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ABSTRACT Several protein sequence analysis
algorithms are based on properties of amino acid
composition and repetitiveness. These include meth-
ods for prediction of secondary structure elements,
coiled-coils, transmembrane segments or signal pep-
tides, and for assignment of low-complexity, non-
globular, or intrinsically unstructured regions. The
quality of such analyses can be greatly enhanced by
graphical software tools that present predicted se-
quence features together in context and allow judg-
ment to be focused simultaneously on several differ-
ent types of supporting information. For these
purposes, we describe the SFINX package, which
allows many different sets of segmental or continu-
ous-curve sequence feature data, generated by indi-
vidual external programs, to be viewed in combina-
tion alongside a sequence dot-plot or a multiple
alignment of database matches. The implementa-
tion is currently based on extensions to the graphi-
cal viewers Dotter and Blixem and scripts that
convert data from external programs to a simple
generic data definition format called SFS. We de-
scribe applications in which dot-plots and flanking
database matches provide valuable contextual infor-
mation for analyses based on compositional and
repetitive sequence features. The system is also
useful for comparing results from algorithms run
with a range of parameters to determine appropri-
ate values for defaults or cutoffs for large-scale
genomic analyses. Proteins 2001;45:262–273.
© 2001 Wiley-Liss, Inc.
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INTRODUCTION

Any protein sequence, as typically inferred from a
genomic or mRNA sequence, potentially represents a rich
mosaic of molecular properties reflecting structure, dynam-
ics, interactions, and roles in cellular machinery. Interpre-
tation and annotation of such a sequence is a complex
conceptual task, which is usually achieved by a synthesis
of algorithmic analysis and expert judgment. Individual
algorithms vary in their ability to diagnose or classify

various sequence features, and knowledgeable human
interpretation is generally considered to be essential. Even
seemingly straightforward outputs, such as database se-
quence similarity search results using conservative cut-
offs, are frequently greatly enriched by human abilities to
perceive context, associations, and unexpected pitfalls. In
all cases, graphical display can dramatically improve
envisioning and comprehension of the interrelated sets of
data, and most sequence analysis software packages in-
clude graphical tools.

In addition to comparative analysis of conserved do-
mains and sequence motifs by means of database searches,
several algorithms have been designed to predict certain
protein features primarily from attributes of composition
and repetitiveness. Such features include secondary struc-
ture elements, transmembrane segments, signal peptides,
low-complexity regions, coiled-coils, other nonglobular do-
mains, and intrinsically unstructured regions. These re-
sults are typically interpreted, together with regions of
sequence conservation, to infer a provisional map of the
possible structural and functional regions of a protein.
This task presents several difficulties and requires critical
evaluation of results from various compositional, align-
ment, and modeling algorithms.

To assist these tasks, adaptable software is needed to
take the results of different amino acid sequence feature
analysis programs and use them as inputs into graphics
programs designed for integrated visualization. Also needed
is the ability to run each program with different parameter
sets and compare the results graphically. Weighing the
significance of different types and levels of evidence to-
gether usually leads to a more accurate analysis than
running each prediction program separately with default
parameters. In addition, integrated analyses of this type
are valuable in calibrating parameters during develop-
ment of computational methods, for example, to use them
in large-scale genomic analysis. Many analysis programs
are provided with very permissive default parameters to
minimize false negatives, whereas in genomewide analy-
sis, it is often important to use nondefault conservative
parameters to limit the number of false positives.
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It is desirable, therefore, to view the combined output
from several approaches, algorithms, and parameter sets,
in many cases juxtaposed with database matches. Here,
we describe a flexible software system that meets these
various needs and illustrate some of its applications.
Because it is impossible to define exact rules on how to
interpret such multifacetted data, we provide a set of
typical examples that illustrate how logical reasoning
based on the combined output of many different analyses
can lead to a correct interpretation, or at least avoidance of
an incorrect one.

DATA TYPES AND FORMATS

There are in principle two primary types of data for
describing sequence features: segments and curves. Seg-
ments are defined by one start and end sequence coordi-
nate. Typically, the sequence between these coordinates is
assigned a certain property algorithmically, such as a
low-complexity region. Curves (or “profiles”), in contrast,
consist of an array of scores, each score being assigned by
an algorithm to a single residue. We here use the term
“curve” because the term “profile” is mainly used in
sequence analysis to denote a matrix of numbers along the
sequence. Segments frequently have a score too and may
have associations with other pieces of data, particularly if
they are “matching segments” that can be aligned by
similarity to other sequences or sequence models. It is
often advantageous to browse matching segments from
database searches at the level of aligned residues; a special
viewer for this purpose is Blixem.1

