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Orthologs are genes in different species that originate from a single gene
in the last common ancestor of these species. Such genes have often
retained identical biological roles in the present-day organisms. It is
hence important to identify orthologs for transferring functional infor-
mation between genes in different organisms with a high degree of
reliability. For example, orthologs of human proteins are often function-
ally characterized in model organisms. Unfortunately, orthology analysis
between human and e.g. invertebrates is often complex because of large
numbers of paralogs within protein families. Paralogs that predate the
species split, which we call out-paralogs, can easily be confused with
true orthologs. Paralogs that arose after the species split, which we call
in-paralogs, however, are bona ®de orthologs by de®nition.

Orthologs and in-paralogs are typically detected with phylogenetic
methods, but these are slow and dif®cult to automate. Automatic cluster-
ing methods based on two-way best genome-wide matches on the other
hand, have so far not separated in-paralogs from out-paralogs effectively.

We present a fully automatic method for ®nding orthologs and in-
paralogs from two species. Ortholog clusters are seeded with a two-way
best pairwise match, after which an algorithm for adding in-paralogs is
applied. The method bypasses multiple alignments and phylogenetic
trees, which can be slow and error-prone steps in classical ortholog detec-
tion. Still, it robustly detects complex orthologous relationships and
assigns con®dence values for both orthologs and in-paralogs. The pro-
gram, called INPARANOID, was tested on all completely sequenced
eukaryotic genomes. To assess the quality of INPARANOID results,
ortholog clusters were generated from a dataset of worm and mamma-
lian transmembrane proteins, and were compared to clusters derived by
manual tree-based ortholog detection methods. This study led to the
identi®cation with a high degree of con®dence of over a dozen novel
worm-mammalian ortholog assignments that were previously undetected
because of shortcomings of phylogenetic methods.

A WWW server that allows searching for orthologs between human
and several fully sequenced genomes is installed at http://
www.cgb.ki.se/inparanoid/. This is the ®rst comprehensive resource
with orthologs of all fully sequenced eukaryotic genomes. Programs and
tables of orthology assignments are available from the same location.
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Introduction

With the rapidly growing amount of sequence
data, the need for automatic analysis methods for
biological discovery is growing too. The sequen-
cing of the human genome, one of the most
ing author:
important milestones in biology and medicine of
our age, is nearly completed. Many scientists are
now asking which genes the human genome has in
common with other species. A particularly import-
ant question is which genes in the human genome
are sharing the exact same biological function with
genes in simpler organisms. There are numerous
so-called model organisms that are well studied
and can be used for unraveling gene functions. As
# 2001 Academic Press
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in vivo experiments with human genes are not feas-
ible, the ability to infer the function of human
genes from the function of corresponding genes in
model organisms is highly desirable.

To be able to infer which genes have the same
function, we need to understand how the genes
evolved have. Genes in two species that have
directly evolved from a single gene in the last com-
mon ancestor are most likely to share the function.
Such genes are called orthologs.1 Often, the
sequences have duplicated after the speciation
event (i.e. after the two species diverged from each
other). In this case there is more than one ortholog
in one or both species and the orthologs are said to
have a one-to-many or many-to-many relationship.
In such cases, it is non-trivial to determine which
of the orthologs is functionally equivalent to the
ortholog in the other species. It may be only
one, but several genes could also have redundant
functions.

Due to the uncertainty of functional equivalence
between the orthologs deriving from a single
ancestor at the time of speciation, it is important to
detect all of them. As these are homologs found in
the same genome, they are called paralogs.1 How-
ever, there may also be paralogs that arose from a
duplication event before the speciation. These are
therefore not orthologs according to the de®nition.
Unfortunately, there is no accepted terminology to
separate paralogs that were duplicated before a
speciation event from paralogs that were dupli-
cated after it. We here propose two new terms, in
analogy with the phylogenetic concepts of out-
group and in-group. Paralogs predating the specia-
tion event that thus are not orthologs are denoted
out-paralogs. Paralogs that were duplicated after
the speciation event, and thus are orthologs, are
denoted in-paralogs. A potential synonym for in-
paralog could be co-ortholog but we prefer in-
paralog because of the symmetry with out-paralog.

