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A general model of G protein-coupled receptor

sequences and its application to detect remote
homologs

MARKUS WISTRAND,1 LUKAS KÄLL,1 AND ERIK L.L. SONNHAMMER
Center for Genomics and Bioinformatics, Karolinska Institutet, S-17177 Stockholm, Sweden

(RECEIVED August 1, 2005; FINAL REVISION October 7, 2005; ACCEPTED November 15, 2005)

Abstract

G protein-coupled receptors (GPCRs) constitute a large superfamily involved in various types of
signal transduction pathways triggered by hormones, odorants, peptides, proteins, and other types of
ligands. The superfamily is so diverse that many members lack sequence similarity, although they all
span the cell membrane seven times with an extracellular N and a cytosolic C terminus. We analyzed a
divergent set of GPCRs and found distinct loop length patterns and differences in amino acid
composition between cytosolic loops, extracellular loops, and membrane regions. We configured
GPCRHMM, a hidden Markov model, to fit those features and trained it on a large dataset
representing the entire superfamily. GPCRHMM was benchmarked to profile HMMs and generic
transmembrane detectors on sets of known GPCRs and non-GPCRs. In a cross-validation procedure,
profile HMMs produced an error rate nearly twice as high as GPCRHMM. In a sensitivity-selectivity
test, GPCRHMM’s sensitivity was about 15% higher than that of the best transmembrane predictors,
at comparable false positive rates. We used GPCRHMM to search for novel members of the GPCR
superfamily in five proteomes. All in all we detected 120 sequences that lacked annotation and are
potentially novel GPCRs. Out of those 102 were found in Caenorhabditis elegans, four in human,
and seven in mouse. Many predictions (65) belonged to Pfam domains of unknown function.
GPCRHMM strongly rejected a family of arthropod-specific odorant receptors believed to be GPCRs.
A detailed analysis showed that these sequences are indeed very different from other GPCRs.
GPCRHMM is available at http://gpcrhmm.cgb.ki.se.
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The G protein-coupled receptors (GPCRs) make up a
large and diverse superfamily of transmembrane (TM)
proteins involved in signal transduction pathways. All
known examples share a seven-TM helix topology with
an extracellular N terminus. The extracellular signal is
invariably transduced to a cytosolic heterotrimeric G

protein complex. Despite this common overall architec-
ture and mechanism, GPCRs can be divided into fam-
ilies with a striking lack of common sequence motifs
(Bockaert and Pin 1999; Fredriksson et al. 2003). This
is reflected by the vast number of ligands that activate
the receptors, which range from neurotransmitters, hor-
mones, and peptides to external stimuli such as light
and odors.

Although large numbers of GPCR genes have been
reported in several proteomes, there may be unidentified
GPCRs that cannot be detected by ordinary sequence
similarity searches. Such searches have an intrinsic limita-
tion in that they cannot detect very distant homologies

1These authors contributed equally to this work.
Reprint requests to: Erik L.L. Sonnhammer, Center for Genomics

and Bioinformatics, Karolinska Institutet, S-17177 Stockholm, Sweden;
e-mail: Erik.Sonnhammer@ki.se; fax: 46-8-337983.
Article published online ahead of print. Article and publication date

are at http://www.proteinscience.org/cgi/doi/10.1110/ps.051745906.

Protein Science (2006), 15:509–521. Published by Cold Spring Harbor Laboratory Press. Copyright � 2006 The Protein Society 509

ps0517459 Wistrand et al. Article RA

 on March 21, 2006 www.proteinscience.orgDownloaded from 

http://www.proteinscience.org


or sequences belonging to entirely new GPCR families.
For example, the Pfam database contains a number of
GPCR families, each one modeled by a separate profile
HMM. As these families are distinct enough to not over-
lap, they would also be unlikely to recognize a novel
GPCR family.

Alternative strategies for GPCR identification have tar-
geted the seven-TM topology that is conserved across all
members. In the simplest form these strategies use hydro-
pathy-curve algorithms to detect proteins with seven
hydrophobic stretches (Gao and Chess 1999). A more
sophisticated approach is to use general-purpose TM
topology predictors such as HMMTOP (Tusnady and
Simon 1998) or Phobius (Käll et al. 2004), which are com-
putational models trained to detect TM helices and their
orientation in the membrane. The most straightforward
way to employ a TM topology predictor for GPCR identi-
fication is to scan databases for proteins predicted to have
seven TM helices and an extracellular N terminus. For
example, Takeda and colleagues detected a large number
of novel GPCRs when searching the human proteome for
proteins predicted to have 6–8 TM helices (Takeda et al.
2002). The predictions thus obtained included a large num-
ber of false positives, but were further refined using addi-
tional computational screens.

Kim and colleagues developed a different approach
called QFC for “Quasi-periodic Feature Classifier”
(Kim et al. 2000). In QFC, each sequence is character-
ized by a set of physicochemical features. A hyperplane
in the feature space was optimized to separate GPCRs
from other sequences. QFC was applied to the Droso-
philia melanogaster proteome and contributed to the
identification of a putative new GPCR family (7tm_6/
PF02949 in Pfam) (Clyne et al. 1999). Inoue and col-
leagues developed a combined classification and identi-
fication tool based on the loop length pattern of GPCRs
(Inoue et al. 2004). This is a stepwise rule-based algo-
rithm that, given a topology prediction, classifies se-
quences into GPCR or non-GPCR, and further into
GPCR subclasses. The rules are binary (1 for long and
0 for short loops), and were set from observations about
typical loop lengths. The algorithm is dependent on a
topology prediction so for GPCR identification it would
essentially be a way to remove false positives.

7TMHMM by Möller and colleagues (Möller 2001) is
another GPCR specific predictor. The model is derived
from TMHMM (Krogh et al. 2001), and contains sub-
models for the seven TM helices and the cytosolic and
extracellular loops, but is not trained on GPCR sequences.
7TMHMM is not primarily designed to identify novel
GPCRs, but to map the cytosolic loops of known GPCRs
for prediction of G protein specificity (Möller et al. 2001).

Because the topology of GPCRs is more conserved
than the primary sequence, topology-based detection

methods make a lot of sense. However, no method exists
that is based on a comprehensive analysis of GPCR
sequences, and that is explicitly trained to identify
GPCRs. In this paper we address this issue and present
an analysis of sequence features in the GPCR superfamily.
We found no sequence motifs that are conserved across all
families, yet TM topology-related features such as loop
lengths and amino acid compositions are relatively con-
served. This leads to the notion that proper GPCR func-
tion depends on appropriate loop lengths and amino acid
composition in the different regions of the GPCR.