Data sets of both segment and curve types can be
obtained either by parsing the output of available se-
quence analysis programs or by independent calculation
from the sequence being analyzed. Many prediction pro-
grams not only produce a set of segments as output but
also calculate a profile internally, according to some math-
ematical function or empirical scale, as part of the algo-
rithm. This is the case in, for instance, the SEG complexity
analysis,2,3 most transmembrane segment prediction pro-
grams, and secondary-structure prediction methods. Gen-
erally, in these cases, the underlying profile may be readily
calculated by using the appropriate function, indepen-
dently of the program. Some programs report both the
segments and the underlying profile, for instance COILS2,4

which predicts a-helical coiled-coils.
A number of established database and visualization

systems exist that include built-in functions for sequence
segment display. These include ChromoScope,5 bioWid-
gets,6 APIC,7 the BDGP java sequence viewer,8 GAIA,9

and ACEDB.10 These are relatively large software suites
that require a significant investment in knowledge to
become operational, usually due to the intricacies of
specifying a practical data model. For instance, the data
definition languages (e.g., ACEDB and ASN.1) were de-
signed to store biological objects in a rigorous way. Gener-
ating and parsing data in such formats involves support-
ing a substantial framework of semantic rules. For data
consisting only of segments or curves, the complications of
conforming to such a format are unwarranted, and a

simple tabular format is adequate. Furthermore, many of
the available visualization systems have various limita-
tions, depending on their history of development, which in
many cases was oriented toward displaying genetic or
physical maps, and thus have no facility for curve data. To
our knowledge, only the commercial APIC system was
designed to handle curve data in a generic way.

In contrast to these large, comprehensive systems, our
goal is to provide simple, yet powerful, generic tools that
allow any sequence crunching program to communicate its
results to any graphical viewer. At the core is a simple data
format for sequence feature series, which we call SFS.
Sequence analysis programs typically produce data that
are compatible with the present SFS data model, but it is
also extensible to incorporate features that may need
special treatment in the future. SFS achieves a logical
separation of prediction-calculation programs and viewers
and thus removes the need for special visualization tools
for each individual program. Viewers can then become
more powerful and evolved tools, whereas the algorithmic
implementations can be developed without the extra bur-
den of building visualization tools. The overhead for both
viewers and calculation programs to support the light-
weight SFS format is minimal.

The two core data types in the SFS format are segments
and XY curves. An XY curve is a two-dimensional plot of a
series of X and Y value pairs, where X is the sequence
residue coordinate. The information stored is very reduced
but is sufficient for generating a rich and easily interpret-
able graphical representation. In addition to the coordi-
nates and score, each data point is associated with informa-
tion necessary to link data points from a common source
together and a color to distinguish it graphically. Optional
annotation is allowed. However, the precise shape or
placement on the screen of an object cannot be stored
explicitly; this is a property of each particular viewer, and
only generic attributes can be specified in SFS. This
follows the idea behind the HTML markup language. The
SFS format is likewise intended to work with browsers via
the World Wide Web, using SFS-viewing helper applica-
tions.

Recently, two systems for sequence feature markup
were described that are based on XML, which is an
extension of HTML: BIOML11 and BSML.12 XML is a
structured format for data exchange that is becoming
increasingly popular, particularly for describing data ob-
jects of hierarchical nature. However, because of the
flexibility of XML to describe in principle any data with
any syntax and semantics, writing an XML parser is far
from trivial. We do not consider typical sequence features
complex enough to motivate the complexity of generating
and parsing XML. The main motivation for inventing SFS
was to keep the format so simple that it becomes almost
trivial to generate and parse the data, yet powerful enough
to describe all typical types of features. In principle, an
XML block corresponds to a field in SFS, hence converting
SFS to XML and vice versa is straightforward. Hierarchi-
cal levels are not usually used for describing sequence
features, but multiple attributes may be, for example, the
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color and shape of a feature. The tabular SFS solves this by
concatenating multiple attributes in a comma-delimited
list in a single field. Because XML has gained popularity in
the bioinformatics community, we provide a tool for conver-
sion of SFS to XML and allow the results on the WWW
server to be returned in XML.

A simple data format similar to SFS also exists in
ACEDB for importing “user segments” into the sequence
map display. Another format used to exchange data be-
tween a number of gene prediction groups is the GFF
format for gene-finding features (http://www.sanger.ac.uk/
Software/GFF/), which is now also supported by ACEDB.
Both formats support one single data type for sequence
segments. Because GFF is essentially a simpler version of
SFS, it is also supported directly by the viewers presented
here.

We describe here two graphical viewers that support the
SFS format and integrate segment and curve features into
their rather specialized graphical analysis: the Dotter
dot-plot program and the Blixem database-search results
viewer. Previous versions of these programs had some
rudimentary displays of segmental features, but they have
now been upgraded to accommodate any number of SFS
data series.

Dotter13 is a full dot-plot calculation program that stores
the score of each cell in a dot-matrix. The stringency of the
dot-plot analysis can be set interactively by using Dotter’s
dynamic “Greyramp” tool during viewing of the plot,
without having to recalculate the dot-matrix. Displaying
sequence features calculated by other programs, together
with a self-dot-plot, is particularly useful for analyzing
internal repeats and regions of compositional similarity.
Similarly, Dotter can be used to analyze whether features
of two different sequences make sense in the context of the
similarity provided by a dot-plot. The size of the “sliding
window” used to generate the dot-plot is, by default, set to
the expected length of a high-scoring segment pair in
Dotter but can also be set manually to focus on repeats of a
certain periodicity. It is often useful to explore the dot-plot
with different window sizes. Potentially, a window size of
1, showing all similarities at the single-residue level,
contains the maximum compositional information content,
but this tends to obscure diagonals corresponding to
repeated motifs.