Automatic detection of orthologs and in-para-
logs from full genomes is an important but challen-
ging problem. As orthologs, by de®nition, are
related through evolutionary history, phylogenetic
trees are the most natural way to detect orthologs.
Unfortunately, construction of phylogenetic trees
involves some poorly automatable steps and
demands large resources of computing power. Car-
rying out this approach for all genes of two or
more genomes would require clustering of homo-
logs, generation of correct multiple alignment for
each group of homologous domains, construction
of a phylogenetic tree for each group, and ®nally
extraction of orthologs from these trees.
Approaches for automating the ®nal step exist,2

but current methods for automatic generation of
multiple alignments of domains still yield sub-stan-
dard quality output, which makes subsequent
orthology analysis unreliable.

An alternative to phylogenetic methods is to use
all-versus-all sequence comparison between two
genomes to detect orthologs. The idea is that if the
sequences are orthologs, they should score higher
with each other than with any other sequence in
the other genome. This method does not use mul-
tiple alignments or phylogenetic trees and there-
fore avoids potential errors that might be
introduced at these steps. All-versus-all BLAST
searches has recently gained popularity for ®nding
orthologs.3 ± 6 Originally, it was used mainly used
to detect simple one-to-one relationships.7 With the
appearance of several fully sequenced genomes,
the COG database was created.7 ± 9 The COG data-
base is a collection of BLAST-based ortholog
groups from multiple species. The species are cho-
sen to be from distant phylogenetic lineages,
although multicellular eukaryotes are not included.
According to its authors, it does not represent a
comprehensive phylogenetic analysis, but still pro-
vides a fast and convenient short-cut to delineate a
large number of groups that most likely consist of
orthologs.10 The members of a COG entry must
belong to at least three species. It therefore rep-
resents sequences whose function is conserved
across major phylogenetic lineages. This is useful
in many cases, particularly if people work with
diverse prokaryotic organisms. With more gen-
omes being sequenced, the need for ®nding ortho-
logous proteins between two closely related
species also appears. The orthologous groups
between mouse and human11 or chimpanzee and
human are very different from the orthologous
groups between human and yeast or human and
Escherichia coli (see also Results). Many investi-
gators are interested in questions such as: which
are the human orthologs of a given Drosophila
gene or which are the mouse orthologs of a given
human gene? These questions cannot be answered
with one single answer for all species, all pairwise
comparisons produce different groups of orthologs,
depending on which genes their common ancestor
had.

To resolve these questions without the time-con-
suming and error-prone phylogenetic analysis, we
designed a program, INPARANOID, that identi®es
orthologs and in-paralogs between any given pair
of genomes. INPARANOID stands for in-paralog
and ortholog identi®cation. Out-paralogs are not
reported. The methodology can be seen as an
extension of the all-versus-all technique, but with
special rules for cluster analysis in order to extract
all in-paralogs. The INPARANOID algorithm is
presented here, as well as an assessment of its per-
formance when tested on a set of previously vali-
dated ortholog assignments. Also, it was applied
to the complete set of protein sequences from the
Caenorhabditis elegans and Drosophila melanogaster
genomes.

INPARANOID

Input data

The program expects two datasets of protein
sequences in multiple FASTA formats. The data-
sets, denoted A and B, should be in two separate
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®les. These datasets are expected to include the
complete set of protein sequences from two
species. Incomplete sets of genes could be used,
but this may result in an incorrect list of orthologs.
In principle, sequences from any phylogenetic
clade could be used instead of one species. For
example, in the absence of a complete human gene
set, one could consider using all mammalian genes
as one dataset. This would give the chance of
detecting mammalian orthologs even if the appro-
priate human gene is not sequenced or has been
lost. The program has the option to use a third
dataset of sequences as an out-group species. An
overview of the algorithm is shown in Figure 1.

Pairwise similarity scores

The detection of orthologs starts with calculation
of all pairwise similarity scores between all studied
sequences. This is usually done with the BLAST
program for speed, but it could be done with any
other pairwise alignment program. Pairwise simi-
larity scores are calculated in four separate steps;
A versus B, B versus A, A versus A, B versus B.
Although it is not really necessary to use separate
steps, this helps to organize the data and thus
helps to reduce memory requirements of the algor-
ithm. If an out-group species (dataset C) is used,
the similarity scores between dataset A versus C
and dataset B versus C are calculated. The BLAST
program occasionally reports asymmetric scores
between sequence pairs X-Y and Y-X. To avoid
problems that these asymmetric scores could cause
in later steps, all pairwise scores are averaged.

