLYSEESSQISNYHYHGSTSEVHLEQK..CSSVRMIPHB0564.4 301 383
PFGEDADDFDCNLLIDRNLAIGLTSVDDA..............YDQLPEVKP........DVFTGGSVKPLDS...DDTRSLKYHFGSAAQMEEISYLkKEENKMIAAC07A9.8 346 428
PLGEDDDDFEVNFLIDSNI.........................................................................................C09B9.3 216 234
PLGEDDDDFEVNFLIDRNIYTGMAIVDTE..............YAECPALKKknlgkekiDAFEGEHARPFYPHGMDGSIGDA.LVGSAQNMKFDDP...PEMKQFSVC09B9.3 652 741
PFGEDEDDFDCNFLIDRNLTVAMGIVDDS..............HDDGPILEK........DMFWNDTVSPLYS.SAAAQRNVNFYFGSATNADAQIPDdVRQITMIPHC29F4.2 341 425
KKIS.....ELNYVLDRNTAIAHMMASEL..............SDQLPSIGA........PMVP...AVPHTR..ASFKIQDVIPKSHLAGFKLSEA....EMKLIKPF32G8.4 285 356
PLGEDDDDFECNYLLDRNLMIGLCIVDDN..............YNRTPSVEK........DAFWCADVEPLYS.VETAMIPKNPQIGSAANYDVKVD..EEEVMMMPHR13.3 291 373
PLGEDDDDFEVNSIIDNNISRGMAIVDTT..............HGYHPDLVD........DVFSDPNYLPAYS..ENSQIPRN.LTGSAAKVELAAP..TDEVKIVRVT19C3.1 431 511
PWGEDPDDFETNMLIDRNLAMGLKIVDEG..............YDKTPRLEK........DAFWDDTWVPLYSEASAHEKRYHQRQGSLAHIKIGRS..VSQVRMVPRT20G5.4 296 379
PLGEDDDDLECNYIIDKNLITGLSIVDTMwkhddtgysmveehMAKTPAQKK........DEFWGIDKIAPLYSMESAERSVHPLVGSASKINLVKN..KKEIVMTPHZC518.1 296 393
PFGADDEDFEFNYILERNLEVSMLIVDEL..............HNQVPPVYV........ESL..DDEIRLLHTSASSKLSNHPQRQHLRKLKFNVD..AMQVQAVPGZK675.3 290 371
PFGEDDDDFECNALIDRNITMVLMMVDQG..............YDRAPDLKR........DDFWDEEVEPLYS.EETAKIPNNPLKGSVSDVKLPEY..VHEIKMVPHZK688.2 297 379
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Figure 9.7.  A. Alignment of all members of nematode-specific family nr 8.  No putative
function has been assigned to this family.  The hydropathy plot (B) suggests that the proteins
are likely to have a transmembrane location.
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LLAYLALFQTPRVIQSYSTLIVNFAITDFFACLFDFFVQQRLIPSGLTL..AYISNGLCSHFGPTTCYVGYSLMLHCLSHSLWSLLLSFSYRCYILYKPAPT...B0547.3  25 124
FASYIITFHTPKSMTHLKLCLLNLKFWTLLIDLIYTVFLIPFVFYPIFAMGYIGIFGKVFGIPSEIQFYFAMACYGGIASAGILIFENR.QHHMIPKGHKFRIQNC06C3.6 144 247
FLCYLAIFQSPKAIRTYSLVLINITLTNVGACVTGFLLDQRIIQSGKSM..LYVSYGYCSLLGEGFCFNIFAAYLHFHTHALWLLFLSFVYRYYVIIRQEPT...C06G8.4  25 124
ILTYLILTKSNSKMGSYKYIMMYLSLSALCYSVLGMIVRPVSLKLKSRK..KTTSSSVSLFFWMSFMIT...LICGFYFFFASLISVHFVYRYKALKYGSKWIYFC12D8.12  23 122
LLTYLALFQTPRVIKSYATLIVNFAITDFCACLFDFFVQQRLIPSDLSL..AYISNGFCHHFGPTTCYVGYSLMLHCFSHSLWSLLLSFSYRCYILYKPAPT...C39H7.6  25 124
LLAYLALFQTPRVIKSYATLIVNFAITDFFACMFDFFVQQRLIPTGMTL..AYVSNGFCKHWGPRT....YSLMLHFLSHSLWSLLLSFSYRCYILYKPAPH...C39H7.6 343 438
LFLYLTAFHIKKITGTYKLMVLIFTFIGIVFSAWELVARPFAHNYNKALI.YFSLNSWLQEYPEFLQF.AIILFASFYLVILAIIAVQFAFRYFTLCKPHLSKKFC42D4.4  25 127
PLTLLILYKSPSSFGAYKYLLTYISIFELVYAVLDVLVSPQLYTHKSAF..MLVLDSNKTFLPFWTLYPIDLLFCGMLGCSMAIFTINFIYRYLVMKGSELLKSFC42D4.5  25 127
FLVYLILTKSPRQLGVYKYLMVFISIFEILYSLLEVTLTPIHYSYRSSV..VVLITTSDKLFSRDILLTLNSFYWGFFGSSLAIFAIHFVYRYLVISGNALLQTFC42D4.9  28 130
LTIHCIFNKTPKTMDSVKWVIFNTHCWCCYVDILVCSLITPYFFFPTLSG.FPVGLFRVLGIPTSAQLYIGMVSCMVMGISIIALFENRSSCIQNNRFKITK...C45B11.4  47 147
FLIYLILKRSPDALGLYKWLMMYTSIFELTYSFVNLFAGCSVRTFGSAF..IVFRKD..QHFHLISQF.MAVNYCSFFGFSLAIIACHFIYRYGTVELEFHKKYIC50C10.6  27 126
IVLLGLLKTRGKNLGTYKYLMAFFSVFSIFYAIIEFILRPIMHIENTTF..FLISRK.RFNYSTKLGKINSAFYCACFATSFVVSGVHFVYRYFATCKLKYY...C53B7.5  26 124
FGAYIIVAKTPRKMRTVKASMLALHCIGAFVDFYLSFIAIPVLTLPVCSG.YPLGFSLVLGIPTDVQVYLGISFVGVIAVTILLFFEDRHHRLINSNISNGAR..D1054.12 186 287
ILMILIIRKSPNSLNDLKLFLYNTAFCQIANILSAYFIQYRALPNTTTL..AVLANGLCRKFGPEVCFGTYHVYLGISSSVALSISTTVMFRYSLIKNWRLS...F13G3.2  32 131
MLIYLIFYHSPTHLKMLKVFLLNTSLFQIILVVVSCSSQFRMITTAIPI..ELRSYGLLRYLEAWLGYTMYQVLQTSAFMSGMSILITFVFKYELVRQIEFSK.SF17A2.12  27 128
FVIYFILNYTPKQLQTLRYILVNTCVFQVIHVSACYLMQFRQVSNLVPM..EVWSYGYGRHFEAFVGYSLYHVVQTSTVASGISVVMTLFLKYEAARNVKLTS.WF17A2.6  28 129
LLIFIILRYSPDCFQTFKYILLVTCISQIVAVTTNCLIQIRQVSNLTPM..EIWCYGPLRHFTALIAYSTYFLTQTAVVISNVLIFLTIYLKYLATKINTRKT..F17A2.7  23 123
FTVYIVWNDKKLQLGNYRYLLLYFALFNILTSIMDMLVPMCVLNYRYAFS.VFVSDGFFEEYSDYHQF.IIAFRCSLISGAYAVLHSHFLYRFFVLFNNQFL...F28H7.1  24 123
SVVLLVVFKTPVVFKDFRVFLVNSSTLQFFMCIIVVFTQVRPVNNPESS..AYLFSGFCRHTHKNACFFSFDFFQLVFDASSFAIPATLFYKYTKVTNINMKN..F32G8.1  32 132
LLIYVIFKRTPKHMRSYAVLLFNFAIFDLLTCVASLLACQKTIFSGLSL..TYIFHGPCKYVSSSLCFFCHCFVCHAMAHSQWILLISFIYRYRVLVDGAPD...F33H1.5  45 144
GFGFMCYLRLSNQISMVSMAVNNLQKQLFYSLVLQTLIPFVLMHIPITI..YYLCPMLDMDLDFASVFVASTITLYPAVDPLPSFFVIKSYREAILKFFRKINPLF40F9.4  53 155
LLLYLIKVRAGNSFGRYRVLMVSFSIYAIIYAFIEILTMPVLHIHKSGV..LFYLDG.VLKFQTTIGGFMSSLYCGSFALCISMLATHFIYRYVAVCRHGKLYYFF58G4.5  24 125
LLLLLIFKNQTKLLRTMRIYLLNICAAQVVTIISGFLTQCRMIPNQTTV..AFVCTGVCIRVGRRSCFLLHLLRDASSMVALFAIVHVFYYRYKILSHQKLS...R04B5.8  27 126
FLLFLIVKHSPKSIHMLRIILGLTCIFQIVLAFSSFFTQIRFITTKKPI..EMWSYGLCKHFEPWICYCFYQAEQLTALASGLTIYGTFFLKYRMVKGVQMSK.FR04D3.6  27 128
TLIYTIIRHSPKNLSTLKIILLINCFSQSIQSSMAFITQIRYVSNLVPL..QLWSYGPCRHFEAFICYSMMHVLQTSSLISGWTVFLTTFMKYQAAKHVVLP...R04D3.7  23 122
ILIYLIWKRTPIQMRSYAIYILNFALFDFATCIISFFSCQQVIFSDFSL..VYIFHGPCKYVSPWFCYFCHCFMCHALAHSQWILLGSFIYRYRVLTGETPT...R05H5.1  41 140
VTLNALFRESSQIFSTYKYFIIVHIIINIISECYVSFMMLPMTYLPHPM...FRNTGWLADLGFSGMFIFY.GLAQSVMLTVGSILEMFFFRYNLISVYKNDLFKR09F10.6  31 131
LFLVLLKFKSPRYIGGYRYLLMTFGVFNLITSVTEAVVSTAIEGFNNCLI.IFVPHGLLFEYPLLAQN.LISIRCGMCAYTFALLAVHFLYRYLAVCRPLAIAHFZK829.8 698 800