Blixem1 shows database matches generated in a BLAST
search in a slave-master alignment. It is valuable to
combine sequence features, which may, for example, sug-
gest domain boundaries or functional characteristics, to-
gether with the database matches, thus achieving a more
accurate interpretation. Blixem has two panels; the top
panel shows a schematic overview of features and data-
base matches along the entire query sequence or in a
zoomed in region. A sliding box in the overview panel
frames a region that is displayed in the bottom panel, in
which features and database matches are shown in colored
residue letters. Blixem can also be used without showing
BLAST matches, in which case it simply acts as a general
graphical data viewer for any sequence feature.

We focus here on applications of the SFS format for
detailed analysis of compositional and repetitive protein
sequence features, and for parameter calibration, using
readily available calculation and prediction programs. For
these particular programs, we provide user-friendly scripts
to run them, convert the output to SFS, calculate various
profile curves, and to view the combined output in Dotter
and Blixem. The entire package of scripts, parameter sets,
and viewers is called SFINX. The scripts dotOmni and
blxOmni run all incorporated analyses and present the
results in a viewer as a single action. Additional analysis
programs can be incorporated into the system with little
effort.

RESULTS

In this section, we show particular applications of the
SFINX package to analyses of compositionally biased and
repetitive regions, transmembrane segments, and a-heli-
cal coiled-coils in amino acid sequences. The role of graphi-
cal visualization needs to be understood in the context of
the underlying theories, goals, and evaluation criteria of
each of these methods.

Compositional Complexity and Repeat Analysis

Many regions of contrasting compositional bias occur in
both nucleotide and amino acid sequences.3,14–16 Investiga-
tion of local compositional complexity and periodicity is
informative at an early stage of the analysis of a new
protein sequence, particularly when results can be inter-
preted together with local matches from database
searches.2,17 In natural protein sequences, there is a
strong tendency for compact globular folded domains to
have a high complexity of composition that resembles a
“random” distribution of amino acid frequencies.16,18 In
contrast, compositionally biased regions of lower complex-
ity correlate in most cases with nonglobular, extended, or
intrinsically unstructured regions.18–20 Numerous low-
complexity protein regions are involved in crucial molecu-
lar functions and interactions, but, in general, they are
relatively intractable to structural investigation by crystal-
lographic methods, in contrast to globular domains.16

Increasingly, NMR methods are yielding information on
the dynamics and interactions of conformationally flexible
low-complexity domains.19

Compositional complexity analysis provides, therefore,
a general method for investigating architectural features
of polypeptides, especially for making provisional assign-
ments of some domain boundaries in multidomain pro-
teins.2 Simple complexity measures and segmentation
algorithms were described previously (SEG and PSEG, for
protein sequences; NSEG for nucleotide sequences).3,16

These identify optimal segments of low complexity, subject
to parameters (“window length,” “trigger complexity,” and
“extension complexity”) that control the stringency and
granularity of the analysis. Relatively long windows, for
example 45 residues, are often appropriate when SEG is
used in searches for long, potentially nonglobular regions
of proteins.2,18 However, a much more comprehensive
analysis is achieved by using a range of parameter values
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and by integrated visualization of several measures of
sequence complexity. Complexity profiles, calculated at
different sliding window lengths, and self-similarity dot-
plots, also provide useful visual checks on the actual data
underlying the algorithmically assigned segments.

Low-complexity segments may have approximate or
exact sequence repeats or may lack regular or recurrent
patterns. The attribute of regular periodicity can be ana-
lyzed independently of overall compositional complexity,
by calculating the sequence complexity only for residues
that are spaced at a defined interval from each other. This
is implemented in the SFINX package using the PSEG
program described previously.2

A complementary approach, named HISEG, is also
implemented in the package. This variant of the SEG
algorithm reports optimized sequence segments of high,
rather than low, complexity. HISEG segments have the
greatest local compositional complexity (or greatest “ran-
domness”) based on a uniform distribution, or any arbi-
trarily specified distribution, of amino acid frequencies,
subject to the same stringency and granularity parameters
as SEG. In practice, HISEG is less precise than SEG for
definition of the boundaries between adjacent regions of
contrasting complexity, because optimal matches to the
target frequencies tend to extend beyond high-complexity
segments into more biased regions (Wootton and Feder-
hen, unpublished). Consequently, the segments predicted
by HISEG often overlap those assigned by SEG, and the
latter segments usually more accurately indicate the appro-
priate boundaries. Nevertheless, the complementary prop-
erties of HISEG and SEG are valuable when the results of
both methods are viewed together, because their predic-
tions tend to correspond approximately to, respectively,
globular and nonglobular domains, as illustrated below.

To accommodate the different types of compositional
complexity, we run SEG and display entropy curves with
four different window sizes: 12, 25, 45, and 75. For each
window size, SEG is run with three empirically selected
parameters for “stringent,” “medium,” and “relaxed” modes.
For stringent mode, we used trigger and extension cutoffs
of (2.0, 2.3), (2.95, 3.25), (3.3, 3.65), and (3.55, 3.75) for the
different window sizes. For medium mode, we used (2.2,
2.5), (3.0, 3.3), (3.4, 3.75), and (3.65 3.85), whereas for
relaxed mode we used (2.35, 2.65), (3.15, 3.45), (3.5, 3.8),
and (3.7, 3.95). PSEG is run with periodicities 2 through 12
with trigger and extension complexity cutoffs set to 1.5.
These cutoffs were set empirically to mainly reveal low-
complexity segments of significance.

