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Profile hidden Markov models (HMMs) are used to model protein
families and for detecting evolutionary relationships between proteins.
Such a profile HMM is typically constructed from a multiple alignment
of a set of related sequences. Transition probability parameters in an
HMM are used to model insertions and deletions in the alignment. We
show here that taking into account unrelated sequences when estimating
the transition probability parameters helps to construct more discrimina-
tive models for the global/local alignment mode. After normal HMM
training, a simple heuristic is employed that adjusts the transition
probabilities between match and delete states according to observed
transitions in the training set relative to the unrelated (noise) set. The
method is called adaptive transition probabilities (ATP) and is based on
the HMMER package implementation. It was benchmarked in two remote
homology tests based on the Pfam and the SCOP classifications. Com-
pared to the HMMER default procedure, the rate of misclassification was
reduced significantly in both tests and across all levels of error rate.
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Introduction

Detecting protein relationships is central in
analysis of biological sequences. Often, character-
istics known to be true for one class of proteins
can be transferred to others that have similar struc-
ture or sequence as detected by computational
methods. The more sequences have diverged, the
harder it becomes to recognize true homology, and
at some point it becomes impossible. A lot of effort
has therefore been focused on improving detection
of remote homologs. Experiments have shown
that profile-based methods that draw on the
characteristics of many homologs in the search for
new ones do better than methods that look only
for pairwise homology.1 Among the profile-based
methods, profile hidden Markov models (profile
HMMs)2 – 4 have been shown to perform best.5,6

Since profile HMMs were first introduced for
modeling multiple sequence alignments, consider-
able refinements have been carried out on different

aspects of building the HMMs. Improvements
have, for example, been done to weighting
schemes,7 null models,8 prior emission
probabilities9,10 and modeling strategies.5,6 Data-
base libraries of HMMs6,11 – 13 have been developed
to aid annotation of genomes and to study relation-
ships between sequences and protein families.
These databases all use either of two widespread
profile HMM software packages: SAM3,5 and
HMMER.4

An HMM, as used in these packages, is a prob-
abilistic model of a protein family. Figure 1 outlines
the profile HMM architecture used by HMMER.
The structure is repetitive and a set of match, insert
and delete states (a node in HMMER jargon) is
used to model the columns of a multiple alignment
of the sequences. Match and insert states are
associated with probabilities for emitting each
amino acid, and transitions between states are
associated with transition probabilities. These are
posterior probabilities that are estimated by com-
bining data from the alignment with prior prob-
abilities. A consensus column (where all or most
sequences have a residue) in the alignment forms
a match/delete state while non-consensus columns
are assigned to insert states in the model. Prior
probabilities basically add extra counts to the
observations in the alignment, which helps to
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avoid zero probabilities caused by unobserved
amino acid residues, and increases model
generality and sensitivity by learning about unseen
events.

The standard HMM building procedure is to
estimate the model from a set of related sequences
(positives) so as to maximize the probability of
those sequences given the model. Such a procedure
focuses entirely on sensitivity, i.e. the ability to
detect all related sequences and thereby avoid
false negatives. However, it is also desirable not to
detect sequences that are unrelated to the model,
so-called false positives. In practice, this normally
entails specifying a score cut-off that separates
members from non-members. One could argue
that HMM parameter estimation should not focus
only on modeling the positive training sequences
optimally, but rather on maximizing the separation
of members from noise. This requires unrelated
(negative) training examples in addition to the
positive ones, to teach the HMM to discriminate
between them. It also requires a training algorithm
that is bound to be slower than the standard profile
HMM estimation, because it is using more training
data.

Suggestions of this kind can be found in the
literature. Mamitsuka14 proposed a method for
HMM estimation using both positive and negative
training sequences. In classification experiments,
this algorithm does better than similar algorithms
trained on only positive sequences. However, the
results are limited to modeling of only the motif
region of one protein family and the method
cannot compete with standard profile HMM esti-
mation in speed. Yet, it is interesting to see how
the negative sequences add information to the
HMM.

Another approach was taken by Eddy et al., who
proposed a method for better discrimination,
although training is done only on positive
sequences.15 This algorithm iteratively updates
sequence weights so that most weight is given to
highly divergent training sequences, and does not
explicitly tune internal state HMM parameters to
optimize the discrimination. HMMs have been
employed with support vector machines (SVMs), a
machine learning technique for classification.
Jaakkola et al. presented an SVM algorithm for
protein sequence classification where the so-called

kernel function used was derived from HMMs of
protein families.16 Both positive and negative train-
ing sequences belonging to appropriately chosen
families were used in the training process. In a
large-scale test on G-protein coupled receptors,17

the authors concluded that SVMs are superior at
detecting subtle differences between related
sequence families, but perform worse than HMMs
in remote homology detection.