.RHV..LVILIFLIYTPSLF...QFVSFLWAQD...........EPTEIREILTESFSTYNLT........GYTVTGTKNIICFSALFTILHMTLPITPVYICILB0547.3 125 204
CAFR..VLLIIFNVLIGSSV...MLMAIWLRAD............SNELKFKFLKINPCPDPL.........YFTPSTFAVDSQRNEFSICIVIVLTVVFIQYTFC06C3.6 248 326
.KKV..LQISVVIVYIPSLI...QLISMCLQEM...........NFDELRSLSKEVVPQYNLTG........LTITGSLDFFTFAPFYCLVHMAIISFLIAIGIHC06G8.4 125 204
HGKY..TFAWFLISPILYINW..TLNCIFAFQPNQR........STEFLRPRMERDFGINVDDVTYIIADFYPMHENGQKFPSIGAFISGFNFLLMTTVSLFVIFC12D8.12 123 215
.RPV..LVLIIFLIYTPSLL...QFVSFLWAQD...........DPDEMREILTKHFPAYNLT........EHTVYGTKNIICFSALFTILHMTLPITPVYICILC39H7.6 125 204
.RHT..LVILLMIIYIPSLF...QWISFIWSQD...........DPEEIREILHVAFPAYNLT........GHVVTGTKNILCFSALYTILHMTIPITPVYVCILC39H7.6 439 518
GGYG..VIVWLLYSLISGFIYG.GALGYFGYPDIY.........SDDYMSDVVEEWYNRTITSFP....RFLIIPYAADGSVRWQNIDFLIVGVFILELQYAIIIC42D4.4 128 216
ESSK..LFIWIASPMVYSAIW..MFITEMTLQGNP.........DTDKLLEDTFLKKQKISLSEVVYIGPNYYPEEGVIDWIPIIGMISLTLMIFVSVYSIIYFAC42D4.5 128 219
QSWK..LILWLMIPLVIGFI...WSLTGIFLCGPTEEFTEF...MRNDVWEVFHENIEEFEYLG..AL.MYEKSWATKNMIIYWSPIAGMTIMSLTVLASFLVIVC42D4.9 131 224
IGTK...VVYYFLNCIPIVG...YLIPPFFHIP...........DQNAAKLNLLQTIPCPTEEF......FYSEIFVLATDDFWHTYLWMFTTIIVIGIFIQVAFC45B11.4 148 229
SGSK..HLLLYIGPISIGIIW..GIVCSVYCGETPE........RSDYLRKNMMDNYRLRIEDVGYISANYWPMGKNGTVRPDFDSFFGTFLMWIIVGASIGSVLC50C10.6 127 219
........NTLHRPNLLRLFN..LPTLLLWPLG.............CSVPVTMWASVSYFLYP.................DTEYTEAAVTNVLNNHYNWIKKENVC53B7.5 125 189
.NWK..RVLYSIIHYIISVT...FIAPGYMNIP...........DQLQGRATVQQEIPCIPKD.........VINRPGYFVLSIVNTIPCLCLIFMFSLIIPQALD1054.12 288 366
.RTS..LRGLIICGHIAPFI...ATAIPFTTQW...........DFDVVRAQSVKEHSTYDLS.......IYAPFSGFSDTRSFQFLFVTAAIAIGAYFVPLMSVF13G3.2 132 212
RVTG..IILLFHMPIIASMV...MEVIMVINQS...........LPNEIREQYKFLNANAEEY..........SIVGALSLKTVPSLINFLLISGSVVASPFISFF17A2.12 129 207
KRYL..IITCILLPLVTSVT...LEIILIITQS...........LPNEIRERYKLINVDVKDH..........SVVGTLNFKVLASQVNVCIMSSSVVMLPIIGLF17A2.6 130 208
CNYG..VTFFILSPIFIALG...AQTSLILTEG...........IPSENQDHLEKINFDISDH..........AVIGYIRLKTLPSIIITFVITGTILILPAVGLF17A2.7 124 202
........TRWFMPYGLLTS....IFYLIFH.V...............IFWTIEGTPNAMRLS....................RIGIG...SMSVLSIISLAFIFF28H7.1 124 177
.ITKNQIRMILLSSYLLSLI...VGVIYVITYE............PDESLEVASETRKFHSTQY.....DFRYYADITGYQKHFWSWLATNLNMISIFVPPIMSIF32G8.1 133 216
.TKK..MIVIVSLFYAMSAV...IFLFYFWDIG...........DTNDLKQIMYDLHPQYHYDDREIW.G.DIVVSGNTTVLTIPSLIAIFYMTMPCVPIYFIIHF33H1.5 145 230
RFLLNHYIFILIRKFGKKFTTGWKFSLLFLFPLMYGIWWWKNPDMDEYMRDLIMRTVGQPFERITYFGAKFYNYDEEGRMSLNKNAWIGLCQTSFMVSSSLACVFF40F9.4 156 260
DGIK..IYNLFIPPTILFIV...WTLSIYFNFG............PNQIKKDFFRNITMQLYD................EDIDKISFMGPLYFTICLMTCVICAYF58G4.5 126 197
.SVQ..IMRNFIIVHLPAIF...CAICQFINPS...........QHNAIVLETRALHPSYIFE........QNSIFGFSALTSPAVKASTIIFTIVLVLNPLAAIR04B5.8 127 206
EILK..TYFTFYCPFCLSFI...LVIIIVKTQT...........FSWEAQEQLRLVNLFLNNED.......EYLVFAFLSFSKWPNTLNLIITSFCIFVVPVLSFR04D3.6 129 210
.........KKNIWIAC.......EIYLIIIQA...........LPQDIRKSYESINKNLEEY..........SVIGIMNYSFLPSSINGVIVNGLVVVVPISCLR04D3.7 123 190
.AKD..LIRNSVALYSMSLC...FLLVYVFDNS...........DSDLLFQILTRVHPEYHYDDESIW.KKSIVVSGNISAFAPITLISILYMTIPCVPIYCAILR05H5.1 141 227
KLLRFQVLLYRFLIIIHPIV...AITTINYSIG.............VEAKATMELWLSNPNLP.........PEVTCYSCIIAVLDDYVMYIITVIYGIQVILQLR09F10.6 132 211
FRPK...TIFLNSLFVMCFGSSWMLIGHITMWP............DDHIYDLIDEKFIQFHNTSSRDLAMIVANYEYPVYDWSKSGILGMLIATLITTSIMISYVZK829.8 801 890