Coiled-Coil Analysis

A particular form of repetitive protein sequence is the
heptad repeat found in most a-helical coiled-coil proteins.
These coils can consist of either two or three helices wound
around each other in an extended rod-like structure.
Lupas et al.4 developed a general prediction method for
predicting coiled-coil subsequences, based on the position-
specific biases within the heptads. In the present implemen-
tation, COILS2,21 predictions can be run by using two
scoring matrices, “MTI” and “MTIDK,” which are based on

different sets of examples. One may also vary the window
length and run it with or without position-specific weight-
ing. It is generally inadequate to use only a single combina-
tion of these parameters, because false-positive predic-
tions tend to occur with some of them. However, a good
judgment of the appropriate balance between sensitivity
and specificity can be achieved by using 12 combinations of
these options and comparing the results graphically, as
implemented in the SFINX package. These 12 parameter
combinations are obtained by using each of the four
possible combinations of matrix and weights, with the
three window sizes 14, 21, and 28.

Combined Complexity and Coiled-Coil Analysis

Sequences encoding coiled coils always contain regions
of low sequence complexity and short repetitions. The
common type of coiled coil with a heptad repeat, the target
of COILS2, is normally associated with low complexity
segments reported by SEG with the above parameters. In
addition, most such sequences give a PSEG segment in
period 7 only, but this is not always the case because many
different types of coiled coils exist. Of 272 sequences from
SWISS-PROT 3922 with annotated coiled coils of length
100 or more, 57% (154) produced a PSEG period 7 seg-
ment. Globular proteins generally do not produce such
segments. In PDB,23 which consists of mainly globular
proteins, 1% (128 of 8,997) of the sequences produced a
PSEG period 7 segment. It should be noted that alterna-
tive types of coiled coils (e.g., the triplet type found in
collagen) is not detected by COILS2 but is readily detected
by PSEG.

Figure 1 illustrates the value of combined interpretation
by using the complementary approaches of complexity and
coiled-coil predictions with different parameters. In this
example, the N-terminal nonglobular region of T. ther-
mophilus seryl tRNA synthetase is known from a high-
resolution crystal structure determination to be mostly an
extended, antiparallel, two-stranded coiled-coil (PDB:
1SRY). The results with dotOmni [Fig. 1(a)] show a strong
agreement in predicting the approximate position of this
domain, among the different parameter sets for the two
algorithms. SEG assigns the entire nonglobular domain
and COILS2 identifies the coiled-coil part that has heptad
repeats. HISEG results are complementary to SEG and
correspond to the globular domain. PSEG supports the
presence of a heptad repeat by reporting a segment of
period 7 in the same region, but not in any other period. An
additional segment at residues 280–310 gives a positive
signal with some of the parameter sets, particularly with
COILS2 at its shorter window length settings of 14 and 21
[Fig. 1(a)]. However, no PSEG segment is reported. The
three-dimensional structure [Fig. 1(b)] confirms that this
segment is not a coiled-coil: it is actually a relatively
amphiphilic surface a-helix of the globular domain. Figure
1c illustrates the greater structural mobility of the non-
globular domain, suggested by the experimentally deter-
mined crystallographic temperature factors. This N-
terminal domain, and also neighboring loops in the globular
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domain, make a substantial conformational shift on bind-
ing tRNA.24

In contrast with 1SRY, in xylose isomerase from Strepto-
myces rubiginosus (Fig. 2), the C-terminal domain is
known from the crystal structure (PDB:1XIS) to be a
nonglobular extension that wraps round another subunit
of the tetramer, but this region does not contain any
coiled-coil conformation. SEG identifies this structure as
having relatively low compositional complexity, shown as
segments together with an alignment of database matches
[Fig. 2(a)] and as highlighted region of the 1XIS structure
[Fig. 2(b)], whereas COILS2 gives negative results. This
example illustrates the ability of SEG to identify a non-

globular region on the general basis of sequence complex-
ity data. In this case, there are no regular repeats or
sequence patterns that can be modeled on the basis of a
known structural class such as coiled-coil. Several other
examples of relatively long, low complexity regions, that
are identified by SEG in protein sequences of known
crystal structure, correspond to parts of less well-deter-
mined electron density, or in many cases are “missing”
from the crystallographic data, suggesting structural flex-
ibility16 (Wootton, unpublished).

Combining coiled-coil and compositional complexity anal-
ysis can also be used to detect if other types of low
complexity regions cause false prediction of coiled-coils.