We used the results of this analysis to construct
GPCRHMM, a hidden Markov Model that specifically
recognizes GPCRs based on TM topology-related fea-
tures. GPCRHMM was benchmarked on three test sets,
and its performance was compared to other GPCR de-
tection strategies. GPCRHMM proved to be very sensi-
tive yet much more specific than other methods.

GPCRHMM is a method for identification of GPCR
sequences and families that lack sequence similarity to
known examples, and therefore escape detection by
homology searching. We searched five complete pro-
teomes with GPCRHMM and present novel GPCR
findings in the proteomes of Caenorhabditis elegans, D.
melanogaster, Fugu rubripes, mouse, and human.

Results

Analysis of GPCR families

In order to model general aspects of G protein-coupled
receptors we needed a diverse set of training sequences,
but at the same time we had to avoid including false
positives as these would corrupt the model. Many
sequences are annotated as putative GPCRs based on
sequence similarity to known members or because they
have a probable seven-TM topology. We initially
extracted 13 Pfam families that are classified as verified
or putative GPCR families by the specialized database
GPCRDB (Horn et al. 2001) (Table 1), and analyzed
them to reveal families that could be incorrectly anno-
tated as GPCR. For comparison, we also included two
families known not to be GPCRs in the analysis: the
bacteriorhodopsin family (Bac_rhodopsin/PF01036),
which is structurally similar to rhodopsin but not G
protein-coupled, and the protein kinase family (Pkinase/
PF00069), which is completely unrelated.

To investigate sequence similarity between these
families, we used the profile HMMs provided by Pfam
to cross-match the families. The full-length members in
each Pfam family were scored against the HMMs of all
the other families. If two families were remotely homol-
ogous, we would expect most members of one family to
get a relatively high score to the other family’s HMM.
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To display the resulting matrix of pairwise relationships,
we clustered all the families into a tree with the UPGMA
algorithm (Fig. 1). As distance measure between two
families we used the best (lowest) of the two median E-
values generated in the searches.

Two families emerged as outliers in the cross-match
analysis: the fly-specific odorant receptor family 7tm_6,
and the plant family Mlo (Mlo/PF03094). These two
families are placed on a branch of their own that is distant
from confirmed GPCR families. The Bacteriorhodopsin
family (which are proton pumps) clusters between the
known GPCRs and the two families. This indicates that
the 7tm_6 and Mlo families are either highly divergent
GPCRs that would be important to include in the training
set, or incorrectly annotated,whichwould contaminate the
training set. We therefore analyzed these two families
further (see following section), which led us to exclude
them from model training.

Analysis of the 7tm_6 and Mlo families

The 7tm_6 family is composed of arthropod-specific
odorant receptors (Hallem and Carlson 2004) with high
sequence divergence. The response to odors has been
well characterized (Hallem et al. 2004), but to our
knowledge, nobody has experimentally confirmed the

proteins’ membrane spanning topology or the proposed
coupling to G proteins.

We ran the TM topology predictors Phobius,
HMMTOP, and TMHMM on the 40 7tm_6 sequences in
the Pfam seed, and only nine of the 120 predictions agreed
with a GPCR topology. The most often predicted topol-
ogy was an inverted GPCR topology, i.e., seven TM seg-
ments but with a cytosolic N terminus. Contrary to these
predictions, the UniProt annotation of the sequences cor-
responds to a normal GPCR TM topology. We noticed
that the UniProt topology annotation strongly disagrees
with the “positive inside rule.” This rule states that posi-
tively charged amino acids (Arg and Lys) are mainly
located on the cytosolic side of the membrane (von Heijne
1986). We counted the balance of positive amino acid
residues for the UniProt topology of the 40 7tm_6 pro-
teins. On average, they had 20 more positive amino acids
on the extracellular side than on the cytosolic side of the
membrane (26 vs. 6). If only the 10 residues closest to the
membrane were taken into account, the excess on the
extracellular side was 7 (12 vs. 5) on average. The latter
calculation on 7tm_1, 7tm_2, and 7tm_3 yielded between 7
and 10 fewer amino acids on the extracellular side com-
pared to the cytosolic side.

The plant Mlo family is also an outlier in the GPCR
family tree in Figure 1. A seven-TM topology has been

Table 1. GPCRHMM model training included sequences from 11 Pfam GPCR protein families

No. of sequences in

Max. sequence identity
within training set

Pfam

family Description

Training

set

Pfam full

set

7tm_1 Rhodopsin family 64 6486 60%
7tm_2 Secretin family 53 410 40%
7tm_3 Metabotropic glutamate

family

31 219 40%

Frizzled Frizzled/Smoothened

family membrane region

19 122 60%

STE3 Pheromone A receptor 18 38 60%
STE2 Fungal pheromone mating

factor STE2 GPCR

3 9 60%

Dicty_CAR Slime mold cyclic AMP

receptor

3 5 60%

7tm_4 C. elegans chemoreceptor 35 268 30%
7tm_5 C. elegans chemoreceptor 26 280 30%
7tm_6 D. melanogaster odorant

receptor

0 82 —

Mlo Plant putative GPCR 0 55 —

V1R Vomeronasal organ

pheromone

receptor family

33 171 60%

TAS2R Mammalian taste

receptor protein

26 59 60%

Two putative GPCR families, 7tm_6 and Mlo, were excluded from the training set based on literature and
sequence analysis. Sequence redundancy was reduced to avoid data biases (see Materials andMethods). All
in all, 311 sequences were used for training, partitioned into the 11 families as given in the third column.
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confirmed experimentally for one of the family members
(Devoto et al. 2003), but there is no evidence for interaction
with G proteins. On the contrary, Mlo seems to function
independently of G proteins (Kim et al. 2002). Since the G
protein repertoire of plants consists of only one or two
heterotrimeric G protein complexes (Jones 2002), one can
expect the number of GPCRs to be limited in plants. The
A. thaliana genome encodes another transmembrane pro-
tein, GCR1, with recognizable sequence similarity to other
GPCRs (Josefsson and Rask 1997). GCR1 has been coim-
munoprecipitatedwith theGa subunitGPA1 (Pandey and
Assmann 2004), which indicates G protein coupling.
Although the activating ligand remains to be identified,
this finding has turned GCR1 into a more likely GPCR
candidate thanMlo.