VLRRRIISRLSFKGVN...ITKDTKNLHSQLLMALTYQAAIPGFYLFG....................LLTFSSFLFIP....LLSPLASFIFVTPYRHFINHAFB0547.3 205 282
FISHCIWYIYSEDAVR...YSKSTRKLQKMFLYASFSQLGIFVTVFVLPLGIFAMVLTTGYKNQ.GLLNICNLIIPTIG....MNTSIGLVTMYKPYRDYFIGIFC06C3.6 327 423
ILRKMIINRMVLNGVD...VTIRSRNLHAQLLRTLSFKATVPIIYYFGCIFFILGRIWINP....IFEFSIFVPTVIVP....VLTPLSAFIHVAPYRDFVSKMFC06G8.4 205 298
IFGFKCYYEMTRVVVPGRNYSITQKLLQTQLFRALVFQTLIPLIIMYIPLFILFLFPMLNIDLG..FAHYVSISISLYP....ALDALPSILLIRDYRDSLIKMFC12D8.12 216 314
ILRRKITSRLSVNGVN...ITKETRNMHSQLLMALTYQAAIPGFYLFGVTSYAIGQFGIYNHPA..LEYFTFSSFLLIP....LLSPLASFIFVTPYRRFIMHYFC39H7.6 205 300
ILRRKIISRLSYQGVN...ITSDTKNLHSQLLMALTYQAAIPGFYLFSIYSYAIGQFGIYNHPA..LEYFTFSSFLLIP....FLSPLASFIFVTPYRQFIKLKLC39H7.6 519 614
YCGVRMHTILQKELQQ...QSIVNQKLQKQFFRALVVQTVVPTFLFVLPIAPFLIGPLLEPIIEIGMNFPTGWMYVILTIYS.PIDTIAFMMIVQEYKKALRGLTC42D4.4 217 317
VNSYVAMNKLVLTSVN....SQRYKANQTELLNALVIQAIIPFALMHFPASIVFITPFFNCGNQ.TFARIFSVTVALYP....VLDPLPTIFVVKCYRKAMTSLSC42D4.5 220 315
ICGYKCYLRIKLLLKNGGTSSARSQVLQTQLFNALAIQTLIPILLLHTPVVLKFSFAIFDAGLG.AYCFAMSITIALYP....AIDPLPNFFIISPYRKAALGCFC42D4.9 225 324
FFLCCLYYIYFSTTIT...LSPKTKKYQRTFFLGTIAQALVPLIFLLAPAALVFLSIFFNYYDQ.SLNNFIVLFISFHD....FVSTFIIILIHHPYRQFLIQVAC45B11.4 230 326
YFGIGCYRWISHQLKIVETQSNTVKSLQKQLFYALVVQSAIPSVLMYFPISMAFIFPMLNIELN.LKYPFIGLTIAVYP....AIDPLPSLLIIRSYREGCNDIFC50C10.6 220 319
SYIAYVYYQYENG......VRHIYLKNLLGCFVHYFVMTLIPTIFMYAPTGVMFIAPFFDVNLN.ANANFIVFCSFLYP....GLDPLILILIIRDFRRTIFNFLC53B7.5 190 283
YFVLSIFWYLYHTVSK....SQVTNRLQKQFFFALCIQVFIPIFVLSFPVLYIVLAIWFNYYNQ.AATNFALFGIALHG....ILSTLTMLFVHTPYREATFQIFD1054.12 367 462
FVIRKIMIVTKAHS.K...MSENTKRHTRMLMKGLACQVLLPLISYFP....IITLYLVTQMTA.EEFLITEHLLNIMTCFPALVDPFISFYFIVPYRVALLKLVF13G3.2 213 308
FFREKILRRINSQFYQ...HSKWKKSQIQVFVKGLTIQAFLPLIFYVP..VFGLYFYCILTHT...EILFQQYFMTVVPCLPAFFDPMLTLYFVTPYRRRLKIWMF17A2.12 208 304
SSRRKLLEHIQKTSDR...VSQTKNSQNKMFVKGVILQTFLPLCFYCP..ISSIYFYCIVTRNN.EEILFQQYFMFLIPAFPALFDPYITLYFITPYRNRVKIWLF17A2.6 209 307
LLRKKTLRNINSN..K...FSITKKALIKGFINGVTLQVFLPLICYIP....VFGSFLVLAETK.TEVPFEQYFFSVLVMLPMLFDPYIILYSVAPYRKQIEKWIF17A2.7 203 297
YFGYKICHKLSSQSSD...MSEKTKKLQTQLMKALTVQAIIPTCVSFAPCLFAWYQPVFGLDLGRWIQFAAGIAVATFP....ALDPLALIYFVPTFRRKFIEKLF28H7.1 178 275
VFIRLIQIKLNSLKHL...FTDKTAAQAKKFDLALTIQTLVPAVCVIPIYIAHLILENYDLPFL.SNFEKVLYMMLSLP...TAIDAFIVIVTITPYQKAFIAFFF32G8.1 217 314
YFRDKTLSTLASNALS...MSPATKASHQKLIMALSIQAAIPIFWLVASGIFTLAEFGIIDGPI..PENITFRLMDCIP....SSSPLVAFIFIAPYREGLLRIIF33H1.5 231 326
GFGTLCYRRLSDTLSI...VSNAPNNLQKQLFYALCFQTLIPLVLMHFPITIFFLGPMLTLDTD.FTTTIAFHTIIIYP....AVDPLPNFVIIKNYREAVLNMFF40F9.4 261 357
....KTYKKLNDLTIQ...MSERTRHMNKQLFWTLGLQTILPCVTQYIPVGAMFFLPFFEIHFG.RIGNVVGAACSLYP....AIDPIIAIFMIDKFRNYVLGKEF58G4.5 198 290
IYRNKIWGLLNEYEEY...KSPRIKHA.KSMITGLTIQTLIPSICFVP....LVVQFFLTQYSE.AGVLILEYFNSFLVILPTLIDPILSIVFVIPFRRMFFKYLR04B5.8 207 302
HWRKRTLRQIYHQMEN...MSAPRQQLYKSFVMGLTIQCVLPYVFYIP..IYTLYYYCLLTG...EEILFLEFFLVLIPALPTLVDPIISIYFVTPFRRKLMRWVR04D3.6 211 307
TLRRKIFKLLSGPNK....SSDTLYLQNRIFLQGLTFQIFGHILVYVP..IYICTFISFITKT...EYTFSQFFIFVLPSLTTVVDPVITMYFVTPYRKKLLCWMR04D3.7 191 286
YFRHNTRVILNNPHIN...LSPTAKSNHVKLIRALTVQAGIPIFWLVASGIFTMSQFGIIGGPI..PENITFRLMDCIP....LISPIVTIIFVQPYREGLLKVLR05H5.1 228 323
TVSSCVLFYILNFVKTCQGMSTATIKLQKMMILSLFIQGGIHGLLIMLPTIFLIYALFFKSEMN.DLAISLLMCVAYHG....FVSTCAMILFTKPLREKILPFKR09F10.6 212 311
FFAQKIHLSLKACT.....FSGAVKRLHSSLLKSLIAQTIIPLISTIIPCFVIWFLPLGGDNYGVMLSTYFMPLLSVYP....AIDPVVITCSLSDYRNSALKTLZK829.8 891 986