Two user adjustable cut-off values are applied to
each pairwise match: (1) a score cut-off; and (2) an
overlap cut-off. The score cut-off is necessary to
separate signi®cant scores from spurious matches.
We normally use a score cut-off of 50 bits. The
effect of this cut-off is mainly to avoid inclusion of
insigni®cant hits and thereby reduce the volume of
data. The choice of this cut-off has virtually no
Figure 1. Overview of the
INPARANOID algorithm. The pro-
gram requires two fasta format
sequence ®les A and B with protein
sequences. All-versus-all BLAST
search is run (1) and sequence
pairs with mutually best hits are
detected (2). Sequences from out-
group species are optionally used
to detect cases of selective loss of
orthologs. The A-B sequence pairs
are eliminated if either sequence A
or sequence B scores higher to out-
group sequence than they score to
each other (3,4). Additional ortho-
logs (in-paralogs) are clustered
together with each remaining pair
of potential orthologs as shown in
5}Figure 2 (5,6). Overlapping clus-
ters are resolved by a set of rules
(7) shown in Figure 3. Finally, the
bootstrapping technique is used to
estimate the probability that a
given pair of orthologs had mutual
best score only by chance (8). The
bootstrapping step is optional.



Figure 2. Clustering of additional orthologs (in-para-
logs). Each circle represents a sequence from species A
(black) or species B (grey). Main orthologs (pairs with
mutually best hit) are denoted A1 and B1. Their simi-
larity score is shown as S. The score should be thought
of as reverse distance between A1 and B1, higher score
corresponding to shorter distance. The main assumption
for clustering of in-paralogs is that the main ortholog is
more similar to in-paralogs from the same species than
to any sequence from other species. On this graph it
means that all in-paralogs with score S or better to the
main ortholog are inside the circle with diameter S that
is drawn around the main ortholog. Sequences outside
the circle are classi®ed as out-paralogs. In-paralogs from
both species A and B are clustered independently.
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effect on the clustering of sequences that score
above the cut-off. The overlap cut-off is applied to
avoid short, domain-level matches. Orthologous
sequences are expected to maintain the homology
over the majority of their length. We therefore
apply an overlap cut-off of 50 %, i.e. the matching
segment of the longer sequence must exceed 50 %
of its total length.

We also tried to use a cut-off for accepting mul-
tiple best hits within a ``grey zone'', in order to
avoid selecting the best pairwise match when
alternative orthologs exist that are almost as
strong. However, we found that, although this cut-
off reduced the number of false negatives, it
resulted in more false positives, and hence we do
not apply it.

Clustering algorithm

The purpose of the ortholog detection algorithm
is to ®nd non-overlapping groups of orthologous
sequences using pairwise similarity scores. This is
essentially a sequence clustering problem. The
ortholog detection starts with ®nding mutually
best scoring sequence pairs, bi-directionally best
hits between datasets A and B. These mutually
best hits are marked as the main ortholog pair of a
given ortholog group. The main ortholog pairs
serve as central points around which additional
orthologs (in-paralogs) from both species will be
clustered in later steps. The detection of additional
orthologs is done independently for each ortholog
group, starting with the pair with highest sequence
similarity and continuing until the pair with lowest
sequence similarity within the limits de®ned by the
cut-off value.

Additional orthologs are then clustered around
the main ortholog in each species separately. The
basic assumption is that sequences from the same
species that are more similar to the main ortholog
than to any sequence from other species are in-
paralogs belonging to the same group of orthologs.
This principle is explained graphically in Figure 2.
The program runs through all main ortholog pairs
and adds in-paralogs from datasets A and B. In the
case of overlap between two groups, the overlap-
ping groups are merged, deleted, or separated
depending on the type and extent of overlap
(Figure 3). The rules are applied in the following
order: (1) merge groups if main orthologs A2 and
B2 are already clustered in a stronger group A1-B1;
(2) merge groups if main ortholog B has equally
best hit to two orthologs from species A, A1 and
A2; (3) delete new group if one of the main ortho-
logs A2 already belongs to a much stronger group;
(4) merge groups if one of the main orthologs
already has a high con®dence value in another
group.

