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ABSTRACT
Motivation: When predicting sequence features like trans-
membrane topology, signal peptides, coil–coil structures,
protein secondary structure or genes, extra support can be
gained from homologs.
Results: We present here a general hidden Markov model
(HMM) decoding algorithm that combines probabilities for
sequence features of homologs by considering the average
of the posterior label probability of each position in a global
sequence alignment. The algorithm is an extension of the
previously described ‘optimal accuracy’ decoder, allowing
homology information to be used. It was benchmarked using
an HMM for transmembrane topology and signal peptide
prediction, Phobius. We found that the performance was
substantially increased when incorporating information from
homologs.
Availability: A prediction server for transmembrane topology
and signal peptides that uses the algorithm is available at
http://phobius.cgb.ki.se/poly.html. An implementation of the
algorithm is available on request from the authors.
Contact: Erik.Sonnhammer@cgb.ki.se

1 INTRODUCTION
Hidden Markov models (HMMs) are successfully being
used in many different areas within bioinformatics. The
applications include transmembrane topology predictors
(Sonnhammeret al., 1998; Tusnady and Simon, 1998), signal
peptide predictors (Nielsen and Krogh, 1998), coil–coil pro-
tein predictors (Delorenzi and Speed, 2002), gene predictors
(Krogh et al., 1994b; Burge and Karlin, 1997), second-
ary structure predictors (Bystroffet al., 2000), sequence
alignment programs (Needleman and Wunsch, 1970) and
tools for sequence homology detection (Kroghet al., 1994a;
Eddy, 1998). In many of the applications, it makes sense
to take the homologs to the query sequence into consid-
eration, since sequence features are likely to be shared
between homologs. We present here a general HMM
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decoding algorithm that, rather than decoding a profile,
calculates the probabilities for sequence features from each
homolog individually before taking the alignment into
account.

1.1 Decoding a single sequence
An HMM can be used in two conceptually different ways: as
in the case of detecting sequence homology, where one asks
whether a query sequence fits a model, or as in the case of
the other applications mentioned above, where one is inter-
ested in determining an optimal path through a model. In the
former case, the score given by the forward algorithm, i.e.
the sum of probabilities of all paths through the model, is
considered the most accurate measure. In this study, we will
mainly discuss the latter case, where the path through the
model is of interest. For many such applications the Viterbi
algorithm, which finds the most probable path through the
model, is used. However, a drawback is that there might
be many similar paths through the model with probabilit-
ies that add up to a higher probability than the single most
probable path.

A way to recognize similar paths is to assign a common
label to the states that represent the same kind of sequence
feature (Krogh, 1994). For example when predicting protein
secondary structure, states representingα-helical amino acids
can be assigned one label, states that represent amino acids in
β-strands a second label and states representing amino acids
in loops a third label. In this setting, one could focus on the
labeling a sequence is predicted to have, rather than the exact
state path. We can determine the most probable labeling of
a sequence, i.e. the highest sum of probabilities of all paths
having the same way to label a sequence, with the 1-best
algorithm (Schwartz and Chow, 1990).

Rather than looking for the overall and most likely labeling
of a sequence, one is often interested in maximizing the num-
ber of positions that are correctly predicted. The posterior
label probability (PLP) is the probability of a label at a certain
position in the sequence, given the sequence and the model.
In other words, it is the normalized sum of probabilities of
all paths passing through the states with the label at a certain
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position of the sequence. To maximize the expected num-
ber of correct labels corresponds to selecting the label with
highest PLP for each symbol in the sequence. This kind of
prediction, however, is not guaranteed to be consistent with
the HMM itself. For example, in the case of transmembrane
topology prediction, results could be obtained where loops
being predicted on the translocated side of the membrane
are followed by a loop on the side that is not translocated
without the presence of an interconnecting transmembrane
segment. Such a prediction violates the ‘grammar’ of the
model.

Holmes and Durbin (1998) presented an algorithm for find-
ing a path that optimizes the expected accuracy, which could,
with an extension of their definition, be viewed as the sum of
the PLPs of a labeling. They call this the optimal accuracy
algorithm. Here we describe a similar algorithm, which finds
the maximal expected accuracy labeling consistent with the
grammar of the HMM.