Fig. 1. Combined coiled-coil and sequence complexity analysis applied to seryl tRNA synthetase (PDB:1SRY). A: The graphical output in Dotter
produced by the dotOmni script. Relevant feature series from PSEG, SEG, and COILS2 were selected. The dot-plot was calculated with a window size of
42. B: Actual structure of one monomer in 1SRY. The segments found by SEG low-complexity analysis and COILS2 are marked dark in the structure.
The extended N-terminal region, which is found with all parameter settings, is a typical coiled-coil. However, the short segment detected around residue
300 is not a coiled-coil, but merely an amphipathic surface helix. Indications that this was a false-positive prediction include the facts that no PSEG
low-complexity segment of period 7 was found in this region and that only some COILS2 parameter settings predict it. Such short spurious predictions
are rather common; hence, only looking at one of the coiled-coil predictions might give a misleading result. C: The 1SRY structure colored according to
the crystallographic temperature factors. High-temperature (flexible) residues are dark, whereas rigid residues are light. The flexible region corresponds
to the N-terminal segment predicted as coiled-coil.
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Fig. 2. Analysis of nonglobular segments that are not coiled-coils, applied to xylose isomerase (PDB:1XIS).
A: Blixem display of results produced by the blxseg script (selected feature series shown) together with
database matches reported by BLAST. The C-terminal region is found to have low-sequence complexity,
suggesting that it has an irregular, nonglobular structure. This region is only present in some homologs. B:
Actual structure of one monomer in 1XIS. The low-complexity segment found by SEG is marked dark and
corresponds to an extended, nonglobular tail with a partly irregular structure. Because this extended segment
is not of the coiled-coiled type, COILS2 does not detect it.
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Figure 3 shows the blxOmni results for the C. elegans
protein C25A11.4A. COILS2 gives a strong coiled-coil
signal with most parameters, and SEG indicates low
complexity. However, PSEG produces repetitive low-
complexity segments in a wide variety of periods, which
suggests that the coiled-coil prediction was fooled by a
strongly biased sequence composition. The residues re-
ported by PSEG, visible in the Blixem window in Figure 3,
indicate that the region is very rich in glutamate and
argninine. This “oversensitivity” to regions with charged
residues was also noted by the authors of COILS2. This
analysis further illustrates that COILS2 alone, in the
absence of complexity and periodicity analysis, would
probably give a misleading concept of the nature of this
sequence.

Transmembrane Analysis

A special case of biased sequence composition are re-
gions of the polypeptide that span a membrane. Because of

the lipid environment, the protein is constrained to hydro-
phobic residues, particularly for a-helices that are exposed
on all sides to the lipids. Transmembrane a-helices that
have hydrophilic interactions with other helices are gener-
ally less hydrophobic. Sophisticated transmembrane pre-
diction programs improve accuracy by exploiting the differ-
ence in charged residues between loops on the cytoplasmic
and noncytoplasmic sides of the membrane.25–27 The most
striking difference is the preference for the positively
charged lysine and arginine on the cytoplasmic side.
Incorporating such signals also allows the topology (i.e.,
the orientation relative to the cytoplasm) to be predicted.
Transmembrane segment prediction is not only important
from a structural point of view but also gives a strong
indication of a protein’s localization. Transmembrane pre-
diction programs are prone to predict signal peptides as
integral membrane segments.

Figure 4 shows the output of four transmembrane
prediction programs of this type, TMHMM,28 HMMTOP,29

Fig. 3. Coiled-coil or not? SFINX analysis of C. elegans protein C25A11.4A. The blxOmni output shows that
the region predicted by COILS2 to contain a coiled coil, also features very low-sequence complexity in various
periodicities, as reported by PSEG. The coiled-coil prediction is unlikely to be correct because the region is
much more biased toward charged residues than a typical coiled-coil, and there is no preference for
low-sequence complexity in period 7. A more likely scenario is that this is a charged cluster with a flexible or
irregular folding pattern.
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MEMSAT,30 and PHDHTM,31 together with hydrophobic-
ity curves for a given window length according to two
scales.32,33 Also shown are signal peptide features from
signalP,34 including the segment between the N-terminus
and the most likely cleavage site if one is found within the
first 50 residues. Positively charged residues (arginine and
lysine) are marked as boxes to show whether they cluster
on the cytoplasmic side. The hydrophobicity scales are
highly correlated but can differ in some cases; for example,
the transmembrane segment around residue 300 in the
example in Figure 4 is much better supported by the
Kyte-Doolittle curve than by the Black-Mould curve. The
Dotter view features a dot-plot display of the query
sequence versus a randomly generated sequence of hydro-
phobic residues according to a distribution typical for
transmembrane segments. This way, the Dotter Greyramp
tool can be used to see the relative strength of transmem-
brane propensity for different regions.

In the example, rat glycine receptor beta chain precursor
(SWISS-PROT: P20781), all four programs predict differ-
ent topologies. However, looking vertically at individual
TM segments, five of them are supported by three of the
four methods, although by different sets of methods. The
orientation N-in is also supported by three methods (assum-
ing that the N-terminal segment predicted by HMMTOP is
a cleaved signal peptide). TMHMM and MEMSAT predict
fewer segments than the consensus, whereas HMMTOP is

the only method that predicts the signal peptide as a
transmembrane segment. The SWISS-PROT annotation is
consistent with the TMHMM prediction, which lacks the
segment around residue 90 that was predicted by the three
other programs. Given the presence of a signal peptide, the
SWISS-PROT/TMHMM topology appears correct. The seg-
ment around residue 90, predicted by the three other
programs, is not strongly supported by the hydrophobicity
curves or the dot-plot and, therefore, probably represents a
buried helix in a large extracellular domain. Because the
N-terminal part of this globular domain contains clusters
of positively charged residues, prediction algorithms can
easily be fooled to force this part over to the cytoplasmic
side for a better score. This example illustrates that taking
the consensus prediction does not necessarily produce the
correct prediction, but assisted with underlying propensi-
ties and dot-plots, the predictions can be validated and a
correct result can be achieved.