Analysis of the training set

We compiled a redundancy-reduced (see Materials and
Methods) training set of 311 GPCRs from 11 families
(i.e., excluding 7tm_6 and Mlo) and created a multiple
alignment of all sequences. Consistent with earlier
reports (Bockaert and Pin 1999; Gether 2000; Fredriks-
son et al. 2003), visual inspection of the alignment did
not reveal any universally conserved residues or motifs.
We looked in particular for two common GPCR fea-
tures: the DRY-motif (the residues [ED]RY in the

interface between the third TM helix and the second
cytosolic loop), and a cysteine in each of the first and
second extracellular loops. The DRY-motif is primarily
found in the 7tm_1 family sequences and is not con-
served in other families. The cysteines were found in a
majority of the sequences but not as a rule. Although no
multiple alignment program can guarantee a correct
alignment from very divergent sequences, these results
strongly suggest that conserved sequence motifs cannot
form the basis for a general GPCR predictor.

It should be mentioned here that interfamily sequence
similarities have been reported in a study of TM regions
in human GPCR sequences (Fredriksson et al. 2003).
The degree of similarity is suggestive of a common
ancestry but not enough for a motif-based classifier,
even though the study only included human sequences.

Because our goal was to train a model based on uni-
versal GPCR features, we analyzed the length and
amino acid distributions of individual TM helices and
loop regions. This is not a trivial task because the exact
start and end of the membrane spanning regions is
unknown for most of the sequences. We used a combi-
nation of UniProt annotation, TM prediction tools, and
profile HMMs to locate the membrane and loop regions
(see Materials and Methods).

Length analysis

For each of the seven TM helices, we calculated the
mean length in the training set but found no systematic
difference between them. All seven helices had a median
length between 22 and 24 amino acids. In contrast, the
loops displayed substantially more length diversity (Fig.
2). The first and the last loops are short (median 11 and 9
amino acids), while the four central loops were on aver-
age 20–27 amino acids long. It is important to note that
the length distribution of the first cytosolic loop is much
tighter than all the other loops, suggesting that its length
is biologically more important. Although the third extra-
cellular loop had a shorter median length it shows much
more variation in length. The N- and C-terminal seg-
ments had much broader length distributions (data not
shown), and are therefore of less interest in this work.
Our results on median length and length distributions
are essentially in agreement with earlier studies (Otaki
and Firestein 2001; Inoue et al. 2004).

Amino acid composition analysis

Amino acid frequencies were derived for each region
using all sequences. A measure based on relative entropy
(see Materials and Methods) was used to derive dis-
tances between amino acid distributions. These were
used to generate a UPGMA tree to show the relation
of the different regions (Fig. 3). Not surprisingly, amino
acid distributions of TM and soluble regions form two

Figure 1. Similarity-based relationship tree of 13 confirmed or putative

GPCR families and two families that are known not to be GPCRs: the

bacteriorhodopsin (a proton pump) and the protein kinase families.

Distances between families were obtained as follows. The Pfam HMM

(“glocal” model) representing each of the family was used to score the

full-length Pfam sequences of all other families. The logarithm of the

lowest of the two median E-values from each reciprocal search was

used as distance measure in the UPGMA algorithm. The database size

for the HMM searches was set to 106 sequences. To avoid negative

distances, a constant was added to all values in the distance matrix but

this was compensated for on the X-axis scale. The tree places bac-

teriorhodopsin between the confirmed GPCR families and Mlo and

7tm_6, suggesting that the latter are not GPCRs.
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distinct groups. Extracellular regions are more similar to
each other than to cytosolic regions and vice versa. For
the analysis we chose to divide the N- and C-terminal
regions into two regions each, as we suspected that the
region “close” to the membrane could have a composi-
tion different from the rest of the terminus. We arbitra-
rily defined “close” to be within 15 amino acids of the
membrane. Figure 3 shows that the C-terminal region
closest to the membrane (“C-terminal near”) is indeed
clustering with the cytosolic loop regions, and that it is
quite distinct from the “globular” C-terminal region.

From the observed length and amino acid composition
features we constructed a hidden Markov model with an

architecture that is natural toGPCRsequences (seeFig. 4).
We refer to themodel as “compartmentalized” as eachTM
helix and loop region is modeled by a separate compart-
ment with a specific amino acid probability distribution
and length model. Each compartment is composed of a
series of connected states with tied (identical) amino acid
emission probabilities, and the architecture of connections
gives rise to different length distributions.

We used two types of architectures to model loop
lengths. Loops that were highly conserved in length (cyto-
solic loop 1 and 2) were modeled in a way that restricts the
length to a finite maximum value, while the other loops
were allowed to be infinitely long with a decreasing prob-
ability. The encoded length distribution is determined by
the transitionprobabilities between the states ina compart-
ment, and these were estimated from the training set. By
tying the transition probabilities the number of free transi-
tion parameters is reduced to only two per compartment.
The training procedure and details of the model are
described in Materials and Methods.

Comparison to other methods

We compared GPCRHMM to other possible strategies
for GPCR detection: Pfam profile HMMs, two gener-
al TM topology predictors (Phobius and HMMTOP),
and two specialized GPCR predictors (7TMHMM
and QFC). Pfam is a sensitive resource for sequence

Figure 2. Loop length distributions of the training set sequences (bars)

and modeled length distributions (dots). The observed lengths: most

notable is the conserved and short length of the first cytosolic loop.

Also, the second cytosolic loop has a narrow length distribution. In

contrast, the first extracellular loop includes a number of long exam-

ples. The second extracellular and the third cytosolic loops have wide

length distributions and long median lengths. The third extracellular

loop is often short but has a wide length distribution. Modeled length

distributions: the data was fitted to binomial distributions (cytosolic

loop 1 and 2) or to negative binomial distributions (the remaining

loops). The estimated distributions follow the observed data reason-

ably well given the trade-off between modeling quality and the risk of

overtraining on imperfect data.

Figure 3. An amino acid composition-based relationship tree of the

different topological regions in the training set GPCRs. A distance

measure based on relative entropy was used (see Materials and Meth-

ods). Terminology: the numbering is from the N terminus to the C

terminus. “1-extracellular” is the first extracellular loop, “1-cytosolic”

is the first cytosolic loop, and so forth. “N/C-terminal near” corre-

sponds to the 15 residues closest to the membrane in the N/C-terminal

soluble regions, while “N/C-terminal glob” represents the remaining

residues to the respective termini.
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similarity searches and is frequently employed for ge-
nome annotation. We wanted to know whether the indi-
vidual Pfam GPCR families can be used to train a
compartmentalized HMM capable of detecting remote
homologs that the family profile HMMs would not find.