1.2 Handling homologs
In many applications it is reasonable to assume that the pre-
diction accuracy is increased by taking the information from
the homologs into account, since the homologs often have the
same features as the query sequence.

Some of the previously published decoding algorithms that
take homologs into account do this by predicting features
for sequence profiles rather than individual sequences. The
Viterbi or 1-best algorithm is used to calculate a path through
the model common to all sequences in the profile. An ‘emis-
sion score’ of a state is calculated as a function of the vector
of individual amino acid emission probabilities and the vector
of relative amino acid frequencies at the position of interest
in the sequence profile. One method to calculate such a score
would be to use the scalar product to combine the two vectors
(Martelli et al., 2002; Söding, 2005). An alternative method,
that keeps the score as a probability, is to use the product of
the emission probabilities raised to the power of the corres-
ponding frequencies (Viklund and Elofsson, 2004; Edgar and
Sjölander, 2004).

A problem with these approaches, when dealing with
sequence feature prediction, is that gaps are handled either
as a symbol of its own or by assigning gap emission probab-
ilities proportional to the emission probabilities of the other
symbols in the same alignment column. This is a disadvant-
age since the model length may be confused by the fact that
a sequence profile contains gaps and inserts. The fact that
the length of an alignment usually grows with the number
of included sequences has to be compensated for, usually by
ignoring positions in the profile or columns in the alignment
where the query sequence contains a gap. This implies that
the signal from the length model of the other sequences will
be partly ignored.

A different approach is taken by Tusnady and Simon
(1998), who reestimate the parameters in the HMM on the

query sequence with an unsupervised Baum–Welch proced-
ure before making the final prediction with a Viterbi decoder.
When homologs are given, the reestimation is done on both
the query sequence and the homologs, and subsequently, the
new HMM is used for decoding the query sequence alone. In
this setting there is no need for alignments, but it suffers from
the problem that the model may give inconsistent predictions
for the homologous sequences, because predictions are done
independently.

In this work we describe a way to incorporate homology
information by superimposing the PLPs for homologs into
an average PLP matrix, which is used as input for the optimal
accuracy algorithm. The main advantage of our method is
that it applies the full probability model of the HMM to each
included sequence individually before the contributing signals
are merged. Thus, it recognizes the inherent grammar and
length modeling of the HMM.

2 ALGORITHM
2.1 Optimal accuracy decoding
In order to describe our amendment to the optimal accuracy
algorithm, we start by describing the algorithm in detail. The
algorithm comprises two steps: first, the PLPs of the query
sequence is calculated and second, based upon the PLPs, the
optimal accuracy path is determined.

Consider an HMM withN + 1 states with names from 0 to
N , where the state 0 represents the start and end state of the
HMM, i.e. the set of states isσ = {0, . . . ,N}. The labelλ of a
statei is given by the mapping�(i) = λ and the set of states
that have labelλ is calledσλ ⊂ σ . Therefore,i ∈ σλ ⇐⇒
�(i) = λ. Let the emission probabilities of the states be given
by e = (eik), whereeik = P(xt = k|πt = i), andπt and
xt are the stochastic variables representing the state and the
emitted symbol at positiont in the sequence. The transition
probabilities are given bya = {aij}, whereaij = P(πt+1 =
j |πt = i). Usually, some of the transition probabilities are
set to zero in advance to avoid ‘illegal’ transitions. The non-
zero transition probabilities define the underlying graph of the
model. This graph structure restricts the possible labelings of
a sequence, which we refer to as the grammar.

For a query sequencex = (xt ) for t = 1, . . . ,T we want
to predict a sequence of labelsl = (lt ). For any predicted
labeling, the expected number of correctly predicted labels
is the sum of the posterior probabilities for those labels. The
aim of the optimal accuracy decoding is to find the labeling
that maximizes this number. However, since the model has a
built-in grammar (defined by the non-zero transition prob-
abilities), it is not optimal to pick the highest probability
label at each position in the sequence but rather to choose the
labeling with the highest accuracy that is consistent with the
grammar.