Here, we propose a way to include negative
training examples for estimating profile HMMs.
Our algorithm uses a heuristic derived for the tran-
sition probabilities of the model and adjusts these
for better discrimination. The heuristic was
designed to be well-behaved and robust. It has
one weight parameter that was tested over a range
of values. We compared the method to the default
HMMER 2.3.1 package using two different remote
homology detection test sets (based on Pfam or
SCOP) and obtained consistently better discrimi-
nation at the cost of a moderate decrease in speed.

Our algorithm (called ATP for adaptive tran-
sition probabilities) was developed as an extension
of the freely available code from the HMMER soft-
ware package. When we say ATP, we thus mean
HMMER þ ATP, where ATP is a kind of “post-
processing” step. Briefly described, a standard
profile HMM is first estimated from a multiple
sequence alignment of training sequences. Then a
number of noise sequences are aligned to the
HMM, and those scoring highest are considered
further. On the basis of differences in the paths
that the positive and negative sequences follow
through the model, the main transition probability
parameters are adjusted. The idea is that if positive
and negative sequences use the same paths at a
particular node in the model, then the transition
probabilities are left unchanged. If not, the tran-
sition probabilities are adjusted to better fit the
positive sequences (and the negative sequences
less well).

Data

Two tests based on detection of remote homologs
were used to evaluate the performance of ATP in
comparison to default HMMER: one derived from
the Pfam database11 and one from the SCOP
database.18 SCOP is a database classifying all pro-
tein sequences having a known structure based on
structure, function and sequence. The unit of
classification is the domain; multi-domain proteins
are split into their domain components. The classi-
fication is hierarchical and in four levels: class,
fold, superfamily and family. Sequences belonging
to the same family are clearly similar by sequence,
suggesting a common evolutionary origin and
similar function. Families related to each other
with a low level of sequence similarity but with
structural evidence for a common origin are
grouped into superfamilies. At the next level, fold,
superfamilies having the same overall secondary
structure topology are grouped together, although

Figure 1. Overview of the “plan 7” architecture of
HMMER 2.3.1. D stands for delete state, M for match
state and I for insert state. Arrows indicate the allowed
transitions between states.
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no firm evidence of being evolutionarily related
exists. In this study we are interested in homology
detection at the superfamily level.

The ASTRAL database19 provides sequences cor-
responding to the SCOP domain classification
filtered to different levels of sequence similarity.
We took the ASTRAL 1.63 release filtered to 90%
residue identity. All instances of a family that had
at least ten sequences and for which the remaining
families in the superfamily had at least five but no
more than 50 sequences were considered. An
HMM was constructed from the family sequences,
and the remaining sequences in the superfamily
were used as positive test sequences. Sequences
belonging to any fold other than the training and
test sequences were used as negative test
examples. This procedure produced 70 training
families. The number of training sequences ranged
from ten to 62, the number of positive test
sequences from five to 48, and the number of nega-
tive test sequences from 7129 to 8025. Altogether
there were 1365 positive and 555,509 negative test
sequences.

In Pfam, protein domains are classified into
families on the basis of sequence similarity and
evidence of evolutionary origin and function.
While SCOP is biased to globular proteins for
which the structure is known, Pfam should have a
composition that better represents biological
reality. Pfam also provides manually edited align-
ments of the seed sequences in each family, which
is an advantage when building high-quality
HMMs. The construction of the Pfam-based test
set for our benchmark has been described.20 In
brief, we used the seed sequences from the Pfam
7.0 release. Families that could be divided into
two subfamilies with less than 20% sequence
identity between them were divided in this
fashion. The larger subfamily was used as training
set and the remaining subfamily as positive test
sequences. For Pfam, it is not safe to use sequences
from other families as negative test sequences,
since many of the Pfam families are related and
cannot be separated by a criterion such as different
fold in SCOP. We instead used reversed real
sequences as negative test examples. These were
fetched randomly from Swiss-Prot and are of
similar length as the training sequences.

The Pfam test set consisted of 373 families. The
number of training sequences per family ranged
from three to 437 (mean of 34) and the number of
positive test sequences from one to 34 (mean of
3.7). The number of negative test sequences was
5000 for each family, except for families with
sequences of length close to 1000 amino acid resi-
dues, where 2874 negative examples were used. In
total, this produced 1378 positive and 1,860,748
negative test sequences.