GPCRHMM and Pfam accuracies were tested using
cross-validation such that one family at the time was
taken out and buried in a set of 1071 non-GPCR
sequences. The other families were used to recognize the
taken out family by means of training a GPCRHMM
model, or in the case of Pfam, by building profile
HMMs. The accuracy was measured as Minimum Error
Rate (MER), which is the lowest number of false positive
and false negative classifications (see Materials and
Methods). GPCRHMM produced an MER of 50 while
the Pfam searches gave a considerably higher (worse)
MER of 92. This indicates that GPCRHMM would
have a higher probability of detecting a previously
unknown family of GPCRs than the collection of GPCR
profile HMMs in Pfam.

GPCRHMM was also compared to four topology pre-
dictormethods. These methods could not be subjected to a

cross-validation test; hence, we compared them to a
GPCRHMM model trained on all sequences in the train-
ing set. All methods were tested for sensitivity and selectiv-
ity on a homology-reduced version of GPCRDB and the
negative test set used above. If we require the general-
purpose TMpredictors Phobius andHMMTOP topredict
the topology correctly, i.e., sevenTMregions and an extra-
cellular N terminus, these methods record a relatively low
sensitivity of 79.6% and 79.3% (Table 2). In comparison,
GPCRHMMwith a global score cutoff of -15 and a local
score cutoff of 0 produced about 15% higher sensitivity at
about the same false positive rate (,1%). By raising the
cutoff in GPCRHMM, the false positive rate was elimi-
nated with only 1% loss in sensitivity.

The general TM predictors reach increased sensitivity
levels if we accept all topologies predicted with six to
eight TM regions as GPCRs. This setting improved the
sensitivity of Phobius and HMMTOP to about the same
as GPCRHMM (global score cutoff -15) but their false
positive rate was increased about 10-fold. By lowering
the GPCRHMM global score cutoff to -53 and not
using a local cutoff, it reached the same false positive

Figure 4. (A) Overview of the GPCRHMM architecture. A box where the possible length interval is indicated represents each

model compartment. To model different types of sequence lengths data we have used three sets of connectivity layouts that

correspond to different distributions. See Materials and Methods for a description of the signal peptide (SP) compartment. (B)

In this connectivity layout the emitting states are accompanied by “silent” states that do not emit amino acids. This generates a

distribution with a limited maximum length, and was used to model the first and second cytosolic loops. (C) Here, the states have

a self-transition and a transition to the next state. All self-transitions are given the same probability. This generates a length

distribution with unlimited maximum length, which was used for other remaining loops. The notation x+y!1means that the

compartment has a fixed length region of x states followed by a region of y states allowing lengths of y!1. (D) This layout of

forward connected emitting states was used to model the core of a TM helix.
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rate as HMMTOP 6–8 TM (8.87%), but at a sensitivity
of 98.0% compared to HMMTOP’s 95.4%. Thus, at
comparable false positive rates, GPCRHMM is a more
sensitive method than Phobius and HMMTOP.

7TMHMM and QFC are dedicated GPCR predictors.
Both methods, however, perform roughly as Phobius and
HMMTOP in increased sensitivity mode, i.e., with accep-
table sensitivity but with a high false positive rate. We also
tested the performance on another negative set: all Escher-
ichia coli proteins predicted by Phobius to have five or
more TM helices. Since prokaryotes lack GPCRs, this
dataset is a true negative set even though it may contain
seven TM proteins. Here, QFC and 7TMHMM had false
positive rates of 81.2% and 93.3%, while GPCRHMM
only predicted 1%–7%depending on the cutoff. It is there-
fore fair to say that although QFC and 7TMHMM can
detect multispanning proteins they are not GPCR-specific.

Whole proteome searches

We applied GPCRHMM to five complete proteomes:
Human, Mouse, C. elegans, D. melanogaster, and F.
rubripes (Table 3; Supplemental Tables S1–S5). The
highest number of hits was detected in mouse, followed
by C. elegans and human. This is consistent with earlier
research, and reflects comparatively large numbers of
receptors for environment sensing: olfactory receptors
in mouse (Young et al. 2002; Zhang and Firestein
2002) and chemoreceptors in C. elegans (Robertson
1998, 2000; Mombaerts 1999; Remm and Sonnhammer
2000).

MostoftheGPCRpredictionsmatchedoneoftheexisting
PfamGPCR families. Of these, the 7tm_1 family (PF00001)
is the most common except for in C. elegans where chemo-
receptor families dominate. InC. elegans, 7tm_1only stands
for 8% of all predicted GPCRs, whereas in human and
mouse, this family alone stands for about 75%. InD. mela-
nogaster and F. rubripes, the 7tm_1 fraction is close to 50%.

For several proteins that did not belong to aPfamfamily,
we were able to find other sources of annotation, such as
InterPro, UniProt, Wormbase (Harris et al. 2004) and
FlyBase (FlyBase Consortium 2003), that supported a
function as GPCR. The majority of the proteins in this
category are proteins that belong to the “Rhodopsin-like
GPCR superfamily” in InterPro (IPR000276). Here, the
similarity was too weak for detection by the corresponding
Pfam 7tm_1 model but was possible to detect using other
InterPro protein family databases such as PRINTS, Prosite
or SMART. GPCRHMMpredicted 113 (81 in C. elegans)
proteins that had rhodopsin-like InterPro annotation
but were not classified as 7tm_1 in Pfam. Another 31
GPCRHMM predicted proteins were not members of a
Pfam GPCR family, but were annotated as GPCRs by
one of the other databases. This includes the intimal thick-
ness-related receptors (Tsukada et al. 2003) and members
of the transmembrane seven superfamily (Spangenberg
et al. 1998). In C. elegans, 442 of the GPCRHMM predic-
tionswere annotated as “serpentine receptor,” supporting a
GPCR function. Most of these (413) were of other types
than Sr[a,b,e,g], which exist in Pfam.