Using the SFINX WWW Server With Blixem and
Dotter as Helper Applications

The analyses described here can be achieved without
installing the assortment of back-end analysis programs
and the SFINX package locally. It is sufficient to install
the Dotter or Blixem viewers as helper applications to a
web browser and run all prediction programs on the CGB
web server at http://www.cgb.ki.se/SFINX. The web page
allows the sequence complexity, structure, and transmem-
brane analyses to be turned on or off individually. The
Blixem view can include BLAST results from a “netblast”
search of the NR database at the NCBI. See instructions in
the web page on how to set up Blixem and Dotter as helper
applications.

MATERIALS AND METHODS
Programs and Availability

The facilities described here are available in Blixem
version 3.0 and Dotter version 3.0. Both these programs
are written in C and use the ACEDB graphics library.10

Binaries are provided for X-windows on Unix workstations
and Windows 95/98/NT. To parse output from BLAST to
view in Blixem, a filtering program MSPcrunch is neces-
sary. Dotter is available at ftp://ftp.cgb.ki.se/pub/prog/
dotter. Blixem and MSPcrunch are available at the same
ftp servers, but in the directory MSPcrunch1Blixem in-
stead of dotter. Documentation on how to run Dotter and
Blixem with SFS data can be found at http://www.cgb.ki.se/
cgb/groups/sonnhammer/Dotter.html and Blixem.html.
Both allow the user to control the display of the features
with a “Feature Series Selection Tool” [Fig. 1(a)] in which
each series can be individually turned on or off. The
capability of selectively showing the series is crucial since
by default a large number of series are generated, of which
normally only a few are relevant at one time.

The connection to external programs was done by csh
and gawk scripts (see Table I) which are available at
ftp://ftp.cgb.ki.se/pub/prog/SFINX.

The SEG, PSEG, HISEG, and NSEG programs are
freely available at ftp://ncbi.nlm.nih.gov/pub/seg. COILS2
was downloaded from ftp://alf.biochem.mpg.de/Coils.

Fig. 4. Combined transmembrane topology analysis, applied to a
glycine receptor (SWISS-PROT:GRB_RAT). The dotTM output shows a
dot-plot of the query sequence versus a randomly generated sequence of
hydrophobic residues, along with the results from signalP and four TM
prediction methods (written below the prediction), followed by positively
charged residues and hydrophobicity curves from two different scales.
The topology predictions are marked according to dark 5 in the mem-
brane; shaded 5 cytoplasmic loop; white 5 noncytoplasmic loop. All four
predictions are different—which one is correct? The dot-plot and hydropho-
bicity curves indicate that the TMHMM prediction is most likely the correct
one.
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See http://www.cbs.dtu.dk/services/TMHMM/ for acquir-
ing TMHMM, http://www.enzim.hu/hmmtop/ for HMMTOP,
http://insulin.brunel.ac.uk/;jones/memsat.html for MEM-
SAT, and ftp://cubic.bioc.columbia.edu/pub/rost/ for PHD.

Generic Sequence Feature Series Data Format

The “SFS” data format is a “meta-language” between
nongraphical computation programs and graphical view-
ers that allows generic data exchange for visualization
purposes. To make it as universal as possible, the format
mainly supports only the core data. Information such as
screen placement of the objects, fonts, order of the series,
and so forth were explicitly avoided, because such features
are better controlled interactively in the graphical viewer.
The SFS specification follows below. By “data point” we
mean the smallest unit of data, either a segment or an
XY-value pair in a curve.

1. Each data point is associated with a named series; one
series can contain any number of data points of any
number of data types.

2. Each data point is stored on one line (,10,000 charac-
ters).

3. The fields in a line are separated by white-space
characters, which are not allowed within fields.

4. SFS data should be preceded by a header line with the
words “# SFS format 1.0” for backward compatibility in
the future.

5. SFS data should be preceded by a data type specifier;
currently one of:
# SFS type 5 SEG
# SFS type 5 XY ,data….
# SFS type 5 HSP
# SFS type 5 GSP

# SFS type 5 GFF
# SFS type 5 SEQ ,data….

The SEG type specifies that segment data follow; XY
that curve (XY plot) data follow; HSP (“High Scoring Pair,”
as in the BLAST programs) indicates that ungapped
pairwise matches follow; and GSP (“Gapped High Scoring
Pair”) that gapped matches follow. GFF is included for
compatibility with the existing GFF format. SEQ data are
the amino acid or nucleotide sequence from which the SFS
data were generated: visualization tools often require the
original sequence. For segment data (SEG, HSP, GSP, and
GFF), properties such as color and annotation is given per
segment, whereas for data of XY type, these are given once
for an entire curve. All XY coordinates are considered to
belong to one curve until the next “# SFS type 5” line.
However, one XY series can contain any number of curves.

