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Abstract
Background: Observing co-expression between genes suggests that they are functionally coupled.
Co-expression of orthologous gene pairs across species may improve function prediction beyond
the level achieved in a single species.

Results: We used orthology between genes of the three different species S. cerevisiae, D.
melanogaster, and C. elegans to combine co-expression across two species at a time. This led to
increased function prediction accuracy when we incorporated expression data from either of the
other two species and even further increased when conservation across both of the two other
species was considered at the same time. Employing the conservation across species to incorporate
abundant model organism data for the prediction of protein interactions in poorly characterized
species constitutes a very powerful annotation method.

Conclusion: To be able to employ the most suitable co-expression distance measure for our
analysis, we evaluated the ability of four popular gene co-expression distance measures to detect
biologically relevant interactions between pairs of genes. For the expression datasets employed in
our co-expression conservation analysis above, we used the GO and the KEGG PATHWAY
databases as gold standards. While the differences between distance measures were small,
Spearman correlation showed to give most robust results.

Background
Elucidating the function of genes and proteins constitutes
one of the main challenges in the post-genomic era. Large-
scale gene expression measured by microarrays is a valua-
ble and under-exploited data resource to discover func-
tionally coupled genes. Genes with similar expression
profiles, for example, tend to code for interacting proteins
and by this enabled further hypotheses about the genes
and their corresponding proteins functions [1,2].

Various methods are available for the identification of
genes that share patterns in their expressional behavior
under different experimental conditions. The measure of
similarity between the expression profiles of two genes,
where similar genes are said to have a smaller distance to
each other than less similar genes, constitutes an impor-
tant parameter toward the recognition of functionally
coupled genes. This distance, however, is often chosen on
an ad-hoc basis without systematic analysis of its direct
impact on the relevance of the detected interactions.
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In previous work by others in S. cerevisiae, a distance
measure evaluation was performed on binarized gene
expression profiles followed by clustering [3]. The statisti-
cal evaluation of the resulting gene clusters favored Jac-
card's similarity, which is only applicable to binary data.
In a comparison of different clustering methods, also in S.
cerevisiae, the Euclidean and Pearson distance measures
were found to produce an optimal number of clusters
according to Saccharomyces Genome Database annota-
tions found in the GO database [4]. A recent study, also
exclusively in S. cerevisiae, proposed a set of novel distance
measures for expression pattern detection and compared
them to the most frequently applied ones [5]. In contrast
to previous work that focused on the results of the subse-
quent clustering, they directly evaluated the detected can-
didate interactions in terms of their confirmation with
experimental interaction data like protein-protein interac-
tions, KEGG pathway membership, promoter co-regula-
tion, and sequence homology. From the joint information
content of all these criteria they infer experimentally veri-
fied gene associations to which they compared their can-
didate interactions.

The integration of functional genomics data of various
types has proven a valuable approach. Gene function pre-
diction was improved by considering co-expression not
only in one species, but by taking interactions into
account that were found for orthologous gene pairs in
another species. One speaks about orthologous co-expres-
sion between two genes A and B in one species if the co-
expression is also observed between the two genes A' and
B' in another species, where A and A' are orthologs to each
other and B and B' are also orthologs to each other (Figure
1). This conservation adds reliability to the observed co-
expressions since the potential underlying co-regulation
between two genes was observed in two different species
independently. The evolutionary distance between the
species under consideration as well as the availability of
experimental data for co-expression detection and orthol-
ogy inference determine the limits for this approach.

For the comparison of S. cerevisiae and C. elegans data,
conserved co-expressed gene pairs tend to code for mem-
bers of the same protein complex [6] and such pairs show
increased prediction accuracies for S. cerevisiae gene inter-
actions [7]. By combining orthologs in several species into
"metagenes", co-expressed metagenes were identified and
biologically meaningful clusters of metagenes were found
[8]. It was also shown that pairs of metagenes coding for
interacting proteins had a higher co-expression than those
coding for non-interacting proteins [9].