The remaining predictions can be regarded as new dis-
coveries of GPCRs. GPCRHMM detected 55 proteins in

Table 2. Benchmarking GPCRHMM against other methods

Sensitivity
(on 1706 positives)

False positive rate
(on 1071 negatives, soluble
and other TM proteins)

False
positive rate

GPCRHMM

global score >-15 94.4% 0.93% 6.86%
global score >-5 93.7% 0.28% 2.55%
global score >0 92.8% 0.00% 1.18%

HMMTOP

ø7i 79.3% 1.11%
6–8 TM 95.4% 8.87%

Phobius

ør7i 79.6% 1.21%
6–8 TM 94.8% 9.80%

QFC 95.5% 11.4% 81.2%
7TMHMM 93.5% 10.0% 93.3%

At a false positive rate of ~1%, GPCRHMM has ~15% higher sensitivity than HMMTOP and Phobius.
The only way for other methods to achieve a similar sensitivity as GPCRHMM’s is to accept a 10-fold
higher false positive rate on the first negative set and even higher on the bacterial negative set. For
comparison, at a false positive rate of 8.87%, GPCRHMM reached a sensitivity of 98.0%. Sensitivity
was measured on a nonredundant subset of GPCRDB, and the false positive rate on a set of TM (non-
GPCRs) and soluble sequences as well as on E. coli transmembrane proteins. GPCRHMMwas run with a
local score cutoff of 0 in all three cases.
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the five proteomes with no annotation at all. The majority
(42) of those proteins were found in the C. elegans pro-
teome. Of the 55 predictions with no annotation, only nine
show homology to clearly annotated GPCRs, as detected
byBlastp searches againstUniProt (E-value cutoff=10-5).
Other novel predictions belonged to Pfam families that do
not indicate aGPCR function. Also hereC. elegans yielded
most predictions, 60 of 65. One of the families was Pfam
DUF1171 (PF06664), which was found in all five pro-
teomes. The DUF1171 domain, as it is defined in Pfam,
only spans four TM regions. Phobius predicts DUF1171
members to have either seven TM helices with an extracel-
lular N terminus (with or without signal peptide) or eight
TM helices with cytosolic N terminus, making a GPCR
topology likely. Novel human GPCR predictions included
one DUF1171 member (Q7Z2Z9) and three unannotated
proteins (Q9H6H6, Q8N4V6, Q9P2C4). The latter two
proteins appear to be splice variants of the same gene.

The largest novel family was DUF40 (PF01838), that
contained 44 predicted GPCRs, all in C. elegans. The
Pfam domain spans four or five of the seven TM helices

found by GPCRHMM; the remaining TM helices are N-
terminal to the Pfam domain. Out of the 40 full-length seed
sequences of DUF40, GPCRHMM detects 27. Among
these sequences, a conserved [DE]R-motif is present in the
interface between the third helix and the second cytosolic
loop, which is the location of the DRYmotif in rhodopsin-
like GPCRs. Not all members of DUF40 are detected by
GPCRHMM; most of the undetected members contain
extra TM helices, and seven proteins have a second
DUF40 domain. The DUF286 (PF03383) domain is
found in seven of the novel predictions, none of which has
any functional annotation. A conserved arginine is present
in the predicted second cytosolic loop, which could be
related to the DRY motif. Sequences with the DUF621
(PF04789) andDUF1182 (PF06681) domains are also pre-
dicted by GPCRHMM, but none of the sequences have
GPCR annotation. The DUF621 domain is cut short in
Pfam, where it only spans about three TM helices.

In summary, GPCRHMM classified 55 proteins as
GPCR that had no previous annotation. Another 65
predictions lack functional annotation but belong to

Table 3. GPCRHMM predictions of GPCRs in five proteomes

Full name Pfam ID Human Mouse C. elegans Drosophila Fugu

Predictions with Pfam GPCR support

Rhodopsin-like family 7tm_1 785 1412 122 78 354

Secretin-like family 7tm_2 78 49 6 25 84

Metabotropic glutamate family 7tm_3 35 171 5 11 62

C. elegans chemoreceptor family 7tm_4 248

C. elegans chemoreceptor family 7tm_5 281

C. elegans Sra, Srb, Sre, Srg Sr[a,b,e,g] 101

Frizzled/Smoothened family Frizzled 11 14 5 5 8

Vomeronasal pheromone receptor VIR 5 121

Mammalian taste receptor TAS2R 28 19

Ocular albinism proteins Ocular_alb 1 1 1

Lung seven transmembrane receptor Lung_7-TM_R 1 1 1 2

Predictions with other GPCR support

InterPro rhodopsin-like 5 20 81 1 6

Other GPCR families 7 5 11 4 4

Serpentine receptor annotation 442

Novel GPCR predictions

No annotation 3 6 42 3 1

Pfam DUF1171 1 1 1 2 1

Pfam DUF40 44

Pfam DUF286 7

Pfam DUF621 5

Pfam DUF1182 2

Pfam DUF32 1

Suspected false positives (non-GPCR

annotation or low sequence

complexity) 58 42 48 41 100

Total predictions (Fraction of proteome) 1018 (3.4%) 1862 (5.8%) 1453 (6.5%) 172 (1.2%) 621 (1.9%)

The predictions were divided into the groups Pfam support, other support, or novel predictions. The “other support” section includes predictions
that did not match Pfam but have GPCR support from InterPro, UniProt, WormBase, or FlyBase annotation. Suspected false positives are either
sequences with a proven alternative annotation, such as ion channels, or sequences with repeating patterns of low complexity. Low complexity was
particularly frequent in Fugu rubripes, where ,45% of the false positives contained low complexity regions. A large fraction of the C. elegans
predictions belong to families specific to worm, and many of these contain Pfam domains of unknown function (DUF).
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Pfam DUFs. Of these, DUF1171 is unique in being
found in all five proteomes, while the other DUF-match-
ing novel predictions are worm-specific. These often
span fewer than seven TM helices, and have in some
cases either been duplicated or combined with other
domains or sequences containing transmembrane seg-
ments. We observed great diversity in length and the
number of predicted TM segments for many of the
DUF domain members; hence, many were not predicted
by GPCRHMM. This variation is either caused by poor
gene predictions, or a result of rapid evolution of che-
mosensory receptors, generating a collection of trun-
cated or aberrant pseudogenes.

Finally, we classified some of the predictions as sus-
pected false positives, if they had a consistent and proven
annotation (mostly transporters) or regions of low se-
quence complexity which can sometimes fool HMMs of
the GPCRHMM type. Low complexity sequences were
particularly common in the F. rubripes proteome, and this
increased the number of false positives considerably.

Discussion

Wehave describedGPCRHMM, a hiddenMarkovmodel
tailored to the superfamily of G protein-coupled recep-
tors. The model is intended for identification of remote
members of the GPCR superfamily that cannot be de-
tected by ordinary methods. By a cross-validated bench-
mark we showed that for identification of novel families,
GPCRHMM is superior to the set of Pfam profile
HMMs. We also compared GPCRHMM to general-pur-
pose topology predictors and found that GPCRHMM is
considerably better at discriminating GPCR sequences
from non-GPCR sequences.