6. For data of type SEG (segment data), the format of each
segment is: ,score. ,seqname. ,seriesname.
,start. ,end. ,look. [annotation]

These fields are specified as:

,score. [int] The score of the segment1

,seqname. [string] The sequence that the feature
belongs to2

,seriesname. [string] Name of series that these data
belong to

,look. [string, comma separated list in one
word] The appearance, for example,
color3

TABLE I. List of the Scripts in the Package Presented Here That Are Coupled to Dotter and Blixem Analysis†

Front-end
scripts

Runs
programs Helper scripts

Sequence complexity analysis by SEG with multiple parameter sets blxseg
dotseg

seg
pseg
hiseg

SFSseg
seg2SFS
pseg2SFS
SFSentropy

Secondary structure and accessibility prediction by PHD and coiled-coil prediction
by COILS2 with multiple parameter sets

blxStruct
dotStruct

phd sec
phd acc
coils2

SFSstruct
phdsec2SFS
phdacc2SFS
coils2SFS
coils2script

Transmembrane prediction by TMHMM, HMMTOP, MEMSAT, and PHDHTM;
hydrophobicity plots

blxTM
dotTM

tmhmm
hmmtop
memsat
phd htm
signalp

SFSTM
TMHMM2SFS
HMMTOP2SFS
memsat2SFS
phdhtm2SFS
signalp2SFS
signalp2seq
hydroph

Integrated complexity, coiled-coil, and transmembrane analyses BlxOmni
DotOmni

All of the above All of the above

†Note that all Blixem displays can be combined with output from BLAST. All Dotter scripts except blxTM produce a self-dot-plot; blxTM makes a
dot-plot of the query sequence and a randomly generated hydrophobic sequence.
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,start. [int] Start coordinate of segment
,end. [int] End coordinate of segment.
[annotation] [strings] Optional description of the

segment

7. For data of type XY (curves), the format of the type
specifier is: # SFS type 5 XY ,seqname. ,se-
riesname. ,look. [annotation] where the fields are
the same as specified for the segment data under 6. All
lines until the next “# SFS type 5” line must contain XY
data, of which the format is: ,x. ,y. specified as:

,x. [int] Residue number in sequence
,y. [int] Y-value at residue x.1

8. For data of type HSP: ,score. ,qname. ,qframe.
,qstart. ,qend. ,sname. ,sframe. ,sstart.
,ssend. ,sequence.

These fields are specified as:

,score. [int, 0–100] The score of the segment
,qname. [string] Name of the query sequence
,qframe. [string] Frame of the query segment,

“11,” “12,” “13,” “21,” “22,” “23”
,qstart. [int] Start coordinate of query segment
,qend. [int] End coordinate of query segment
,sname. [string] Name of subject sequence
,sframe. [string] Frame of subject segment
,sstart. [int] Start coordinate of subject segment
,ssend. [int] Start coordinate of subject segment
,sequence. [string] Sequence of matching subject

segment

The annotation of each sequence may be given on the
next line, preceded by “# DESC.”

9. For data of type GSP: ,score. ,qname. ,qframe.
,qstart. ,qend. ,sname. ,sframe. ,sstart.
,ssend. ,sequence.

where the fields are the same as specified for the
segment data under 8. All lines until the next “# SFS
type 5” line contain the gapped pairwise alignment, in
the form of pairwise starting points and lengths of each
ungapped segment (block). It is assumed that regions
between ungapped blocks contain an insertion in one
sequence only, whereas the other sequence has a zero
distance between two adjacent blocks. The format to
specify each ungapped block is: ,qstart. ,sstart.
,len. specified as:

,qstart. [int] Starting point in query sequence.
,sstart. [int] Starting point in matching database

sequence (subject).
,len. [int] Length of the ungapped block (number

of residues).

10. For data of type GFF: ,seqname. ,seriesname.
,look. ,start. ,end. ,score. ,strand. ,trans-
frame. [annotation] where the fields are the same as
specified for the segment data under 6, except:

,strand. [char] For DNA, the strand ‘1,’ ‘-,’ or ‘.’
,transframe. [int] For coding DNA, the frame of the

codons. ‘0,’ ‘1,’ ‘2,’ or ‘.’

See (http://www.sanger.ac.uk/Software/GFF) for de-
tails on the GFF format.

11. For data of type SEQ, the format of the type specifier
is: # SFS type5SEQ ,sequence. ,seqname. [anno-
tation] where the fields are the same as specified for
XY data under 7, except:

,sequence. @[int] Ordinal number of provided se-
quence preceded by ‘@’: “@1,” “@2,” etc.
This is necessary when multiple se-
quences are included, for instance for
Dotter.

All lines until the next “# SFS type 5” line contain the
entire query sequence. No formatting characters should be
used in the sequence.

Footnotes (including implementation-specific details in
Blixem and Dotter):

1. For simplicity, the score is required to fall between 0
and 100; the raw score must thus be rescaled. In many
cases, it is wise to rescale the score so that the “twilight
zone” scores fall in the 0–100 range, whereas all clearly
significant scores are converted to 100. This is advanta-
geous for visualization purposes, because it focuses the
analyst’s attention to features that require critical
evalutation. The actual score of clearly significant fea-
tures is normally not important.

2. Blixem and Dotter can for simplicity use special short-
hand codes for the field ,seqname.. “@1” means the
horizontal sequence, and “@2” the vertical sequence.