In the work present here, we first introduce a method that
determines the biological relevance of gene pair interac-
tions according to biological expert knowledge. Employ-

ing our method, we compare four distance measures
commonly used in gene co-expression analysis. We evalu-
ate these measures in terms of their ability to detect bio-
logically relevant interactions in the three species S.
cerevisiae, D. melanogaster and C. elegans, extending previ-
ous work done in S. cerevisiae only. We then incorporated
the conservation of co-expression where genes were co-
expressed not only in a single species but in two or three
species simultaneously. Accounting for conserved co-
expression enables to identify the strong interactions and
to exclude weak or sporadic ones. The framework we
present here can be readily applied to make use of the rich
model organism data for increased accuracies of protein
interaction predictions.

Schematic representation of orthologous co-regulationFigure 1
Schematic representation of orthologous co-regula-
tion. For two genes A and B in one species, co-expressed 
genes are more likely to functionally interact than is 
expected by chance. If the co-expression is conserved, i.e. 
also found in an orthologous gene pair, A' and B' in another 
species, where A is orthologous to A' (A and A' arouse from 
a speciation event, red circle in the figure) and B is ortholo-
gous to B', the probability of a functional interaction is 
increased. This likelihood might be even further increased if 
the conservation of co-expression occurs across three spe-
cies at the same time. One might speculate that such con-
served co-regulations have an ancient origin and constitute 
basic functionalities.

D. melanogaster C. elegans S. cerevisiae
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Results
Distance measure evaluation
In this first part of our analysis we evaluated four distance
measures that are frequently applied for the detection of
co-expression between genes: the Pearson correlation
[10], the Spearman correlation [11], the Euclidean dis-
tance [12], and the mutual information [13]. For each of
the three species S. cerevisiae, D. melanogaster and C. ele-
gans (see method's section for details) separately, we cal-
culated the co-expression values, using one of the distance
measures at a time, between all pairs of genes and ranked
the pairs according to their corresponding distances. To
evaluate the accuracy of co-expression predictions, we cal-
culated a function similarity measure that described how
well the two genes in a gene pair were associated accord-
ing to biological expert knowledge. For this, we followed
a suggestion by Lord et al. [14] that has previously been
used for gene co-expression network analysis [15] and
employed the directed acyclic graph (DAG) structure of
the Gene Ontology (GO) annotation system [16] (version
date: March 24th, 2006). In the GO system, a gene can be
annotated to more than one functional attribute. For each
of the two genes in a pair, we extracted a sub tree of biolog-
ical process annotation attributes (nodes). As the measure
of functional similarity between the two genes we then
calculated the ratio of the nodes found in both trees
(intersection) and compared it to the union of both trees
thus defining a similarity measure between 0 for unrelated
genes and 1 for genes with identical annotations. The
KEGG PATHWAY maps [17] (release 35) were also con-
sidered in parallel, to give a second analysis of biological
expert knowledge that was independent of the GO anno-
tations. For this, we followed a previously published
approach [7] where two genes were said to have similar
function if they occurred on the same PATHWAY map.

We used the functional similarities as defined by GO or
KEGG to evaluate each gene list that was ranked according
to the co-expression between gene pairs (based on 1771
genes for S. cerevisiae and 2065 genes for D. melanogaster
and C. elegans, see also Figure 2 and below). For each
number of best co-expressed gene pairs (i.e. for 1 to ~8000
gene pairs with the smallest distances), we calculated the
average functional similarity of our predictions (which is
the same as the accuracy or the positive predictive value).
The list of genes that are known not to interact is small
and by far incomplete, so it is very difficult to evaluate the
sensitivity of our predictions. Instead, we preferred to
express the interactions rather in terms of accuracies than
as true and false positives in receiver operating character-
istics (ROC). Assuming a relation between functional cou-
pling and co-expression, we expected to find the highest
accuracy for the best co-expressed genes. The further
incorporation of less strongly co-expressed pairs will then
lead to a decrease of accuracy. With this accumulative way

of evaluation we took the perspective of somebody asking
the question similar to: "How well are the 1000 best co-
expressed gene associations supported by functional
annotations?" or "What is a reasonable number of gene
associations I should include to find functionally similar
pairs of genes to a certain level of accuracy?"