The clustering approach based on BLAST scores
implicitly assumes equal evolutionary rate of all
paralogs. This is an approximation that might
cause incorrect results if the real rates of evolution
vary signi®cantly between paralogs.
Confidence values for in-paralogs

In the case of one-to-many or many-to-many
types of orthology, several in-paralogs form a clus-
ter in which all proteins are orthologous to one or
many proteins in the other species. Although all
in-paralogs are considered orthologs, some may be
very similar to the main ortholog, while others
may be so dissimilar that they are nearly excluded
from the group. We wanted to characterize this
feature of in-paralogs quantitatively, assigning
them a con®dence value that shows ``how ortholo-
gous'' a given sequence is. The con®dence value
simply shows how far a given sequence is from the
main ortholog of the same species on a scale
between 0 % and 100 % (Figure 4). On this scale,
100 % is assigned to the main ortholog and 0 % is
assigned to a sequence with the minimum simi-
larity score required to be marked as in-paralog of
a given group. A general formula to calculate this
con®dence value is:

Confidence for Ap � 100%

� �scoreAAp ÿ scoreAB�=�scoreAA ÿ scoreAB�

Confidence for Bp � 100%

� �scoreBBp ÿ scoreAB�=�scoreBBÿ scoreAB�
where, Ap is an in-paralog from dataset A, Bp is an
in-paralog from dataset B, A is the main ortholog
from dataset A, B is the main ortholog from data-
set B, scoreXY is the similarity score between pro-
tein X and Y in bits.



Figure 3. The rules for resolving
overlapping groups of in-paralogs.
In-paralogs are clustered in order
of their similarity scores, starting
with the more similar groups. The
rules are applied in the following
order: (1) merge groups if main
orthologs A2 and B2 are already
clustered in the same group with a
stronger group A1-B1; (2) merge
groups if main ortholog B has
equally best hit to two orthologs
from A, A1 and A2; (3) delete new
group if one of the main orthologs
A2 already belongs to a much
stronger group (S1 ÿ S2 > 50 bits);
(4) merge groups if one of the new
ortholog candidates already has a
high (>50 %) con®dence value in
another group; (5) all other over-
lapping groups of in-paralogs are
separated based on their distance
to the main ortholog. In the given
example, the in-paralog P1 will
remain in group with A1, but the
in-paralog P2 will be moved into
the second group with A2.
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If groups of orthologs are merged in the process
of clustering, they will retain their original con®-
dence values. Thus, after merging two groups, a
group of orthologs can contain more than one
member with 100 % con®dence.

Bootstrap values for groups of orthologs

In addition to con®dence values for in-paralogs,
we try to estimate the reliability of each ortholo-
gous group itself. If no other sequence competes as
a main orthologs we would assign a high con®-
dence value in the assignment, while if the main
ortholog is only slightly better than competing
sequences we would assign a low con®dence
value. We calculate a con®dence estimate by using
the bootstrapping technique. The bootstrap values
are calculated by comparing two pairwise
sequence alignments. These two alignments are
between main ortholog pair A1B1 and between an
alternative, lower-scoring alignment A1B2. The
sequence B2 in this case is the ®rst alternative



Figure 4. Con®dence values are
calculated for all in-paralogs. Con®-
dence for in-paralogs is scaled
between 0 % and 100 %, depending
on their similarity to the main
ortholog. The con®dence value for
the main ortholog is always 100 %.
The con®dence value for in-paralog
P � 100 % � ((scoreAAp ÿ scoreAB)/
(scoreAA ÿ scoreAB)).
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ortholog that is not already clustered in a given
group. The columns in alignments between
sequences A1B1 and A1B2 are sampled with repla-
cement, considering an insertion as a single unit. In
this way we generate, on average, the same
amounts of gaps as in the original alignment. The
bootstrap value is expressed as the fraction of
sampled alignments that support the hypothesis
that the best match to A1 is B1, and not B2. The
same procedure is repeated for sequence pairs
A1B1 and A2B1, to test the hypothesis that the best
hit to B1 is A1, and not A2. Both bootstrap values
are shown in the output ®le. There is a clear corre-
lation between score difference between two
alternative orthologs and the bootstrap value for
this pair. In other words, the bootstrap value tends
to be lower if there is a closely related alternative
ortholog (Figure 5). As this way of calculating
bootstrap values from pairwise alignments is
rather novel and uncharacterized, we report it, but
do not reject any group based on its bootstrap
value.
Additional considerations with the results of
the BLAST program