Given the definitions above, we can now find a way to cal-
culate the PLPs ofx. We begin by calculating the posterior
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state probability of statei at positiont in the sequence:

P(πt = i|x, a, e)

= P(πt = i, x|a, e)
P (x|a, e)

= P(πt = i,x1 . . . xt |a, e)P (πt = i,xt+1 . . . xT |a, e)
P (x|a, e)

= fi,t bi,t

P (x|a, e)
. (1)

Here the forward variables,fi,t , is given by the recursion

fi,t =




δi0, t = 0

eixt

∑
j∈σ fj ,t−1aji , t = 1, . . . ,T

δi0
∑

j∈σ fj ,T aj0, t = T + 1

(2)

and the backward variables,bi,t , by

bi,t =




δi0, t = T + 1

ai0, t = T∑
j∈σ aijejxt+1bj,t+1, t = T − 1, . . . , 1

δi0
∑

j∈σ a0j ejx1bj,1, t = 0.

(3)

Here we have used the Kronecker’sδij defined as

δij =
{

0, if i �= j

1, if i = j .

We know that

P(x|a, e) = f0,T +1 = b0,0. (4)

We can now calculate the PLP for the labelλ at positiont as

gλ,t ≡ P(lt = λ|x, a, e) =
∑
i∈σλ

P (πt = i|x, a, e)

=
∑
i∈σλ

fi,t bi,t

f0,T +1
. (5)

Given these PLPs, we now want to find an optimal path
through the model. However, we should do so under the con-
straint that the path should be a possible path through the
model. Since we already applied the transition probabilities
when calculating the PLPs it makes no sense to apply the
full Markov model once again, when searching the best path.
Instead, we have to rely on the graph structure (or grammar)
of the HMM.

Our goal is to maximize the expected accuracy of a labeling
of a sequence, i.e. the expected number of correctly predicted
labels, as

A(l) =
T +1∑
t=0

glt ,t . (6)

This is an extension of the definition for pairwise sequence
alignments made by Holmes and Durbin (1998). They define

the expected accuracy of an alignment as the sum of the
posterior probabilities for all aligned positions.

We define the transition possibilitiesd = (dij) as

dij =
{

0, if aij = 0

1, if aij > 0.
(7)

Now we can use a Viterbi inspired recursion to calculate the
optimal accuracy,Âj ,t , to a positiont in the sequence for
statej .

Âj,0 =
{

0, if j = 0

−∞, if j �= 0
(8)

Âj,t = g�(j),t + max
i∈σ

Âi,t−1dij, t = 1, . . . ,T + 1. (9)

In analogy with the Viterbi algorithm we can use backpoint-
ers to track the path througĥA ending inÂ0,T rendering the
optimal accuracy labeling. Note that degeneracy in the best
path between states with the same label is of no consequence
for the resulting labeling.

A related algorithm to the optimal accuracy decoder, the
‘posterior-Viterbi’ decoder and its application to prediction of
topology ofβ-barrel proteins is described in a recent paper by
Fariselliet al. (2005). The main algorithmic difference in their
approach lies in that they optimize the product of the PLPs,
instead of the sum as we have done according to Equation (6).

2.2 Homolog handling extension
How can we incorporate information from homologs to the
query sequence into the optimal accuracy algorithm? Our
solution is to calculate the PLPs for each sequence indi-
vidually, then take the average PLP for each label at each
position of the alignment, and thereafter optimize the expected
accuracy based on this average PLP.