The main model assumption in GPCRHMM is that
GPCRs have high-level features that are more conserved
than the primary sequence and make them distinguish-
able from other proteins. We have described conserved
patterns in loop lengths, but also clear differences in
amino acid composition between TM helices, extracel-
lular, and cytosolic loops. These features were incorpo-
rated into GPCRHMM by maximum likelihood
parameter estimation methods.

We applied GPCRHMM to five proteomes and
detected a large number of sequences that have no
other annotation. The results from C. elegans are parti-
cularly interesting, and include a large number of
sequences with no annotation, which are prime candi-
dates for being previously undetected GPCRs.

Strikingly, GPCRHMM gives strong negative pre-
dictions to sequences of the arthropod odorant recep-
tor family (corresponding to Pfam domain 7tm_6).
Since this family was excluded from model training we
were cautious about the biological relevance of these

predictions. Could we have biased GPCRHMM by ex-
cluding the 7tm_6 family to the extent that it could
not recognize the family? To get an indication of
whether this was the case, we scored the 7tm_6
sequences by each of the 11 HMMs from the cross-
validation benchmark. These HMMs are trained on all
but one sequence family. We compared the 7tm_6 scores
to the scores of the sequences belonging to the excluded
family, and the 7tm_6 sequences overall scored much
lower. Only nine of the 311 sequences in the training
set scored below the top-scoring 7tm_6 sequence. This
lends further support to the notion that 7tm_6 proteins
are very different from known GPCRs. Since forcing a
GPCR TM topology onto 7tm_6 proteins requires vio-
lating the positive inside rule, there is a lot indicating
that the 7tm_6 proteins are not members of the GPCR
superfamily.

The arthropod odorant receptors are related to the
arthropod gustatory receptor family (Clyne et al. 2000)
(Trehalose_recp in Pfam) and a small family in C. ele-
gans (Robertson et al. 2003). GPCRHMM also predicts
these families to be non-GPCRs. A speculation would be
that the three families form a superfamily of environ-
ment-sensing receptors that have little in common with
odorant receptors in mammals, and probably have a
different membrane topology. The experimental work
to determine the TM topology and possible G protein
coupling remains to be done.

GPCRHMM has strengths and limitations compared
to sequence similarity methods. The obvious strength is
its potential to find receptor proteins with little or no
sequence similarity to other GPCRs but with the con-
served topology features. A possible limitation is that
GPCRHMM by design cannot detect fragment se-
quences. In that sense, GPCRHMM and similarity-
based methods complement each other in protein family
discovery. For example, we suggest in this article that a
number of Pfam DUFs are domains within GPCRs.
Currently, available similarity-based tools cannot say
that these proteins are GPCRs. GPCRHMM, on the
other hand, cannot cluster sequences to construct proper
families.

While it is not yet fully known what the seven-TM helix
conformation offers that is necessary for GPCR function,
the conserved topology provides a means for detecting
novel families that have diverged in primary sequence.
The HMM technology is highly suited for such topol-
ogy-based detection, as it allows modeling distributions
of sequence length and amino acids. GPCRHMM should
be valuable for researchers interested in whether a se-
quence is a GPCR or not, as well as for determining the
location of TM helices of known GPCRs.

GPCRHMM is freely available through the Web ser-
ver http://GPCRHMM.cgb.ki.se/.
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Materials and methods

Train and test data

We used the Pfam (Bateman et al. 2004) classification to obtain
a diverse set of training sequences. From Pfam we extracted
either the seed or full sequence sets of 13 families that are
known or putative GPCRs according to GPCRDB (Horn et
al. 2001). The seed sets are curated and contain a representative
sample of trusted member sequences, but the full sets include
more sequences. At this initial stage we decided to use the seed
set if it contained at least 20 sequences, or else we used the full
set. We also extracted the sequences of the bacteriorhodopsin
family and the protein kinase family, both known not to be G
protein-coupled.
All families were analyzed by “all-against-all” sequence

searches using the HMMER 2.3.2 package (Eddy 1998).
Using the search tool of this package (hmmsearch, with an E-
value cutoff high enough to report all scores), the calibrated
profile HMM of each family was used to score the full-length
sequences of all other families. For each family pair, this
generated two lists of E-values. We used the best of the two
median E-values as a measure of similarity between the
families. Using the median match rather than the best match
compensates for the fact that some families contain many more
sequences than others, and due to the larger sample have a
bigger chance of generating extreme matches.
Having a similarity (or distance) measure between all

families, we constructed a UPGMA tree using the Statistica
package. Two families (7tm_6 and Mlo) emerged as dissimilar
to any of the other families and were excluded from the train-
ing set. The remaining 11 families were used for model training
after reduction of sequence redundancy. As input to the redun-
dancy reduction we used the Pfam seed set of sequences if it
held at least 50 sequences, or else we used the full sets. The
redundancy reduction was carried out for each family indi-
vidually based on sequence identity as reported by Blastp. We
reduced the majority of the 11 family sets to a maximum
sequence identity of 60%. Exceptions were made for the two
closely related C. elegans chemoreceptor families (7tm_4/
PF01461 and 7tm_5/PF01604), which were reduced to 30%
sequence identity, and the secretin and metabotropic glutamate
families (7tm_2/PF00002 and 7tm_3/PF00003), for which a
level of 40% was used. The latter is motivated by a wish to
keep the rhodopsin family (7tm_1) the largest in the dataset as
it is the most commonly occurring receptor family. The final
training set contained 311 sequences (Table 1).
Each amino acid in the training set was labeled to indicate

whether it is cytosolic, extracellular, TM, or part of a signal
peptide. It is known that UniProt records as well as prediction
methods often misplace the exact location of TM helices. To
circumvent this problem we aligned all training sequences to
their respective Pfam HMM, using hmmalign. We gave each
sequence position a label according to the UniProt annotation
if available or else based on a prediction by Phobius (Käll et al.
2004). Phobius was executed in constrained mode, by fixing the
C terminus to the cytosol. Each alignment column was then
labeled based on a majority decision, and finally, each
sequence position was relabeled by the consensus label of the
column to which it was aligned. We verified that the HMM
covered all TM regions at least partly, and that overhanging
parts of TM segments were aligned sufficiently well by hmm-
align. The thus labeled sequences were input to the length
analysis and to the model training procedure.