Although BLAST is fast and detects biologically
relevant homologies reliably, it should be used
with caution. The main problem for the presented
ortholog detection algorithm is that BLAST reports
local similarities. The orthologs are expected to
share sequence similarity over the entire length, or
at least over the majority of their length. We avoid
domain-level matches by forcing the matched area
to be longer than 50 % of the longer sequence. This
should avoid clustering sequences that share only
short domains. Additional problems with the
BLAST output appear with sequence pairs that
have two or three separate regions of sequence
similarity. This happens with many sequences
whose N terminus and C terminus are conserved,
but the conservation in the middle of the sequence
is too low to be reported by BLAST. The BLAST
output segmentation could be addressed by setting
drop-off value -X on command line, which would
cause the BLAST program to report longer seg-
Figure 5. Correlation between
bootstrap value and score differ-
ence between alternative orthologs.
Data from running INPARANOID
on the dataset of C. elegans and
mammalian transmembrane pro-
teins.
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ments of similarity. We found it more realistic to
ignore the non-conserved areas and sum only the
conserved segment scores. The segments are
checked for consistency and for overlap, after
which the similarity scores of non-overlapping
parts are summed.

One difference between phylogenetic methods
and the BLAST program is that the BLAST pro-
gram uses gap penalties. Most of the commonly
used phylogenetic methods calculate distances
using each column in multiple alignment indepen-
dently, ignoring columns that contain gaps. The
af®ne gap penalty model used in the BLAST pro-
gram is certainly more advanced and biologically
relevant. However, errors are frequent in current
genome databases due to wrong gene predictions.
Sometimes an exon is missing in one of the
sequences, or an intron is predicted as a coding
area. In such cases, BLAST would incur unrealisti-
cally high gap penalties and the real relationship
between truly orthologous sequences might be
missed. In our comparison to the phylogenetically
detected orthologs (see Table 1), in¯ated BLAST
gap penalties resulted in failure to detect ®ve
orthologs, while one case was missed due to overly
segmented alignments in the BLAST output. It
may be possible to overcome some of these pro-
blems by a more global alignment approach but,
as the problems appear to be relatively rare, we
consider BLAST to be a well-suited method for the
task.

Implementation

The program INPARANOID that ®nds and
reports in-paralogs and orthologs according to the
described algorithm was written in PERL. The
input to the program are ®les with pairwise
similarity scores from the dataset comparisons,
which can be generated by a parser for BLAST2
(BLAST_PARSER) that implements the overlap
rules described above. Also included in the
INPARANOID package are PERL and JAVA pro-
grams to calculate bootstrap values from pairwise
alignments (BLAST2FAA.PL and SEQSTAT.JAR).

The output is given in plain text or HTML for-
mat as a sorted list of orthologous groups with all
Table 1. A comparison of the INPARANOID performance
derived orthologs12

Phylogenetic orthologs without use of o

No. %

True positives 168 95
False positives 9 5
Additional orthologs
False negatives
Total 177 100

In the row Additional orthologs are listed likely ortholog group
INPARANOID. Many of them are partly supported by phylogeneti
majority of the phylogenetic methods. The false positives listed und
trees as orthologs, but removed later after additional analysis that in
member sequences and con®dence values for in-
paralogs and the bootstrap support for the ortho-
log group itself. Additional computer-readable out-
put is printed into a separate ®le in tab-delimited
format or into tables that are used as input for a
MYSQL database.

The time spent for calculation of orthologs is
mainly dependent on speed and number of calcu-
lations for pairwise similarity scores. Ortholog
detection alone takes about 20 minutes for the full
set of 14,100 D. melanogaster and 19,105 C. elegans
proteins on an 800 MHz PC Linux. A critical issue
for the program is memory usage, due to the poor
memory management of the PERL programming
language: 145 MB of RAM was used by the pro-
gram to calculate orthologs between all proteins
from D. melanogaster and C. elegans.

Results and Discussion

Comparison to curated dataset of orthologs

In order to assess the quality of orthologs pro-
duced by INPARANOID, we ran it on a dataset of
5500 worm and mammalian proteins in which
orthologs had been assigned by manual analysis of
phylogenetic trees.12 In that study, orthologs were
assigned if a majority of nine different phyloge-
netic methods supported the orthology. This
yielded 168 curated orthology assignments. We
consider these assignments a trusted set of ortho-
logs and use it as a testbench for quality assess-
ment of other ortholog-®nding methods. The
INPARANOID results in comparison with the
trusted dataset of reference orthologs are summar-
ized in Table 1. A group of orthologs predicted by
INPARANOID was counted positive if both main
orthologs were found in one group in the set of
trusted orthologs.