3. The ,look. field contains information of the appear-
ance of a particular feature, for example, its color,
shape, line thickness, and so forth. Multiple attributes
are allowed to be specified as comma separated lists, in
which the attributes are concatenated to one word with
a single comma character as separator (no space before
or after the comma). The exact wording and meaning of
the look attributes need to be specified in the definition
as “magic tags.” In SFS 1.0, SEG data are restricted to
colors, and XY data to color and a drawing mode
(“interpolated” or “partial”). By default, XY curves are
linearly interpolated in regions where no data were
given, but if “partial” is used in the look field, the curve
is only drawn in the specified regions. Interpolation
greatly simplifies the specification of straight lines,
which are commonly used for indicating thresholds and
so forth. The colors in Dotter and Blixem are limited to
the color names used by ACEDB, which allows 32
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common colors (see http://www.cgb.ki.se/cgb/groups/
sonnhammer/Dotter.html). Aside from parital or inter-
polated, no shape attributes are specified in SFS 1.0.
Alternative shapes might be useful, particularly for
DNA sequence features such as introns and splice sites,
but these can easily be accommodated as XY curves.

4. For backward compatibility, Blixem also still supports
the old SEQBL format (,score. ,qframe. ,qstart.
,qend. ,sstart. ,ssend. ,sname. ,sequence.),
which is a simpler version of the generic HSP data type
specification.

5. GSP data are currently not supported in MSPcrunch
and Blixem. However, MSPcrunch can turn gapped
HSPs from gap-BLAST into pseudo-ungapped HSPs, in
which deletions in the subject sequence are shown as
gaps, whereas insertions are collapsed. These can be
displayed in Blixem with almost no loss of information.

An example containing some segments and a curve to
mark up a 200-residue-long sequence is shown below. A
threshold line is specified in the last three lines.

# SFS format 1.0
# SFS type 5 SEG
100 @1 TM 1 38 yellow TM prediction: brown 5 TM,

yellow 5 cytoplasmic
100 @1 TM 39 61 brown
100 @1 TM 62 73 white
100 @1 TM 74 99 brown
100 @1 TM 100 112 yellow
100 @1 TM 113 133 brown
100 @1 TM 134 152 white
# SFS type 5 XY @1 hydrophob green hydrophobicity
1 10
36 10
41 90
59 90
64 10
71 10
76 90
97 90
102 10
110 10
115 90
131 90

136 10
152 10
# SFS type 5 XY @1 hydrophob black
1 50
200 50

DISCUSSION

The main conclusion from this work is that the picture of
sequence features becomes clearer as more types of analy-
ses and more parameter combinations are explored. Many
analysis methods have been developed by using proteins of
“typical” amino acid composition and may produce highly
misleading results when applied to protein sequences of
“atypical” composition, that is, strongly biased toward a
few amino acids. Therefore, it is valuable to also look at
sequence composition directly, to be able to judge whether
a feature prediction may have been influenced by biases in
sequence composition. Many programs for predicting coiled
coil and transmembrane are prone to produce mispredic-
tions on sequences of biased composition. We provide a set
of general rules for assigning structural class based on
compositional features in Table II; however, it is important
to keep in mind that all of the features are only indicative
and not conclusive. They need to be judged in the context of
local sequence composition biases and repeats to avoid
false predictions. This context is provided by the graphical
SFINX package described here.

The viewers in the SFINX package use the SFS data
exchange format for importing predictions and data from a
variety of sequence analysis programs. The SFS data
format is meant to be a generic vehicle for exchanging
sequence features including curves, functioning as a meta-
language between computing programs and graphical
viewers. We believe that such a system will accelerate the
development of future computation programs, because
providing such programs with an interface for the simple
SFS format is clearly easier than developing a entirely
new viewer. It may also stimulate development of more
sophisticated and interactive results viewers. We hope
that an SFS viewer will soon be available in Java; in the
mean time, Dotter and Blixem can be used as WWW helper
applications under UNIX X-windows and Windows 95/98/
NT.

The SFS format currently fulfills the requirements of
the most fundamental generic tasks. There are a number

TABLE II. Guidelines for Interpreting Sequence Composition Derived Features to Assign the
Structural Class of a Protein†

Structural class Positive indications Negative indications

Non-globular, type coiled coil Coiled-coil support with many parameter sets
SEG low complexity
PSEG low complexity of period 7

Not supported by many coiled-coil parameter sets
HISEG high complexity
PSEG low complexity of other periods than 7

Non-globular, other types SEG low complexity
PSEG low complexity of various periodicities

HISEG high complexity

Transmembrane TM prediction supported by many methods
Supported by hydrophobicity propensities

SEG or PSEG low complexity
Overlap with signal peptide prediction

†The interpretation is significantly enhanced if these features are analyzed graphically in the context of dot-plots and matching sequences with
the SFINX package.
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of more specialized tasks that would profit from a special
data type, which we have not supported here. One example
is symbols for gene finding, where splice sites and introns
usually have a different layout than the common boxes.
This could in principle be indicated with ,look. at-
tributes specifying shapes, e.g., intron, splice5, or arrow.
However, to keep the SFS format as generic and as simple
as possible, and because most shapes can be well repre-
sented by XY curves, we have refrained from defining
these looks here. In most cases, it is, however, sufficient to
mark up features with a particular meaning using special
color codes.

One consequence of the SFINX package’s design is that
the scripts are preconfigured with certain parameter
choices. Thus, these are not interactively settable, but we
believe that our selection of parameters in the release and
on the web server will serve casual users well. More
advanced users will need to download the scripts and
analysis programs and can then easily modify the parame-
ters to their own choice.
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