Three datasets were used for assessing the performance of
GPCRHMM: (1) the GPCRDB (release 8.0) sequence set,
downloaded from http://www.gpcr.org. Bacteriorhodopsin
(which are proton pumps), 7tm_6, and Mlo sequences
were removed, and the sequences belonging to the Pfam
taste receptor family (TAS2R) were added (these sequences
are incorporated into later versions of the GPCRDB). The
dataset was filtered to produce a nonredundant positive
dataset. (2) A nonredundant negative dataset comprising
731 soluble and 340 TM sequences with known topology.
The dataset was derived from the set used for training
Phobius (Käll et al. 2004), by removing all proteins having
a 7TM topology. (3) A negative dataset of all the 510 E.
coli sequences predicted by Phobius to have at least five
TM regions. Prokaryotic proteomes do not contain GPCRs
so this set is entirely negative.

Minimum error rate calculation

For GPCRHMM, 11 models were trained from sequences in
all but one of the families. Sequences of the remaining family
were then “buried” in the negative dataset composed of a mix
of soluble and TM proteins (no GPCRs), and searched for
using the model trained on the other 10 families. The procedure
was repeated for all families. Similarly, the Pfam HMM
searches were carried out using all but one of the families,
which was likewise buried in the negative test set.
The accuracies of the methods were compared using the

cutoff score (Scutoff) that gives the lowest number of false
positives (FP) and false negatives (FN), called Mini-
mum Error Rate (MER). An equation for MER is
MER=minScutoff

{FP(Scutoff)+FN(Scutoff)}
Calculating MER for GPCRHMM was done by sorting the

scores for all sequences (positives and negatives) in a list and
setting a cutoff to minimize the number of misclassifications.
This gave 11 MER values, one for each family, and these were
summed up to produce the total MER value of GPCRHMM.
The Pfam HMM searches gave 10 scores for each sequence
(one per HMM). We only considered the best of these scores
(lowest E-value) to produce a sorted list of positives and nega-
tives. The total MER was then calculated in the same way as
for GPCRHMM.

Model

GPCRHMM is built up by a consecutive series of compart-
ments, representing mainly the seven TM helices, the three
cytosolic and the three extracellular loops, as shown in Figure
4. There are also compartments for the C-terminal region and
for the N-terminal region, the latter containing compartments
for modeling an optional signal peptide.
Although each compartment consists of many states, this

does not add much to the number of parameters and complex-
ity of the model. All states within a compartment have the
same amino acid probabilities, and only two transition prob-
abilities are used in the same compartment. The number of
states and their connectivity produce an implicit length distri-
bution. An alternative approach to model length distribution is
using an explicit length model (a duration model) (Rabiner
1989; Burge and Karlin 1997). This can give a better fit to
highly complicated distributions. However, because the data-
base annotation of loop lengths is far from perfect we wanted
to avoid closely fitting the data, and instead favored the more
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neutral implicit length model. In terms of parameter numbers
and model complexity, both approaches are roughly equal.

We used two different layouts to model loop regions with
either limited maximum length (Fig. 4B) or with unlimited
maximum length (Fig. 4C). For loops with limited maximum
length, two parallel linear chains of N states, one chain emit-
ting amino acids and one silent, were connected such that it is
possible to pass from each state to the next emitting or silent
state. All transition probabilities to an emitting state are set to
p and all transition probabilities to a silent state are set to 1 - p.
The sequence length generated by this pattern has a binomial
distribution.

For loops with unlimited maximum length, the pattern is
shown in Figure 4C. It consists of a linear chain of N
emitting states that all have self-transitions. Again, transi-
tion probabilities are set equal throughout the structure
such that there is a probability p of staying in the current
state and a probability 1 - p of continuing to the next state.
The emitted sequence can be no shorter than N amino acids
but there is no upper limit. The lengths of sequences gen-
erated by this pattern have a negative binomial distribution
(Durbin et al. 1998).

Data on the first cytosolic loop (see Fig. 2) shows a
narrow length interval that motivated modeling it by a
binomial length distribution ranging from 0–16 amino acids
(Fig. 4). A fixed length region of four amino acids was
added, which gives a length interval of 4–20 amino acids
that agrees with the observed loop length data. A similar
architecture was used to model the second cytosolic loop
with a loop length interval of 11–26 amino acids, which
covers all but three cases. We regarded those as potentially
false outliers and prioritized a specific model that can cap-
ture essentially all observed values.

The remaining four loops had less defined length (see Fig. 2)
and we modeled them using the model with unlimited max-
imum length. A fixed-length region of seven states followed by
three self-transition states model the first extracellular loop.
This gives a minimum length of 10 amino acids and no max-
imum length. The second extracellular loop is modeled by a
similar structure but with five states with self-transition, which
gives a minimum loop length of 12 amino acids. Also, the third
cytosolic loop is modeled by the same overall architecture: a
fixed-length region of five amino acids followed by four states
with self-transitions. The final (third) extracellular loop is
biased towards very short lengths (Fig. 2), which was best
modeled by a model of only two states with self-transitions.
The N-terminal region of the mature protein is modeled by
three states with self-transitions. Our analysis of amino acid
composition suggested that the C-terminal region should be
modeled by two separate compartments. We split it into a fixed
length region of 15 states followed by one state with self-
transition.

TM helices were modeled by a core compartment allowing
from 7 to 25 amino acids (see Fig. 4D), flanked on each side by
fixed-length five amino acid long “helical end” compartments.
This is the same as the TM architecture used in Phobius (Käll
et al. 2004).

We analyzed the similarities between amino acid distribu-
tions of all topological regions (Fig. 3), and this suggested a
way to reduce the number of model parameters by linking the
emission probabilities of different compartments. In the final
model, the emission probabilities were set to be equal for the
following regions: the extracellular loops; the TM helix core of
the fourth, fifth, and sixth TM helix; the extracellular side of

the fourth and sixth TM helix; the cytosolic side of the first,
fourth, and fifth TM helix.

We found an increased number of positive residues near
the ends of the second cytosolic loop compared to the other
cytosolic loops (data not shown), and hence, we chose to
divide this loop into three different compartments. Two
flanking regions of five amino acids were given a different
amino acid distribution than the remaining variable length
region.