Assessment procedure

The comparison of the ATP algorithm to default
HMMER employed the same methodology for

both the SCOP and the Pfam benchmark test. A
profile HMM was constructed for each family
from the training sequences. The corresponding
positive and negative test sequences were matched
to the HMM and sorted in a list from best scoring
match to worst. Ideally, such a list should be
divided into two parts with all positive test
sequences first, followed by the negative test
sequences. However, for highly divergent families
this is often not the case. From the rank list, a cut-
off can be defined to minimize the number of mis-
classifications, i.e. to get as few false positives and
false negatives as possible. We add up these num-
bers for all families in the test to get the minimum
error rate (MER). This is a measure of the lowest
number of misclassifications one would get if
allowed to choose an optimal cut-off for each
family. As a complementary measure, we give the
number of false positives that are detected above
the highest-scoring negative sequence (over top
noise, OTN).

In large-scale annotation efforts it is generally
not possible to employ an MER-optimized cut-off
for each sequence family being modeled. The
MER value is therefore a somewhat artificial
measure. A more revealing way of comparing
methods is by plotting the number of true matches
versus false matches, similar to a coverage versus
error plot described by Brenner et al.21 All family
rank lists (corresponding to all HMMs) are merged
and the resulting total list is sorted by E-value. A
sequence’s E-value is the number of sequences
that would be expected by chance to score as high
as this sequence in a database of a specified size.
From the sorted list, the number of false positives is
plotted versus the number of false negatives. Com-
pared to the MER, this gives a better overall picture
of how one method fares in comparison to another.

Two sources of irreproducibility arise in our
analysis. First, HMMER calculates E-values empiri-
cally from randomly generated sequences. The
rank list of sequences for a particular HMM will
not change from one run to another but, when all
lists are merged and sorted on E-values, the sorted
list will not be completely reproducible. Second,
ATP generates negative training sequences
randomly and therefore the training will be
slightly different from time to time. We handled
the problem of reproducibility by plotting three
coverage versus error curves corresponding to
three independent benchmark runs. This illustrates
the variability in the results that can be expected.
For the MER values, we calculated the mean value
from the three runs.

Results

When comparing the MER values for ATP and
default HMMER, we found that ATP overall pro-
duced a lower MER value (Table 1). The difference
is clear for both the Pfam and the SCOP test. ATP
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detects more sequences above the highest-scoring
noise sequence (OTN).

This overall discrimination performance could
possibly be caused by a big improvement in a
large family at the expense of worsening the per-
formance for other, smaller families. To investigate
whether this was the case, we compared the MER
and OTN values of individual families, and
counted how many were better modeled by one or
the other method. Although we found that some
families did achieve better discrimination by
default HMMER, ATP performed better for most
families (Table 1). This shows that the ATP
improvement is not the result of overfitting to one
or a few families with many test sequences.

The same outcome was observed when the
number of true positives was plotted against the
number of false positives. We have chosen to
restrict these plots to less than 1000 false positives
found. ATP performs better than default HMMER

across all error rates; clearly so in the Pfam test
(Figure 2) and it is slightly better in the SCOP test
(Figure 3).

The ATP procedure requires some extra
computer time: estimating the models for the 70
HMMs in the SCOP test took 56 seconds using
default HMMER and 337 seconds using the ATP
procedure. Including the time it takes to calibrate
the models, necessary to get proper E-values, ATP
is about 1.55 times slower than HMMER (801
compared to 516 seconds).

To illustrate the effect of ATP, we use an example
where ATP performs particularly well in compari-
son to default HMMER: the Pfam family pyridoxal
phosphate-dependent enzyme (PF00291). The seed
alignment contained 98 sequences, which were
split into a training set of 91 sequences and a posi-
tive test set of seven sequences: 5000 reversed real
sequences acted as noise sequences. Figure 4
shows that an HMM built by HMMER from the
91 training sequences discriminates the positive
test sequences poorly from the noise: only three
test sequences get higher scores (lower E-values)
than the top-scoring noise sequence. However, if
the HMM is processed by ATP, all seven homologs
get higher scores (lower E-values) than the best
scoring noise sequence.

Discussion

We have described results using a heuristic to
improve profile HMM models for homology
detection. The heuristic adjusts the transition prob-
abilities of a profile HMM taking top-scoring
random sequences into account. Apparently, these
can reveal weaknesses in the model that allow
sequences unrelated to the sequence family to get
through the model with relatively high scores. The
improved performance of ATP was verified in two
different remote homology detection tests based

Table 1. Comparing ATP to default HMMER

Pfam test
(373 families)

SCOP test
(70 families)

ATP
HMMER
Default ATP

HMMER
default

MER
All 346 389 1131 1146
Number of families

better modeled
25 9 12 3

OTN
All 1000 966 220 203
Number of families

better modeled
23 9 11 4

The aggregated result for all families and the number of
families that one method models better than the other is
shown. A low minimum error rate (MER) and a high over top
noise (OTN) are desired. Mean values from three runs are
shown.