 

Figure 9.8a.  Alignment of a selection of the members in nematode-specific family nr 9.
This family has weak similarity to G-protein coupled receptors, which is supported by the
hydropathy profile (not shown).
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Figure 9.8b.  The distribution of all members in nematode-specific family nr. 9 over the six
chromosomes of C. elegans (black bars).  The yellow areas represent the regions that have
been cloned and the green areas are the sequenced regions that Wormpep 11 is based on.
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Figure 9.8c.  Tree of all members in nematode-specific family nr 9.  The most similar se-
quences are almost invariably close in the genome; either on the same cosmid (e.g. the seven
proteins on F17A2), or on the neighbour cosmid (e.g. B0547 and C39H7, F33H1 and
R05H5).
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Table 9.3  Nematode-specific protein families.  GPCR stands for G-protein coupled receptor.
1These families have been found independently and are describe elsewhere [Troemel et al.,
1995].

Fam-
ily nr

Members (nr. of domains in brackets) Alter-
native
name1

Domains Proteins Length Putative
function

1 C18H2.1 C18H2.3(2) C18H2.4 F37A4.4
F56D5.9

6 5 1000 - (Contains
one ank
repeat)

2 B0334.1 C04G2.1 C12D8.4 C14C10.2
C27D9.2 C33A12.7 C37C3.7 C40H1.5
E02C12.4(2) F10G7.10 F22A3.2(2) F26G1.3
F36A4.8 F40F12.1 K03H1.3 K03H1.4
K03H1.6 R13A5.3 R13A5.6 R90.2 R90.3
R90.4 T05A10.3 T07C12.7 T07C4.5
T08A9.2(2) T14G10.3 T14G10.4 T21C9.8
ZC64.2

33 30 160 Hormone
transporter

3 B0244.4 B0244.5 B0244.6(3) B0244.7(3)
ZK418.6 ZK418.7

9 6 195 - (trans-
membrane)

4 C14A4.10 C18F10.4 C18F10.5 C18F10.6
C18F10.8 C33A12.10 C33A12.11 C33A12.8
C33D9.4 C34C6.1 F48D6.2 R07B5.6
R13F6.3 T01B7.2 T04A8.1 T04A8.2
T12A2.10 T12A2.11 T12A2.12 T12A2.13
T12A2.9 T13A10.13 T19C4.3 T21C9.7
T23F11.5

srg 25 25 400 GPCR

5 AH6.10 AH6.11 AH6.12 AH6.13(2) AH6.14
AH6.4 AH6.6 AH6.7 AH6.8 AH6.9
B0304.5(2) B0304.6 B0304.7(3) C27D6.10
C27D6.6 C27D6.7 C27D6.8 C27D6.9(2)
C33G8.5 C56C10.5 F18C5.1(2) F18C5.6
F18C5.8 F23F12.10 F37C12.15 F37C12.16
F44F4.13 F44F4.5 F44F4.7 F49E12.5
F58A6.10 F58A6.11 F58A6.6 K11E4.4
R04B5.10 R05H5.6 R10H1.2 T11A5.3
T11A5.4(2) T19D12.8 T21H8.2 T21H8.3

sra 43 42 335 GPCR

6 B0228.3(13) 13 1 230 -

7 F26C11.3(9) 9 1 80 -

8 B0564.3 B0564.4 C07A9.8 C09B9.3(3)
C29F4.2 F32G8.4 R13.3 T19C3.1 T20G5.4
ZC518.1 ZK675.3 ZK688.2

13 12 386 - (trans-
membrane)

9 B0547.3 C06C3.6 C06G8.4 C12D8.12
C33G8.1 C39H7.6(2) C42D4.12 C42D4.4
C42D4.5 C42D4.9 C45B11.4 C48C5.1
C50C10.6 C53B7.5 C54A12.2 D1054.12
F13G3.2 F15A2.4 F17A2.10 F17A2.11
F17A2.12 F17A2.6 F17A2.7 F17A2.8
F17A2.9 F18E3.5 F28H7.1 F32G8.1 F33H1.5
F40F9.4 F47G9.2 F52D2.7 F57A8.3 F58G4.5
F58G4.6 F58G4.7 K02A2.1 K02A2.2 M7.9
R04B5.8 R04D3.6 R04D3.7 R04D3.8
R05H5.1 R07B5.1 R07B5.2 R08C7.7
R09F10.6 R11D1.5 R11D1.6 T07C12.1
T07C12.4 T07C12.5 T08H10.2 T18H9.4
T19E7.5 T22H6.3 T22H6.4 ZK829.8

srd 60 59 315 GPCR

10 K07E12.1(58) 58 1 195 -
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9.7 Comparison of C. elegans to other genomes

One of the motivations to sequence the genome of the invertebrate C. elegans, is its potential

usefulness as a model organism.  Insights in nematode biology can often be extrapolated to

human biology.  For example, in a study of 44 human disease genes, up to 32 had a homo-

logue in 25% of the C. elegans genome [Hodgkin et al., 1995].  Naturally there are differ-

ences, but many of the basic li fe-supporting functions involved in e.g. energy metabolism,

replication, gene expression and signalli ng are conserved throughout all phyla.  Since C. ele-

gans is a multi -cellular animal with a complete nervous system, it is hoped that many, if not

most, human proteins will have a homologue in the worm.  Many events during early devel-

opment and differentiation, such as body patterning by the Hox cluster, are similar in the two

organisms.  To address the question of how much protein homology can be expected between

human and C. elegans, all presently available proteins of these two organisms were com-

pared.