In general, ortholog groups reported by both
methods are rather similar, although INPARA-
NOID tends to report smaller groups or even split
the reference groups into two subgroups of ortho-
logs. INPARANOID failed to report less than 3 %
of the reference orthologs. However, it reported 32
additional ortholog assignments that were not pre-
sent in the reference set. These may represent
compared to the reference dataset of phylogenetically

ut-group INPARANOID orthologs without use of out-group

No. %

162 84
18 9
14 7
6 3

194 100

s that were missed by phylogenetic methods, but reported by
c trees, i.e. supported with low bootstrap or by some but not a
er the reference dataset were detected initially on phylogenetic

dicated selective gene loss or long branch attraction.
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either false positives or novel true orthologs. There
are cases when the BLAST approach might detect
orthologs that were missed by tree methods. The
two main reasons for this are large protein families
and different treatment of gaps. In general, tree
bootstrap values tend to decrease as the number of
sequences in the family increases.13 All tree
methods used to generate the trusted set of ortho-
logs do not use gap penalties when calculating dis-
tances, which is an inappropriate evolutionary
model if many insertions/deletion events have
taken place. BLAST, on the other hand, does use
gap penalties, so matches with many gaps will get
a lower score than equivalent matches with fewer
gaps.

Many of the proteins in the testbench dataset
have changed since it was compiled, and new pro-
teins have been discovered, hence some of the
novel ortholog assignments are not found in the
on-line version of INPARANOID, which is based
on SWISS-PROT � TREMBL from May 2001. We
used persistence from the old to the new dataset as
a criterion to consider an additional ortholog
group correct, as well as high bootstrap support.
After careful analysis of the additional ortholog
groups, 14 of them were considered novel ortholog
groups with a high degree of con®dence (Table 2).
The remaining 18 groups with less supporting evi-
dence were considered false positives, caused by
shortcomings of the BLAST program. Essentially
all of the novel ortholog groups have high boot-
strap support and were supported by a minority of
the phylogenetic tree methods. Several of these
novel groups included G-protein coupled receptors
(GPCRs). We believe that they represent very likely
orthologous sequences that were not detected by
phylogenetic methods because of prohibitively
large family sizes or because gaps are not pena-
lized.

The effect of long branch attraction and
out-group for orthology detection

We compared the ability of INPARANOID to
avoid false positive orthologous groups that had
initially been detected by phylogenetic methods.
These false positives appear among phylogenetic
orthologs mainly for two reasons. First, many phy-
logenetic methods are sensitive to ``long branch
attraction''. This is a known artifact of distance-
based methods where sequences are clustered
together, not due to their similarity but rather due
to their common dissimilarity to other sequences.
Careful analysis of the original dataset from Remm
& Sonnhammer12 revealed that it contained four
cases of long branch attraction. INPARANOID did
not detect any of these cases. This is not surprising,
because sequences related by long branch attrac-
tion typically have a very low similarity score.

The other reason for false positives in phyloge-
netic methods is selective loss of orthologs in one
or the other phylogenetic lineage. This can make
out-paralogs look like orthologs. A similar effect
can be observed in cases where only partially
sequenced genomes are analyzed. These false posi-
tives can be detected by adding out-groups: i.e.
sequences from species that are expected to be evo-
lutionarily more distant. Such sequences will stay
between the false orthologs in the tree and can
thus indicate the selective loss of orthologs. To
cope with the problem, INPARANOID was written
to include information from an out-group species.
An important criterion for orthology detection is
that no sequence from an out-group should be clo-
ser to the orthologs than they are to each other.
Based on that principle, INPARANOID can option-
ally reject orthologs that have signi®cantly higher
scoring match with an out-group sequence.

We detected ®ve cases of selective gene loss in
the original worm/mammalian ortholog set, using
plant and lower species as out-group. INPARA-
NOID reported such false positives at a lower rate
than phylogenetic methods. Using either Saccharo-
myces cerevisiae or Arabidopsis thaliana as out-group
resulted in three assignments of selective loss of
orthologs. Two of these three assignments were the
same sequences for both out-groups and agreed
with the phylogenetic analysis, but the third
assignment, which was different depending on the
out-group used, was incorrect. Such false-negative
assignments of selective loss can be caused by
BLAST artifacts or unequal rates of evolution.
Using an out-group is thus useful for removing
false ortholog assignments due to selective gene
loss, but there is an inherent risk of removing bona
®de orthologs.