Figure 2. Coverage versus error
plots for the Pfam test sampling.
atp stands for ATP and def for the
HMMER 2.3.1 default procedure.
Curves from three separate runs
are shown because the plots are
not completely reproducible. The
total number of positive and nega-
tive sequences were 1378 and
1,860,748, respectively.
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on the Pfam and the SCOP classifications,
respectively.

Profile HMMs are statistical models of a multiple
sequence alignment. Emission and transition prob-
ability parameters are normally estimated by com-
bining the observed data in an alignment with
prior probabilities. The results here suggest that
this may not be the optimal way to estimate the
transition probabilities if we want optimally dis-
criminating models. ATP does not try to optimize
the likelihood of all positive sequences but instead
tries to improve discrimination. As this is done by
reducing the probability of transitions that are

exploited by noise sequences, normally the scores
become somewhat reduced. However, the absolute
value of the score is not relevant for measuring
discrimination. Furthermore, the reduction in
absolute score value is normalized when using
E-values, which leaves the negative sequences
essentially unchanged, while the positive
sequences get lower E-values, as illustrated in
Figure 4.

ATP uses a heuristic that is only one out of many
that are plausible. It may be of interest to the
reader that we first implemented a more rigorous
method, using the Forward algorithm. The

Figure 3. Coverage versus error
plots for the SCOP test. atp stands
for ATP and def for the HMMER
2.3.1 default procedure. Curves
from three separate runs are shown
because the plots are not com-
pletely reproducible. The total
number of positive and negative
sequences were 1365 and 555,509,
respectively.

Figure 4. Example of how ATP
can improve discrimination. The
seed alignment for Pfam family
PF00291 was split into training and
test sequences, and an HMM was
built from the training sequences
using HMMER (results in top
panel) or HMMER followed by
ATP (results in bottom panel). A
total of 5000 negative test sequences
(2) and the seven positive test
sequences (l) were scored to the
model. The E-value is the expected
number of matches, hence lower
E-values are more significant
matches. The ATP algorithm results
in an improved separation of posi-
tive and negative test sequences.
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Forward algorithm considers the likelihood of each
and every path through the model. Calculating
these likelihoods for all positive and negative
sequences, we could iteratively adjust all transition
probability parameters for better discrimination.
This algorithm was very slow and yet the results
were no better than those obtained by ATP, and
seemed prone to overfit training data.

Earlier, we analyzed how to empirically estimate
optimal transition prior probabilities and found
that a maximum-likelihood (ML) estimated prior
using a wealth of data was unable to produce
optimal discrimination.20 The probabilities into
and from deletions were critical. In multiple align-
ments, most deletions are longer than just one
residue, which is reflected in the relationship
between the parameters adelete-to-delete . adelete-to-match

in the ML-estimated transition prior. However,
this relationship is inverted in the empirically opti-
mized prior. In other words, reducing the a priori
probability for deletions gives much better dis-
crimination in homolog searches. However,
employing ATP gives considerably better results
than standard profile HMM estimation using this
best transition prior. Our interpretation is that
ATP, by taking non-related sequences into account,
can obtain a performance that is otherwise not
achievable.

Both the results presented here and from the
previous study on transition priors were obtained
running HMMER in the global/local mode, where
a sequence is aligned to the whole model. Global/
local mode is HMMER default and more sensitive
than the optional local/local mode†.22 Our test set
is not suited to test the local/local mode, as all
positive test sequences are full-length domain
sequences, hence we cannot draw valid con-
clusions on local/local performance of ATP. One
could argue, however, that ATP should have less
effect in local/local mode because here a sequence
does not have to get through the whole HMM but
can transit to the end state from any node.
Unrelated sequences will therefore possibly gain
less from parameters that are liberal with deletions
and thus benefit less from ATP.

Madera & Gough22 compared the HMMER and
the SAM packages, and showed that the search
algorithms perform similarly but that the SAM
algorithm for estimating HMMs from a sequence
alignment is superior to the HMMER algorithm.
Nevertheless, we have chosen to use the HMMER
package as a basis for our algorithm, one reason
being that the source code of HMMER is freely
available. We think, however, that the results
could be of relevance also to other packages. ATP
can be downloaded and be used by anyone who is
already running the HMMER package‡.