It has been proposed that most protein domains that are present in two species belonging

to different phyla, are also found in many other phyla.  In 1993, it was estimated that over

90% of  these ‘anciently conserved domains’ (ACRs) were already present as functionally

characterised entries in the sequence databases [Green et al., 1993].  To examine the amount

of conservation between organisms from different kingdoms, we have also compared the C.

elegans proteins to the proteins in two completely sequenced genomes: the yeast S. cere-

visiae and the bacterium H. influenzae.

Pairwise comparison of proteins in H. sapiens, C. elegans, S. cerevisiae and

H. influenzae

To explore the amount of  conservation between these organisms, all proteins from each ge-

nome were compared to all proteins of the other genomes (see Materials and Methods).  The

results are listed in table 9.4 and are summarised in figure 9.9.  The animals H. sapiens and

C. elegans had the highest level of similarity, with 60% of the human proteins matching C.

elegans.  In general, the organism with the smaller genome has a larger proportion of its ge-
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nome matching, and the organism with the larger genome has a larger number of proteins

matching.  In terms of percentages, H. influenzae is most similar to S. cerevisiae, which in

turn is most similar to C. elegans, which in turn is most similar to H. sapiens.  This is in

agreement with the phylogenetic tree of these organisms.

Table 9.4.  Cross-species protein comparison.  The percentages within brackets in the second
column indicate what fraction of the genome the set of proteins represent.  *Only yeast
TREMBL entries that were non-identical to Swissprot entires.

H. sapiens proteins in Swissprot 33 3475 (~5%)
H. sapiens proteins that match Wormpep 11 2077 60%
H. sapiens proteins that match S. cerevisiae 1432 41%
H. sapiens proteins that match H. influenzae 323 9%

C. elegans proteins in Wormpep 11 7263 (~50%)
C. elegans proteins that match H. sapiens 2378 33%
C. elegans proteins that match S. cerevisiae 2146 30%
C. elegans proteins that match H. influenzae 454 6%

S. cerevisiae proteins in Swissprot 33 and TREMBL* 6719 (~100%)
S. cerevisiae proteins that match H. sapiens 1929 29%
S. cerevisiae proteins that match C. elegans 2447 36%
S. cerevisiae proteins that match H. influenzae 901 13%

H. influenzae proteins 1680 (100%)
H. influenzae proteins that match H. sapiens 282 17%
H. influenzae proteins that match C. elegans 340 20%
H. influenzae proteins that match S. cerevisiae 482 29%
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Figure 9.9.  Percentages of the proteins in genomes representing bacteria, fungi and animalia
that match one another.  The percentage inside the circles indicates what fraction of the ge-
nome that was available for the analysis.
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Common proteins in subsets of C. elegans, H. influenzae and S. cerevisiae

To further investigate to what extent protein families are shared among organisms from dif-

ferent kingdoms, we also looked for proteins that intersect these genomes.  We excluded H.

sapiens from this analysis, since only about 5% of the human proteins have been sequenced

completely.  The number of proteins common to two or more genomes can be counted from

the point of view of any of the organisms in the union.  They were therefore counted sepa-

rately from all participating genomes.  All these numbers are listed in table 9.5, and the low-

est of the numbers are ill ustrated in the cartoon in figure 9.10.  The fact that S. cerevisiae in

most cases contains more proteins than its counterparts is partly due to the fact that a com-

pletely non-redundant set of S. cerevisiae proteins was not obtained (see Materials and Meth-

ods).

Almost all of the proteins shared between all three organisms, have a function that can be

inferred by sequence similarity.  Of the 294 H. influenzae proteins, 251 had functional anno-

tation provided by TIGR.  We analysed the remaining 43 proteins and found that 38 could be

assigned a function with high confidence, leaving only 5 genes without a putative function

(HI0090, HI0174, HI0271, HI0719 and HI1715).  It will be interesting to find out what the

function of these proteins is.  Given that these proteins are conserved throughout so many

phyla, they are likely to be of fundamental importance.
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Table 9.5.  Common subsets of proteins shared between genomes from organisms repre-
senting bacteria, fungi and animalia.  In the overlap cases, where the numbers can be counted
from either genome, they are listed in the same order as the species in the left column.
Within brackets are the percentages of the genome that was counted from.

Organism combination Proteins
C. elegans NOT (S. cerevisiae OR H. influenzae) 5049 (70%)
S. cerevisiae NOT (C. elegans OR H. influenzae) 3973 (59%)
H. influenzae NOT (C. elegans OR S. cerevisiae) 1135 (68%)
(C. elegans AND S. cerevisiae) NOT H. influenzae 1760 (24%), 1843 (27%)
(C. elegans AND H. influenzae) NOT S. cerevisiae 58 (1%), 46 (3%)
(S. cerevisiae AND H. influenzae) NOT C. elegans 299 (4%), 205 (12%)
C. elegans AND S. cerevisiae AND H. influenzae 396 (5%), 604 (9%), 294 (17%)
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Figure 9.10.  Diagram of common proteins shared between three kingdoms.  The number
shown in intersecting areas is the lowest of the participating genomes.
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The most obvious reason that C. elegans and S. cerevisiae have so many more similar

proteins than with H. influenzae seems to be eukaryotic protein kinases, which apparently are

absent from H. influenzae.  A number of other protein families are also specific to eukary-

otes, such as histones, tubulin, and much of the proteins involved in transcription, translation

and replication.  Only a few proteins were found to be unique to C. elegans and H. influen-

zae.  These are listed in table 9.6.  Many of these appear to be metabolic enzymes involved in

biosynthesis, but most cellular roles seem to be represented.  We were suprised to note strong

similarity between DNA polymerase I (HI0856) in H. influenzae  and W03A3.2 in C. ele-

gans, yet no similarity was found to a yeast protein.  No other DNA polymerases were simi-

lar between C. elegans and H. influenzae.  This type of  DNA polymerase I was also absent

from the human proteins, but the yeast and human polymerases are very similar to each other.

There are thus instances, where conservation of molecular mechanisms does not follow the

groupings of the traditional phylogenetic tree of li fe.

Seven of the 46 H. influenzae genes did not have functional annotation provided by TIGR.

One of these (HI0323) had been assigned a function in an previous reanalysis [Casari et al.,

1995], and three were assigned a putative function (HI0152, HI0392 and HI1663) here,

leaving three genes without a putative function (see table 9.6).

Table 9.6.  The 46 H. influenzae proteins that match C. elegans proteins but not S. cere-
visiae.  The functional assignments were taken from TIGR except in four cases that lacked
annotation (HI0152, HI0323, HI0392 and HI1663).  Three ORFs did not match any function-
ally characterised proteins.