To estimate the frequency of selective loss of
ortholog assignments by INPARANOID using
different out-group species, we calculated ortho-
logs from the fully sequenced genomes of C. ele-
gans and D. melanogaster with different species as
an out-group. In this worm-¯y ortholog analysis,
the total number of detected orthologs was 3331.
From these, 15 (0.5 %) were rejected if E. coli was
used as an out-group, 134 (4.0 %) were rejected if
S. cerevisiae was used as an out-group, and 276
(8.3 %) were rejected if A. thaliana was used as an
out-group.

Comparison with alternative
automatic approaches

Most orthology detection approaches simply
identify mutually best matches. We believe that
such an approach is too limited for eukaryotic gen-
omes, and that it is important to identify additional
orthologs (in-paralogs). One approach that does
include paralogs is the COG system, which has
much in common with our method. However, in
the ®nal COGs, no distinction is made between in-
paralogs and out-paralogs. The main reason for
this is that the COG database strives to ¯atly
group orthologs from all species together, while
our approach considers only two species or
lineages at the time. In fact, a COG must consist of
at least three species. Sequences with unidirectional



Table 2. Novel ortholog assignments made by INPARANOID in a dataset of membrane proteins from worm and
mammals

Group
C. elegans

ortholog(s)
Bootstrap value

(%)
Human

ortholog(s)
Bootstrap value

(%)
Total family

size
Number of

proteins in tree

1 C16D6.2 (O62062) 61 GPRA_HUMAN 92 1550 72
C53C7.1
(Q9XXU4) O75194

2 F41E7.3 (Q20275) 55 NY2R_HUMAN 78 1550 72

3
C52B11.3
(YYI3_CAEEL) 65 A1AA_HUMAN 90 1550 101

A1AB_HUMAN
A1AD_HUMAN
O60451
Q9UD67
Q13675
Q13729
Q9UD63
Q9H1N4

4 F14D12.6 (Q19449) 72 A2AA_HUMAN 73 1550 101
A2AB_HUMAN
A2AC_HUMAN
A2AD_HUMAN
Q9HB49

5 F54D7.3 (O44731) 93 GRHR_HUMAN 80 1550 34
Q92644
O75793

6 F59C12.2 (Q21034) 77 5H2A_HUMAN 91 1550 101
5H2C_HUMAN
5H2B_HUMAN
Q9P2Q9

7 R106.2 (Q23033) 85 SSR2_HUMAN 87 1550 101
SSR5_HUMAN
SSR3_HUMAN
SSR1_HUMAN
SSR4_HUMAN
OPRM_HUMAN
GPR8_HUMAN
OPRK_HUMAN
OPRD_HUMAN
GPR7_HUMAN
OPRX_HUMAN
Q9UIY1
Q9H573

8 Q9U990 78 GRA2_HUMAN 98 222 72
Q23074 GRA3_HUMAN
T10G3.7 (Q9TW41) GRA1_HUMAN
B0207.12 (O01436) GRB_HUMAN
F11A5.10 (O17793)
F25F8.2 (Q17328)

9 ZC482.1 (O18276) 72 GAB3_HUMAN 72 222 72
Q16323
GAB2_HUMAN
GAB1_HUMAN

10 T23D8.2 (Q9XVI4) 98 CD63_HUMAN 93 80 71
11 R04F11.4 (Q21729) 49 CIW4_HUMAN 100 67 65

C24H11.8
(Q9XVD1) CIWA_HUMAN

CIW2_HUMAN
CIW5_HUMAN
Q9NRT2
Q9H591

12 F14F4.3 (O62170) 99
MRP5_HUMAN
(O14517) 99 249 30

14 K10D3.1 (Q21415) 59 GLK1_HUMAN 99 90 47
GLK2_HUMAN
GLK3_HUMAN
GLK4_HUMAN
GLK5_HUMAN

These groups were not detected by phylogenetic tree methods in our previous work12 mainly due to large family sizes. The size
of the families and subfamilies from which the trees were constructed are shown to the right. The INPARANOID analysis was done
using all available mammalian proteins, but only the human proteins are shown here.