Methods

Algorithm

ATP starts with estimating a profile HMM from a mul-
tiple sequence alignment using hmmbuild (the HMM con-
struction program in HMMER). A number of sequences
are sampled randomly from the negative set and are
aligned to the HMM; those scoring highest are used as
negative training sequences. We now have a set of posi-
tive and a set of negative sequences. Based on the paths
these sets of sequences follow through the model, the
main transition probability parameters are adjusted. All
other probabilities (emission probabilities, special state
probabilities and transitions between those) are locked.

HMMER uses sequence weighting to compensate for
the fact that training sequences seldom constitute a
diverse and evenly spread sample. Two identical
sequences are thus assigned a relatively low weight com-
pared to more unique sequences. The more similar the
sequences, the lower the total weight, also called the
effective sequence number. In ATP, positive sequence
counts are based on these weights according to
HMMER’s default weighting scheme, while all negative
sequences are given an equal weight of 1.

ATP employs the Viterbi algorithm, i.e. considers only
the best path through the model. Note that all sequences
have to pass either the match or the delete state of each
node (Figure 1). The idea in ATP is to (1) look at the dis-
tribution of positive and negative sequences on match/
delete states at each node and (2) adjust the transition
probabilities in proportion to the difference in the distri-
butions. Transition probabilities related to insertions are
left unchanged.

First the Viterbi path is calculated for all training
sequences, and for each node the weighted number of
sequences that passes through match or delete state is
counted (cmatch

pos and cdelete
pos for the positives and cmatch

neg
and cdelete

neg for the negative training examples). These
counts are used to estimate two simple probability distri-
butions of positive and negative sequences (Dpos and
Dneg) on match/delete states. To avoid zero probabilities
an ad hoc pseudocount of 0.5 is added to each state (i.e.
1 in total). For example, at a particular node, Dpos is
estimated as:

Dpos ¼ ðDmatch
pos ,Ddelete

pos Þ

¼
cmatch

pos þ 0:5

1 þ cmatch
pos þ cdelete

pos

;
cdelete

pos þ 0:5

1 þ cmatch
pos þ cdelete

pos

 !
ð1Þ

Estimating Dneg is done similarly from the counts for the
negative training sequences. The relative entropy H is
then used as a measure of difference d between Dpos

and Dneg at each node:

d ¼ ðHðDposkDnegÞ þ HðDnegkDposÞÞ=2 ð2Þ

where, generally:

HðPkQÞ ¼
X

i

PðxiÞlog
PðxiÞ

QðxiÞ
ð3Þ

The relative entropy can never take on negative values
and equals 0 only if P and Q are identical distributions.
This means that d ¼ 0 if the paths of positive and
negative sequences are identical through a node in the
model, and increasingly higher the more divergent the
paths are. We can bound this between 0 and 1 using
1 2 e2d, which is 0 for d ¼ 0 and approaches 1 when d

† http://hmmer.wustl.edu/
‡ ftp://ftp.cgb.ki.se/pub/prog/ATP_HMM
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increases. The transition probabilities are now updated
as:

tnew ¼ toldð1 þ kð1 2 e2dÞÞ ð4aÞ

or:

tnew ¼ told=ð1 þ kð1 2 e2dÞÞ ð4bÞ

for each transition changed, where k is a parameter
governing the magnitude of change. For example, if
Ddelete

neg . Ddelete
pos at node l, we make it more “expensive”

to use this delete state. Transition probabilities into this
delete state are therefore decreased (equation (4b)) and
transition probabilities leading into the match state of
the same node are increased (equation (4a)). No
transition probability involving insert states is adjusted.
Finally, the probability parameters are renormalized to
sum to 1 for each node.

We ran a large number of tests to find out how ATP
performs with different parameter settings. We varied
the number of random sequences sampled, the number
of best-scoring random sequences kept for model adjust-
ment and the k in equations (4a) and (4b). The number of
best-scoring random sequences kept for model adjust-
ment was set to 10, which in our experience is suitable.
Table 2 shows how the performance varied with the
other two parameters. Sampling more sequences takes
longer, but adds little to discrimination improvement.
More important is the magnitude of change and an
optimal setting seems to be close to k ¼ 1: We set the
ATP parameters to 200 sampled sequences and k ¼ 1,
and used this in comparisons with default HMMER.

Details and settings

The SCOP training families were aligned using CLU-
STAL W 1.83.23 HMMs were built from the training
sequences using the default settings in HMMER. Default
settings means the models were configured for global/
local searches, i.e. a test sequence is aligned locally to
the whole model. Models were calibrated using
hmmcalibrate. Test sequences were scored to the model
using hmmsearch.
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