A signal peptide was present in 25% of the training set
proteins. Signal peptides are composed of a hydrophobic
region flanked by more hydrophilic regions followed by a
cleavage site motif. Topology predictors often fail to discrimi-
nate the hydrophobic region of signal peptides from membrane
spanning regions (Krogh et al. 2001), but with a combined
signal peptide and TM model the number of false predictions
can be reduced substantially (Käll et al. 2004). We therefore
modeled signal peptides explicitly in GPCRHMM by a specific
model compartment consisting of three consecutive regions (n,
h, and c) followed by a cleavage site model. The n-region is 1–
10 amino acids long, the h-region 6–20 amino acids long, and
the c-region 1–12 amino acids long. The -3,-1 motif of a signal
peptide’s cleavage site (Perlman and Halvorson 1983; von
Heijne 1983), was modeled by four states with individual
amino acid distributions. A transition branch in the Begin
state allows sequences to transit directly from the Begin state
to the N-terminal model compartment or “choose” to pass
through the signal peptide model.

HMM parameter estimation

The parameters of GPCRHMM were estimated in a procedure
similar to Phobius parameter estimation. The procedure
includes five steps. First, the transition probabilities of the
TM helix states and the signal peptide model were estimated
from data by maximum likelihood. The TM helix lengths were
fitted to a gamma probability distribution, while each of the
signal peptide submodel lengths (n, h, and c) were fitted to a
normal distribution. Since distributions are continuous while
transitions are discrete, the fittings were obtained by integrat-
ing the transition probabilities over all states. Signal peptide
transition probabilities were only used as an initial estimation,
while the TM transition probabilities were left unchanged in
subsequent steps.

In a second step the remaining model parameters were esti-
mated by a noise injected Baum-Welch procedure (Krogh et al.
1994). Prior to the second step, three amino acids on either side
of all TM/loop borders and internal signal peptide borders
were “unlabeled.” Unlabeling introduces flexibility for the
training procedure to correct for mislabeled amino acids that
may occur in the training set. The model from the second step
was used to relabel the training data.

The third step reestimated the TM and signal peptide
length model parameters as in step one, but this time the
relabeled data was used. In a fourth step all other parameters
were reestimated from the relabeled data using a standard
Baum-Welch procedure. This procedure sets model param-
eters to maximize the probability of each sequence. A fifth
step updated the parameters using conditional maximum
likelihood (Krogh 1994), by which the parameters are set to
maximize the correct labeling rather than the probability of
the sequences.
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HMM evaluation

The Forward algorithm (Rabiner 1989) is the primary scoring
function employed by GPCRHMM. This is calculated by
summing the probabilities of all paths through the model.
The reported score is a log-odds score: the logarithm of the
ratio between the model score and the null model score. The
null model is a one-state model with self-transition and
with standard neutral background emission probabilities. A
GPCRHMM score is thus indicating the fit of a sequence to
GPCRHMM relative to a random model. The model architec-
ture implies a lower bound on sequence length, and we intro-
duced a prefiltering step that classes all proteins shorter than
200 amino acids as non-GPCRs.

To get an idea of how well our method separates true from
false we scored a nonredundant version of GPCRDB (dataset
1) and a reduced set of Swiss-Prot (release 42, 2004) where all
sequences of >20% sequence identity to any sequence in
GPCRDB had been removed (Fig. 5). We noticed that some
soluble proteins were “fooling” the model; in particular, long
cysteine-rich proteins. Our analysis is that these proteins fit the
terminal loop regions well and accumulate enough score to
compensate for poor resemblance to the core of GPCRHMM.
To improve the scoring we therefore introduced a local score.
The part of the query sequence modeled by GPCRHMM to
span the first to seventh TM helix according to the prediction
of the one-best algorithm (Schwartz and Chow 1990) was
rescored by a core version of GPCRHMM lacking the signal
peptide model and the N- and C-terminal models. In other
words, the local score is testing for fit to the model only over
the membrane spanning part of the protein. The local score
removes a large number of false positives, while keeping the
majority of true positives (Fig. 6). We call the scoring proce-
dures global and local. The global score alone produces good
results, and the local score should be seen as a refinement. By

default, only sequences with global score above 0 bits are
carried further for local score filtering.

Tree building

Figure 3 was generated using the UPGMA method (Durbin et
al. 1998). As distance measure between two relative amino acid
distributions p={pi} and q={qi},iPA, where A is the set of
all amino acids, we chose a measure based on relative entropy:

S p; qð Þ ¼ H pjjqð Þ þH qjjpð Þ
¼
X

i2A
pi log

pi

qi
þ qi log

qi

pi
¼
X

i2A
pi � qið Þ log pi

qi

The measure was chosen because the relative entropy,

H pjjqð Þ ¼
X

i2A
pi log

pi

qi
;

is not symmetrical in its original form. The measure is still not
a true distance metric since it does not fulfill the triangle
inequality, but should be sufficient for our purpose.

Algorithms and datasets

If nothing else is stated, the following algorithms, versions, and
settings were used: Phobius, TMHMM 2.0, and HMMTOP 2.1
were run using default settings. 7TMHMM was obtained from
the author and run using the forward score and a standard
background model. QFC was also obtained from the author
and run using the recommended cutoff level. HMMER 2.3.2
was used for the profile searches and always with default set-

Figure 5. Large-scale testing of GPCRHMM. Shown is a histogram of

GPCRHMM scores for GPCRDB (redundant sequences removed) and

a large negative dataset (the Swiss-Prot database minus all sequences

with>20% sequence identity to any protein in GPCRDB). Some high-

scoring false positives occur, and to address this a local scoring proce-

dure was devised (see Fig. 6). The majority of low scoring GPCRDB

sequences are fly odorant receptors (7tm_6).

Figure 6. GPCRHMM’s discrimination can be improved by applying a

“local score.” Global and local scores are plotted for the sequences in

GPCRDB and a large negative dataset as in Figure 5. The sequences

from Figure 5 with a global score above 0 were rescored using a devised

local score (see Materials and Methods). This improves the separation

between true and false hits. We noted that a number of the high scoring

negative sequences were actually putative GPCRs not part of

GPCRDB (e.g., serpentine receptors). GPCRHMM’s default cutoffs

are global score >0 and local score >0.
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tings.GPCRHMMproteomepredictionswerebasedonan initial
global score above -5, followed by a local score above 0. Pfam
version 11.0 was used for retrieving profile HMMs. SEG 5.2.1,
run with default settings, was used to detect low complexity
sequences. Peptide sets from full genomes and their annotation
were downloaded from Ensembl the following dates: Human (4
February 2004),Mouse (11 June 2004),F. rubripes (25May2004),
andD.melanogaster (1 June 2004). TheC. elegans peptide set was
obtained fromWormBase (wormpep123, 22 April 2004).
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