Let us say that we have an alignment of the sequences
x1, . . . , xM , where the mapping between positions in the ori-
ginal sequence (the absolute positions),t1, . . . , tM , and the
positions in the alignment (the relative positions) are given
by the functionsk1(t1), . . . ,kM(tM). We have also assigned
sequence weights,w1, . . . ,wM to the sequences. Let our
query sequence bex1. We first calculate the PLPs,gm of each
sequencexm by using Equation (5). We define the gapped PLP
for xm with respect to the alignment as

g̃m
λ,τ =

{
gm

λ,t , if ∃t : τ = km(t)

0, if �t : τ = km(t).
(10)

So if there is a gap in the sequence at positionτ , the gapped
PLP is set to 0 for all labels at that position. The average PLP
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for the alignment can be calculated as

g̃∗
λ,τ =

∑M
m=1 wmg̃m

λ,τ∑
λ

∑M
m=1 wmg̃m

λ,τ

. (11)

We can reformulate Equation (9) as

Âj ,t = g̃∗
�(j),k1(t) + max

i∈σ
Âi,t−1dij (12)

and, as in the single sequence case, it is possible to find the
optimal labeling by the use of backpointers.

3 RESULTS
In order to measure only the performance of the decoding
algorithm, we chose to use a pretrained HMM, and not to
retrain the HMM during the comparison. We used a recently
published HMM, Phobius (Kället al., 2004), which is a com-
bined transmembrane topology and signal peptide predictor.
The combination of these features is logical as transmembrane
helices often get falsely predicted as signal peptides and vice
versa, since both features contain a long hydrophobic stretch.

We have made use of the different cross-validation models
and their corresponding test data from the Phobius 10-fold
cross validation to measure performance of different HMM
decoding algorithms. The default decoder of Phobius is the
1-best algorithm (without homologs).

We compared the 1-best algorithm without (1) and with (2)
homologs, a Viterbi decoder without (3) and with (4) homo-
logs, a decoder preceded by parameter reestimation based on
the query sequence without (5) and with (6) homologs, and
optimal accuracy decoding without (7) and with (8) homologs.
The 1-best decoder and the Viterbi decoder with information
from homologs that we used are described by (Viklund and
Elofsson, 2004). The decoder preceded by parameter reestim-
ation was inspired by Tusnady and Simon (1998), although
we used the 1-best algorithm instead of a Viterbi algorithm
for the final prediction since it gave better performance (data
not shown).

The measurements of the decoder’s ability to predict trans-
membrane topology is shown in Table 1 and signal peptides
in Table 2.

We can conclude that optimal accuracy decoding makes
significantly better predictions than the other methods when
predicting transmembrane topology of the test set contain-
ing transmembrane proteins. When considering the sequences
with erroneous predictions by the optimal accuracy decoding
with homologs, we noted that their alignments contain fewer
sequences (on average∼60) compared with those correctly
predicted (on average∼80). However the parameter reestim-
ation algorithm seems to be the better choice for weeding out
soluble proteins.

When predicting signal peptides, the optimal accuracy
decoder with homologs shows better Matthew correlation than

Table 1. Correct transmembrane topology predictions measured on sets with
(TM) and without (non-TM) transmembrane domains by different HMM
decoding algorithms with and without homologs numbered (1)–(8) according
to the text

No. Algorithm Homologs TM (%) Non-TM (%)

1 1-best No 67.8* 97.0
2 Yes 66.1* 97.8**
3 Viterbi No 59.2* 95.7
4 Yes 57.9* 96.7
5 Parameter re-estimation No 68.2* 97.2
6 Yes 68.8* 97.8**
7 Optimal accuracy No 67.1* 95.3*
8 Yes 74.7 97.1

A prediction was counted as correct when all the transmembrane helices overlap the
annotated transmembrane helices of the protein over a stretch of at least five residues and
the location of the loops were correct. For the proteins not containing transmembrane
helices a correct transmembrane topology prediction corresponds to a prediction that
does not contain any transmembrane helices.
Figures where the differences to the optimal accuracy decoding with homologs was
significant at 99% confidence level were marked with *if they were lower than optimal
accuracy decoding and with **if they were higher.