H. influenzae
ORF

Functional annotation

HI0019
HI0140  N-acetylglucosamine-6-phosphate deacetylase (nagA)
HI0151  Protease specific for phage lambda cII repressor (hflK)
HI0152  Transcription factor
HI0211  Phosphatidylglycerophosphate phosphatase B (pgpB)
HI0244  tRNA-guanine transglycosylase (tgt)
HI0259  UDP-glycose:glycoprotein glycosyltransferase
HI0280  Uridine phosphorylase (udp)
HI0323  Lactoylglutathione lyase
HI0340
HI0392  Acyl transferase
HI0406  Acetyl-coenzyme A carboxylase (accA)
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HI0478  ATP synthase F1 epsilon subunit (atpC)
HI0550  Lipooligosaccharide biosynthesis protein
HI0701
HI0714  ATP-dependent clp protease proteolytic component (clpP)
HI0736  Sodium-dependent noradrenaline transporter
HI0759  A/G-specific adenine glycosylase (mutY)
HI0765  Lipooligosaccharide biosynthesis protein
HI0773  3-oxoacid CoA-transferase
HI0774  Butyrate-acetoacetate coenzyme A transferase subunit A (ctfA)
HI0856  DNA polymerase I (polA)
HI0910  Mutator mutT (AT-GC transversion)
HI0975  Pantothenate permease (panF)
HI0991  DNA/ATP binding protein (recF)
HI1013  Glyoxylate-induced protein
HI1042  Methyltetrahydrofolate transmethylase (metH)
HI1075  Cytochrome oxidase d subunit II (cydB)
HI1115  Thioredoxin (trxA)
HI1116  Deoxyribose aldolase (deoC)
HI1219  Cytidylate kinase (cmk)
HI1260  Folylpolyglutamate-dihydrofolate synthetase expression regulator (accD)
HI1324  Lon protease (lon)
HI1362  NAD(P) transhydrogenase subunit alpha (pntA)
HI1363  NAD(P) transhydrogenase subunit beta (pntB)
HI1441  Stringent starvation protein A (sspA)
HI1448  Molybdopterin biosynthesis protein (chlE)
HI1526  Autotrophic growth protein (aut)
HI1545  C4-dicarboxylate transport protein
HI1588  Formyltetrahydrofolate hydrolase (purU)
HI1646  Cytidylate kinase (cmk)
HI1663  Glyoxalase
HI1675  Molybdenum cofactor biosynthesis protein (moaC)
HI1676  Molybdenum cofactor biosynthesis protein A (moaA)
HI1690  Na+ and Cl- dependent gamma-aminobutryic acid transporter
HI1705  Aminopeptidase a/i (pepA)

Human homologues in C. elegans

Nearly two thirds of human proteins have a homologue in 50% of C. elegans proteins.   This

figure is inflated mainly by two factors: the known human sequences are biased towards

well -known and ubiquitous families, and because most C. elegans proteins occur in families

of paralogues.  We expect that most protein families in C. elegans already have at least one

representative in Wormpep 11, and that a majority of the human proteins that have a homo-

logue in C. elegans already should have a match.  To estimate the fraction of human proteins

that will have a match to the entire C. elegans genome, we fitted a curve to a number of

smaller sets of C. elegans proteins, as shown in figure 9.11.  This curve suggests that ap-

proximately 70% of the human proteins in the set would match the entire C. elegans genome,

which is only 10% more than the fraction that matches half of it.  This means that 85% of the
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human proteins, for which a C. elegans homologue exists, would already have a detectable

match to at least a paralogue.
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Figure 9.11.  Projection of the fraction of human proteins that match C. elegans proteins for
different fractions of known C. elegans proteins.  The datapoints below 50% were simulated
by taking fractions of the currently known C. elegans proteins in Wormpep 11.  The values
are averages from 3 independent experiments and the errorbars are standard deviations.

As mentioned before, the number of true orthologues is significantly lower than the num-

ber of matching proteins.  This is ill ustrated in figure 9.12.  Since non-orthologous homo-

logues may have diverged in function, they are often less useful for precise inference of bio-

logical information.  We have estimated the number of orthologues between the human and

C. elegans datasets by looking for homologues that are the most similar pair of proteins, as

seen from both genomes.  This is usually the case for true orthologues.
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Figure 9.12.  When comparing two genomes, the number of matching proteins can be higher
than the number of orthologues due to cross-reaction with paralogues.  In the example above
there are three orthologous proteins, P1, P2 and P2’ .  P2 and P2’ are paralogues that arose by
gene duplication before the species A and B separated, while P1’’ and P2’’ arose afterwards.
The number of orthologues will be overestimated by counting every matching protein.  This
effect can be reduced by only counting proteins that are reciprocally the most similar pair.

Further evidence for orthology is that both proteins are equally long and match over the

entire length.  This property should be used with care here, since the C. elegans proteins were

predicted from genomic DNA and may not always have the correct N and C-terminus due to

lack of experimental evidence, and because the extent of the match was estimated using

Blastp, which sometimes only report part of the match.

Of the 2077 human proteins that match C. elegans, 744 had reciprocally best partners.

This number of proteins are thus likely to have true orthologues.  Requiring that both pro-

teins have to match each other by more than 80% reduces the number to 257.  Given that

only about 5% of the human proteins were used in the analysis, many of the true orthologues

may not have been sequenced yet.  However, the human and C. elegans proteins that fulfil

the stringent criteria mentioned above are likely to have very similar functions even if they

are not true orthologues.

The number of detectable orthologue relationships should grow more linearly than the

curve of homologues in figure 9.11.  When the C. elegans genome is finished, we would ex-

pect a significant increase in orthologue relationships compared to now, although probably

not twice as many.  A greater increase in orthologous partners will be the result of complet-
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P2
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Genome A:
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ing the human genome.  Given that C. elegans is estimated to contain no more than 15000

genes, and only a third of the homologues above were deemed likely orthologues, it is not

reasonable to expect more than 5000 eventual orthologue pairs.

We refrained from performing the opposite extrapolation of what fraction of C. elegans

proteins would match larger fractions of the human genome, since basing such an estimate on

only 5% of all human proteins will make the number at 100% highly unreliable.

9.8 Materials and Methods

The clustering of Wormpep was performed by version 1.6 of the Domainer program [Sonn-

hammer, 1996], using pairwise homology information from Blastp version 1.4.  Blastp

[Altschul et al., 1990] was used with the BLOSUM62 substitution matrix, and only matches

scoring above 90 were used.  The Blastp output was filtering by MSPcrunch (chapter 4) to

remove biased composition matches, trim off overlapping ends of consecutive matches, and

to reduce redundancy.

Wormpep 11 contains 36 protein sequences that are alternatively spliced versions of other

genes.  Since these are not true paralogues from a different locus, they were excluded from

the clustering analysis.  Arbitrarily, the first listed version was included.  Normally the dif-

ference between alternatively spliced genes is just one exon, coding for a few tens of amino

acids, so the loss of information by this procedure is negligible.

The Pfam matching was performed with the hmmfs and hmmls search programs, which

are part of the HMMER package [Eddy, 1995a].