In-paralog and Ortholog Identi®cation 1049



Figure 6. UPGMA tree of chloride channel proteins. The number of orthologous groups between a pair of species
increases with decreasing evolutionary distance between them. There are eight groups of orthologs between human
and other mammalia (A), three groups between human and C. elegans (B), one group between human and yeast (C),
and one group of orthologs between any prokaryotic and eukaryotic species (D).
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best hits to members of a COG are added later,
representing potential in-paralogs. However,
because the orthology in a COG is not de®ned to a
particular evolutionary point, both in-paralogs and
out-paralogs may be added.

As an example, COG0050 from the COG data-
base{ includes tufA/tufB (SWISS-PROT EFTU_
ECOLI) from E. coli and YOR187w (SWISS-PROT
EFTU_YEAST) from S. cerevisiae:. These are bac-
terial elongation factor TU (EF-TU) and its mito-
chondrial counterpart in S. cerevisiae. However, six
other sequences from S. cerevisiae are included in
this COG, all of which are out-paralogs relative to
{ http://www.ncbi.nlm.nih.gov/cgi-bin/COG/
palox?COG0050
the tufA/B-YOR187w orthology, and hence are not
joined to them by INPARANOID. The six other
yeast sequences in COG00050 are annotated as
elongation factor 1-alpha (YPR080W and
YBR118W; EF1A_YEAST), EF1A-like (YKR084C;
HBS1_YEAST), peptide chain release factor
(YDR172W; ERF2_YEAST), translation initiation
factor 2-gamma (YER025W; IF2G_YEAST), and
unannotated (YOR076C; Q08491). Although some
of these sequences perform functions related to the
mitochondrial EF-TU, none of them can be con-
sidered orthologs to bacterial EF-TU, neither from
an evolutionary nor from a functional point of
view. There are thus several good reasons not to
cluster all these sequences together as putative
orthologs.



Figure 7. (a) The size distribution
of orthologous groups in worm
and ¯y. Most of the orthologous
groups in both worm and ¯y con-
tain only one or few in-paralogs;
large in-paralog families are rare in
both genomes. (b) The number of
in-paralogs from worm and ¯y in
each group is poorly correlated
(r2 � 0.08). This indicates that evol-
ution has led to expansion of differ-
ent gene families in these two
genomes.
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In contrast to COGs, our approach is limited
explicitly to two species or lineages only, which
allows us to de®ne the evolutionary point of the
orthology precisely, and to separate in-paralogs
from out-paralogs. De®ning the evolutionary point
of the orthology is important, because the number
of branches increases during evolution due to
sequence duplication. As a result, the number of
orthologous groups between closely related species
is expected to be greater than the number of ortho-
logous groups between distantly related species.
As an illustration of this, see the tree of chloride
channel proteins in Figure 6. There are eight
groups of orthologs between human and other
mammalia (A), three groups between human and
C. elegans (B), one group between human and yeast
(C), and one group between any prokaryotic and
eukaryotic species (D). Any of these different lists
of orthologous groups might be useful for the biol-
ogist, depending on the purpose of the study. That
is the reason why we prefer to limit INPARANOID
to the comparison of two species or lineages and
do not attempt to create ¯at groups of orthologs
covering many lineages or the whole tree of life.
Groups of orthologs from more than two species
can still achieved by considering a lineage of mul-
tiple species as a ``superspecies'' in INPARANOID.

Example of full genomic dataset:
worm-fly orthologs

To test the performance of the INPARANOID
program on the whole-genome scale, we applied it
to identify orthologs from the complete set of pro-
tein sequences from C. elegans and D. melanogaster
genomes. The C. elegans genome (wormpep98)
contains 19,099 proteins and the D. melanogaster
genome 14,100. INPARANOID detected 3331
groups of orthologs, comprising 4451 worm and
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4366 ¯y sequences. The distribution of orthologous
group sizes is similar in both species, see
Figure 7(a). The largest group of orthologs contains
34 worm sequences and 26 ¯y sequences (a sub-
family of UDP-glucuronosyltransferases). How-
ever, the families that have expanded are different
in worm and ¯y. If one plots the number of in-
paralogs in one organism against the number in
the other organism for all groups (Figure 7(b)),
they do not appear correlated (r2 � 0.08). In all,
72 % of the groups between ¯y and worm rep-
resent straightforward one-to-one orthology, 23 %
of the groups have a one-to-many type of relation-
ship and only 5 % of the groups have a many-to-
many type of orthology. This illustrates the fact
that different living conditions of arthropods and
nematodes have led to expansions of different
protein families.
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