Table 2. Errors in signal peptide prediction on sets with (SP) and without
(non-SP) signal peptide by different HMM decoding algorithms numbered
(1)–(8) according to the text

No. Algorithm Homologs SP (%) Non-SP (%)ρa

1 1-best No 3.48 3.30 0.901
2 Yes 35.5* 0.67** 0.677
3 Viterbi No 5.98* 2.77 0.887
4 Yes 40.3* 0.60** 0.641
5 Parameter re-estimation No 3.56 3.22 0.902
6 Yes 4.39 2.70 0.904
7 Optimal accuracy No 2.73 5.25* 0.872
8 Yes 3.41 2.32 0.921

The position of cleavage site was not taken in account.
aThe Matthews correlation coefficient is defined asρ = (NtpNtn − NfpNfn)/√

(Ntp + Nfp)(Ntp + Nfn)(Ntn + Nfp)(Ntn + Nfn), whereN{t ,f }{p,n} denotes the number
of {true,false} {positive,negative} signal peptide predictions.
Figures where the differences to the optimal accuracy decoding with homologs was
significant at 99% confidence level were marked with *if they were higher than optimal
accuracy decoding and a **if they were lower.

the other methods, thus indicating that it is the most suit-
able for the task. We can also see that the 1-best and Viterbi
decoders are not helped by information from homologs.

Signal peptide cleavage site predictions made by the align-
ment based methods, i.e. optimal accuracy with homologs
(51% correct), 1-best with homologs (35% correct) and
Viterbi with homologs (33% correct) show severely worse res-
ults than the other algorithms (all of which have just>70%
correct predictions). This is probably because it is harder to
pin-point an exact location of a feature when the prediction is
based on an average over an alignment.
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4 DISCUSSION
We have described a new way to incorporate information from
homologs when decoding HMMs. For the Phobius model, the
decoder increases the transmembrane topology prediction per-
formance as well as the ability to predict signal peptides. It is
reasonable to expect performance increases in other applica-
tion areas as well. A strength of the algorithm is that it enables
the signals from feature lengths of each individual homolog
to have an impact on the prediction. The method works well
with HMMs trained for single sequence usage.

Our evaluation shows that even though the best decoders
are helped by information from homologs, not all show an
increase in performance. It makes a difference how homologs
are incorporated in the decoding process. Other approaches
for incorporating homologs in feature prediction with HMMs
(Viklund and Elofsson, 2004), use homologs in their train-
ing procedure and not just in the decoding. This is probably
the major origin of the performance increase they report.
It is likely that Phobius as well would gain substantially
in performance from incorporating homologs in the training
procedure.

Here we have tried to isolate the effect of choice of decod-
ing procedure by using the same HMM and test data for all
decoding methods. However, the choice of architecture and
parameter estimation procedure could have an effect on the
performance of the decoder. For instance, if the architec-
ture contains structures where many paths result in the same
labeling (as Phobius does) the Viterbi algorithm is less suit-
able. One could also argue that if the Viterbi training procedure
had been used when estimating the parameters of Phobius we
would have obtained better results for the Viterbi decoder.
However, if we were to retrain the model for each decoding
principle it would be even harder to tell if a difference in per-
formance stems from training or from the choice of decoding
algorithm. Other benchmarks (Viklund and Elofsson, 2004;
Chenet al., 2002) have found an increase in performance when
using the parameter reestimation procedure with homologs
as opposed to using it without homologs for the HMMTOP
(Tusnady and Simon, 1998) architecture. We do not find
such a difference for the Phobius architecture. This could be
because the Phobius model has more free parameters than the
HMMTOP model.

Our method is dependent on a high quality global mul-
tiple sequence alignment. At first glance one might think that
one would be better-off using a local alignment, instead of a
global. After all, the features we are looking for are local in
their nature. However, global alignment programs generally
perform better than local methods, except in the presence of
large N-terminal/C-terminal extensions or large internal inser-
tions (Thompsonet al., 1999; Lassmann and Sonnhammer,
2002), which we hopefully remove with our requirements on
the lengths of blast hits.

The approach of using a multiple sequence alignment is
better for predicting features spanning over many amino acids

rather than single amino acid features. In our benchmark, we
noticed a decrease in accuracy of predictions of the exact loc-
ation of signal peptide cleavage sites when using homologs in
the optimal accuracy decoder compared with those not includ-
ing them. This is easy to understand as the information of an
exact position of a feature spanning a single amino acid will be
diluted through a multiple sequence alignment. It could as well
be questioned if the exact location of a feature is conserved
throughout evolution.