The nematode-specific families were analysed by running HMMs derived from the multi-

ple alignments against swir11, which is a non-redundant combination of Wormpep 11, Swis-

sprot 33 and Swissprot-TREMBL.  Prosite patterns were searched with the perl script query-

prosite, and coiled coil predictions were done with the program Pepcoil , which is part of the

EGCG package [Rice et al., 1995] and uses the algorithm by Lupas et al. [1991].
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The proteins sets for the pairwise genome to genome comparisons were assembled the

following way.  H. sapiens: all entries in Swissprot 33.  C. elegans: all entries in Wormpep

11, except alternatively spliced versions of the same gene (the A version was arbitrarily se-

lected). S. cerevisiae: all entries in Swissprot 33 and all entries in Swissprot-TREMBL that

were not 100% identical to (a part of) a Swissprot entry.  H. influenzae: all entries in the

TIGR set (ftp://ftp.tigr.org/pub/data/h_influenzae).  The human and yeast datasets contained

both nuclear and mitochondrial encoded proteins.  The 13 mitochondrial C. elegans proteins

in Swissprot 33 were not included.  The S. cerevisiae dataset was somewhat redundant even

after excluding the 100% matching and included sequences.  We did not wish to remove less

than 100% identical proteins on the basis of similarity only, to avoid removing very similar

paralogues.

For the pairwise genome to genome comparisons, Blastp was used with MSPcrunch

(chapter 4), to eff iciently filter out false matches in the twili ght zone.  Compared to a straight

score cutoff of 80 or 90 for each ungapped matching segment, this method detects a great

deal more true matches.  The MSPcrunch parameters were set more stringently than the de-

fault, to reduce the number of spurious matches.  We found that raising the score range of the

‘ twili ght zone’ fr om 35-75 to 45-80, and the bias composition criterion to 0.8 with no pseu-

docounts, removed virtually all spurious matches with only a small l oss of true matches.  The

accuracy was assessed by manual inspection of a few genome comparisons in Blixem (chap-

ter 3) and Dotter (chapter 5) using the Blixelect multi -query results organiser.  In the C. ele-

gans to H. sapiens comparison, 125 protein assignments were removed by the increase in

MSPcrunch stringency.  Of these, only 9 were found likely to be true matches.  We also per-

formed the same analysis on the 150 assignments (2% of the C. elegans proteins) in the C.

elegans to S. cerevisiae comparison that only had matches scoring below 80.  Of these, only

about 10 were dubious.  Very few matches with scores above 80 were false.

Our method should thus be a good compromise between sensitivity and selectivity for ge-

nomic comparison purposes.  An alternative approach would be to apply other types of pro-

grams for postprocessing matches in the twili ght zone, such as dynamic programming and

multiple alignment methods [Koonin et al., 1996b; Tatusov et al., 1996].  MSPcrunch could
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also have been used in a less stringent mode, combined with manual processing of twili ght

zone matches.  For a detailed analysis, manual inspection of the results is essential.  How-

ever, the accuracy achieved by MSPcrunch without manual processing in the twili ght zone

seems adequate for a reasonably reliable estimate of the overall percentage similarity be-

tween genomes.  If anything, our method is conservative; we accept missing some weak

matches as a tradeoff f or rejecting most spurious ones.

A further uncertainty in the numbers of matching proteins is caused by counting whole

proteins as units.  A more accurate method would be to give the numbers of matching do-

mains.  Pfam could be exploited for this, but many cases would require labour-intense man-

ual processing, which is unsuitable for large-scale analysis.

When comparing three genomes with each other, a ‘bridging’ situation that often occurs is

when one genome contains a protein which is significantly homologous with proteins from

the two other genomes, which do not show significant similarity to each other.  We noted

several cases of this in the C. elegans / S. cerevisiae / H. influenzae comparison.  For exam-

ple, the kill er toxin-resistance protein WP:F48E3.3 is similar to KRE5_YEAST (P22023)

and HI0259, but there is no discernable similarity between the S. cerevisiae and the H. influ-

enzae proteins.  In such cases, one could in principle infer homology indirectly.  We have not

pursued this strategy here, since most of the bridging cases require a much more thorough

manual analysis to provide conclusive evidence of homology.

The smaller sets of C. elegans proteins in the Human to C. elegans comparison were gen-

erated by leaving out randomly chosen proteins from Wormpep 11.  It was not done by re-

moving all proteins from the same cosmid at once, which might have yielded slightly lower

values due to clustering of gene families.  The regression was performed by fitting a loga-

rithmic function to the simulated datapoints in Microsoft Excel.

A further criterion that can be used for orthology, is that the two genes in question must be

more similar to each other than to homologues from phylogenetically more distantly related

organisms [Tatusov et al., 1996].  For the human to C. elegans comparison, this would be a

fungi, plants or bacteria.  We only found one such case (The putative DNA helicase

M03C11.2 is more similar to the yeast protein CHL1_YEAST (Swissprot: P22516) than to



201

the inferred human orthologue XPD_HUMAN (Swissprot P18074).  One reason for finding

so few cases is that a large proportion of the proteins are only found in animalia.

The human dataset could have been augmented by using EST data.  We chose to not use

this data, since its fragmentary nature makes the estimate of the number of matches and their

extent uncertain.

9.9 Discussion

This chapter has provided a glimpse into what can be learned from data generated by geno-

mic sequencing projects.  Some results were surprising while others were more or less ex-

pected.  Molecular biology research before the genome projects had already indicated that

many protein domains are conserved between distantly related organisms, while some appear

to be unique.  With entire genome sequences such notions can be quantified, and detailed an-

swers can be given about which families are most widespread.  This knowledge will have a

profound impact on biology and guide experimental research in new interesting directions.

Perhaps one of the most striking results is the estimate that about 70% of the currently

known human genes will have a homologue in the invertebrate C. elegans.  This underlines

the appropriateness and usefulness of studying this nematode, and we can expect that the un-

ravelli ng of molecular biological phenomena in it will greatly assist the understanding of

human biology.  One should keep in mind however, that the proportion of human homo-

logues is li kely to decrease in the future as a less biased set of human genes is produced by

genomic sequencing.

Another striking result is that most protein domains that are conserved in distantly related

organisms have been biochemically characterised already.  This is exempli fied by the fact

that of the 294 H. influenzae proteins also found in C. elegans and S. cerevisiae, only 5 had

no functionally annotated homologues.  This was also the case for only 3 of the 46 proteins

found in C. elegans and H. influenzae but not in S. cerevisiae.  This strongly supports the an-

cient conserved region (ACR) theory [Green et al., 1993], which was based on that over 90%
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of newly found ACRs were already in the databases.  We found that this figure is now at least

95%.

One of the most fundamental questions in bioinformatics is how much functional infor-

mation can be inferred from a particular similarity.  Obviously, the more sequence similarity

between two proteins, the more likely they are to have similar functions.  Here the concept of

orthologous pairs comes in, which are usually proteins with identical functions.  We have

addressed this in the C. elegans to H. sapiens comparison, and found that it is li kely to be

true for 15-30% of the homologies.  Non-orthologous homology, which often has a lower

level of similarity, still allows many general features to be inferred, such as putative nucleo-

tide binding moieties, protein-protein interaction domains, or catalytic activities.  In such

cases, the substrate(s) and the cellular role(s) can not be inferred from the homology.  The

scenario is more complicated if proteins in different organisms that perform identical func-

tions, for instance a catalytic step in a metabolic pathway, have evolved from different an-

cestors.  A number of such cases of ‘ non-orthologous gene displacement’ have recently been

discovered [Koonin et al., 1996a].