A commonly stressed fact is that the training data of a
machine learning method are of crucial importance. Without
wanting to diminish that fact, we would like to add that in
the case of HMMs it is of high importance to choose a good
architecture of the HMM, a good training methods and as we
have shown here, a good methodology to decode sequences.

5 MATERIALS AND METHODS
5.1 Test sets
For our measurements of prediction accuracy we used the four
datasets described in Kället al. (2004). In brief, they consist of
two sets of transmembrane proteins with known topology with
(45 sequences) and without (247 sequences) signal peptides,
and two sets of soluble proteins with (1275 sequences) and
without (1087 sequences) signal peptides. We merged these
sets in two different ways for testing accuracy of transmem-
brane topology prediction and signal peptides separately. We
consequently obtained four different test sets:

• 292 sequences from transmembrane proteins in a
‘TM’ set.

• 2362 sequences from soluble proteins in a ‘non-TM’ set.

• 1320 sequences with signal peptides in a ‘SP’ set.

• 1334 sequences without signal peptide in a ‘non-SP’ set.

The original division into different cross-validation sets was
maintained.

5.2 Homology searches and multiple sequence
alignments

For each sequence in the test sets, we searched for homo-
logs in Uniprot/TrEMBL with blast, using anE-value cutoff
of 10−5. To reduce the number of fragments as well, we
included only hits covering at least 75% of the length of
the query sequence and 75% of the subject sequence. We
re-retrieved the full length sequences of the hits and there-
after aligned them with a global multiple sequence alignment
method, Kalign (T. Lassman and E.L. Sonnhammer, Submit-
ted for publication). Sequence weighting was done according
to Henikoff and Durbin (1998). However, since the method
does not account for gaps, we made some changes: gaps were
ignored during the weight calculations, and the weights were
divided by the sequence length.
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5.3 Other decoders
The implementation of 1-best with homologs follows the
description in Viklund and Elofsson (2004). However, we
made some modifications to the original algorithm. We
weighted each sequence according to the sequence scheme
mentioned above. So if in a column of an alignment
from sequences with weightsw1, . . . ,wM , we observe the
amino acidsx1, . . . ,xM−G and gaps in sequence(M −
G + 1), . . . ,M the ‘emission score’ from statei will

be
(∏M−G

m=1 (eixm)w
m
)1/(

∑M−G

m=1 wm)

. Instead of building a

pseudomultiple alignment from blast hits, a global multiple
alignment was used as well. Both these modifications gave
small improvements in prediction accuracies (data not shown).
We used the same ‘emission score’ in the implementation of
the Viterbi algorithm with homologs.

The parameter reestimation algorithm we implemented
follows the main idea in Tusnady and Simon (1998). In the
Baum–Welch parameter reestimation procedure, we obtained
regularizers by multiplying the emission probabilities in the
initial model by 10 000 (in accordance with HMMTOP 2.1)
and the transition probabilities by 1000 (arbitrary selected
value). Instead of using the Viterbi algorithm for the final pre-
diction we used the 1-best algorithm, since it showed better
performance (data not shown).

5.4 Significance tests
To determine whether a difference between two decoding
algorithms were significant or not, we used a paired Stu-
dent’st-test (Michel, 1997). The differences
k in the number
of errors made by the algorithms were measured for each
of the 10 cross-validation sets separately. The mean dif-
ference in errors
̄ was calculated. Under the assumption
that the binomial distributions of the number of errors made
can be approximated with a normal distribution (which is a
good approximation for cross-validation sets of>30 samples
approximately) we can calculate aZ% confidence interval of
the difference in error rate


 = 
̄ ± tZ,K−1

√√√√ 1

K(K − 1)

K∑
k=1

(
̄ − 
k), (13)

wheretZ,K−1 is the distribution function of at-distribution
with K − 1 degrees of freedom and the number of cross-
validation setsK = 10 in our setting. The two methods were
considered to perform significantly different if zero was not
included in the 99% confidence interval.

Significance level of differences between Matthews correl-
ation figures was not considered.

5.5 Implementation
The algorithm was implemented in Java using the BioJava
package.
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