Homologous proteins (i.e. that were derived from a common ancestor) often have similar

sequences, because of the functional and structural constraints imposed on it.  After long

time spans, however, mutations accumulate, and the amino acid sequences may drift beyond

the point of recognition.  Performing the analysis on the basis of sequence similarity may

therefore not necessarily give the ultimate answer.  The methods based on comparing one

sequence with another are probably close to being as sensitive as they can ever get.  It is pos-

sible to look further back in time by using multiple alignment methods, since truly important

features stand out more prominently.  This is exempli fied by the fact that many of the nema-

tode-specific families initially could not be assigned a function when only a few members

were known.  But as more members were gathered in families nr. 4 and 5, it became in-

creasingly clear that they were likely G-protein coupled receptors.  Some families, e.g. nr. 8,

which still only has a small number of (very similar) members, defy functional prediction

today.  This may change in the future as more members are found.
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Still , C. elegans and other organisms seem to contain a large number of unique families

with few members.  Are these truly unique protein families with novel folds?  The answer

must be sought with more sophisticated analysis methods than pure sequence comparison.

Structural threading methods, that fit a sequence to known structures in order to find the most

li kely fold, may give an answer.  However, it is not always clear what functional information

can be transferred in such cases.

Our capabilit y to recognise homologues was shown to be improved by searching a data-

base of pre-assembled protein families such as Pfam, as an addition to traditional single-

sequence database searching.  Although the number of proteins that changed status from

‘f unction unknown’ to ‘putative function’ was not enormous, a large number of novel and

supportive domain classifications were found.  Since this analysis was based on version 1.0

of Pfam, we can expect a significant increase in the usefulness of this approach in the future.

The clustering of C. elegans proteins and the distribution of the families that appear to be

nematode-specific provides insights in the general mechanism of evolution of paralogues

within a genome.  It seems that the genome is constantly shuff led around; chunks of DNA are

duplicated, preferentially next door to the original.  In many cases, this must have lethal ef-

fects, but what we observe today in the living organism is the result of the accumulation of a

countless number of  ‘ lucky accidents’ .

The fact that 46 proteins occur in both C. elegans and H. influenzae, but not in yeast, sug-

gests that evolution in many cases proceeds by gene loss followed by replacement, or by

horizontal transfer from one organism to an other.  Some of the observations could also be

caused by different rates of genetic drift in yeast of these proteins, which made it impossible

to recognise a true homologue.  A more thorough analysis would be necessary to establish

which hypothesis is most likely for each individual case.

An aspect of protein function that is of vital importance to biology is how proteins interact

with each other in the network of pathways that make up a living cell .  That regulation and

signal transduction is a major aspect of metazoan li fe is evident from the large number of

protein kinases, receptors and transcription factors found in C. elegans.  The quest for under-
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standing molecular mechanisms on this level will be one of the greatest future challenges in

biology.
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10. Conclusion and future perspectives

Just as Columbus littl e could have imagined how the world would change from his discov-

ery, so it is equally hard for us to envisage the changes to science and society that large-scale

genome sequencing will eventually bring about.  One thing is certain: it will have a profound

impact on medical research, both directly by for example improving the abilit y to detect gene

mutations, and indirectly by providing a crucial information resource for biological research.

Knowing the complete genomic sequence is of course only a beginning; the work required to

discover new biological functions and mechanisms will still be needed.  But we can expect

that this work will be greatly accelerated by having the sequence as a blueprint.  In some

ways, genome research can be likened with the extensive efforts to map the continents of the

world in the 16th and 17th centuries.  Just as then, the global goal of the endeavour is clear,

which was to find new sources of riches and trade routes to bring them home, but exactly

where they will be discovered can not be known beforehand.

We are still i n the early days of genome research.  Many of the issues that need to be ad-

dressed at this time are of a fundamental nature.  Most scientists in the field are not yet used

to working with the vast quantities of data that are being produced, and it will t ake a long

learning process before the full potential of the information is realised.  The increase in se-

quence data therefore has to be accompanied by a new breed of eff icient analysis and visuali-

sation tools.  Most of this thesis is taken up with methods that address this very point: how

computers can assist humans optimally in performing large-scale sequence analysis.

Already, the high sequencing rates may seem a burden for the person who has to analyse

the sequence.  Compared to the past, when a year’s experimental work could be analysed

manually in a few days, this may seem true.  But in fact today it only takes a few hours to

analyse a cosmid sequence, which it has taken one person about a month to finish.  However,

using the analysis methods of the past, it may well have taken over a month to analyse it.  As

sequencing becomes more automated, so do analysis methods, and there is no indication that

analysis will ever be the bottleneck.  To keep abreast of the sequence flow will however most
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likely continue to require a significant amount of analysis labour, and a steady improvement

of the software tools.

The long term building up of knowledge about genes and proteins is one of the most con-

crete goals of genome sequencing.  By transferring functional information from biochemi-

cally characterised genes using homology analysis, a vast body of genes with predicted func-

tions is gathered.  The proportion of proteins with an experimentally determined function in

sequence databases is therefore steadily dropping.  This is not necessarily a problem, since

strong sequence similarity has been shown to correspond well to homologous functions.

Computational methods for separating spurious similarities from true homologies have been

a central theme in this thesis.

In recent years there has been a clear increase in the fraction of proteins from genome

projects that can be assigned a function on the basis of sequence similarity.  As discussed in

chapter 9, there is still a significant proportion of proteins for which this is not the case, but

most of these ‘hypothetical’ proteins are only found in one species and its closest relatives.

Whether they are homologues of known genes, but have drifted too far in the sequence to be

recognised as such, or whether they are truly unique lines of proteins must still be unravelled.

To some extent, this will be done by a refinement of homology analysis methods, such as

systematic use of multiple alignments in order to look back further in time.  However, there

is still a large need for systematic biochemical characterisation of these newly found proteins.

The effort to undertake this effort for all such proteins in yeast [Oliver, 1996] will soon indi-

cate just how possible such an endeavour is.

Genomic sequence analysis plays a central role in the concerted genome sequencing ef-

fort.  A network of different disciplines, such as genetic and physical mapping, and all other

aspects of biological research can be linked together with the sequence as a reference.  One

of the main goals is to bring data together from these different sources, and make them avail-

able for ‘ in sili co’ analysis.  This will become an increasingly important approach for mo-

lecular biology research.  Figure 10.1 ill ustrates the main flows of data between experimental

disciplines and computational analysis in a genome sequencing project.  The results of such

projects are not well suited for traditional paper publishing.  It is therefore essential that both



207

the data and the visualisation tools are electronically distributed throughout the world, and

that the data is curated at a high quality.
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Figure 10.1.  Global view of the information flow in the C. elegans genome sequencing proj-
ect.  Solid lines indicate the main production line flow information, while the dashed lines
are feedback channels that reinforce the sources.
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