At first, we observed for all species and distance measures
that the accuracies obtained from GO annotations were
generally higher than the accuracies from KEGG maps
while the shapes for all graphs were similar: the accuracies
decreased continuously as we included more and more of
the lower ranked gene pairs (Figure 3). S. cerevisiae accura-
cies decreased less dramatically than the accuracies for the
two other species indicating the strong contribution of the
even lower ranked gene pairs to the observed averaged
accuracy. In terms of overall accuracies, S. cerevisiae per-
formed best followed by D. melanogaster, while C. elegans
performed poorest. This order coincided with the overall
annotation level (background similarity) for the three
species, i.e. the background accuracy was also poorest for
C. elegans (see also legends in Figure 3). Other factors such
as the experimental conditions chosen to generate the
expression datasets as well as the overall quality of the
datasets might play a role.

A functional GO analysis [18] of the top 8000 genes in S.
cerevisiae showed several highly significant GO terms
related to the ribosome, accounting for 317 genes out of

Sizes of the gene expression datasets usedFigure 2
Sizes of the gene expression datasets used. We based 
our analyses on 'synchronized' gene expression datasets for 
the three species Saccharomyces cerevisiae (yeast), Drosophila 
melanogaster (fly), and Caenorhabditis elegans (worm) where 
each gene in one species had a corresponding orthologous 
gene in one of the other species (number on the edges) or 
among all three datasets (number inside the triangle).

S. cerevisiae

D. melanogaster C. elegans

1771 genes 1013 genes

697 genes

2065 genes
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Figure 3 (see legend on next page)
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the 1131 genes (28%) in the top 8000 interactions. For
the 8000 top D. melanogaster interactions, we found over-
representation of developmental GO terms, which fits
well with the experimental conditions of this dataset. For
the C. elegans dataset, the only two significant GO terms
refer to "organelle part".

Only minor performance differences were found between
distance measures, and different datasets and species will
favor different measures. Euclidean distance and the
mutual information were found both as the best and the
worst method depending on the situation. The most
robust method seems to be Spearman correlation as it was
often the best and never the worst method. We noticed
that the Euclidean distance has to be handled with care.
When we tested the influence of different data normaliza-
tion schemes (see below) we saw that the Euclidean dis-
tance performed poorly when the datasets were not z-
normalized (data not shown).

Conserved co-expression across species
After we evaluated a set of commonly applied distance
measures for co-expression detection for three species sep-
arately, we proceeded and asked: "How much gain in
accuracy for functional gene interactions do we see when
the analysis is restricted to interactions that are conserved
between two or even three evolutionary distant species?"
For this, we employed the principle of orthology: two
genes are orthologous to each other when they arose from
a speciation event [19]. A common assumption in this
context, even though it is not part of the definition of
orthology, is that two orthologs might keep their function
partly or even completely (see also method's section for
details). The evolutionary distance between two ortholo-
gous genes might play a role in so far as orthologs between
similar species are generally thought of to retain a higher
level of functional conservation than between distant spe-
cies. We incorporated orthology into our analysis by 'syn-
chronizing' the expression datasets between two species:
each gene in one datasets has one corresponding ortholo-
gous gene in the other dataset. The number of genes used

for the subsequent analysis was thereby reduced com-
pared to the distance measure evaluation performed
before (see Figure 2 for the number of genes) because
genes with unclear orthology relationships were removed
from the analysis. Using the datasets synchronized
between two or three species, gene associations between
species can be linked to each other. We then combined the
distances between two or three species by averaging them
(geometric mean gave better results than the arithmetic
mean) between the pairs of orthologous genes. The Spear-
man distance measure was selected for this analysis, as it
gave the best overall performance across the datasets (Fig-
ure 3). One of the prerequisites here was to normalize the
inter-species distances to a common range between zero
and one (see method's section for details). For each
expression dataset, the impact of incorporating ortholo-
gous expression data was evaluated. Similar to the analy-
sis shown in Figure 3, co-expressed gene pairs for each
dataset were ranked according to distances calculated
from one, two, or three species and each ranked list was
evaluated using GO and KEGG functional annotation
(Figure 4).

For the S. cerevisiae dataset we found that the incorpora-
tion of co-expression conservation to the C. elegans dataset
gave an increase in accuracy and the conservation to the
D. melanogaster resulted in an even higher increase (Figure
4A and 4D). The joint conservation of S. cerevisiae to both
other species at the same time increased the accuracy
again further, giving a consistent picture for both, GO and
KEGG functional annotations.

For C. elegans, the simultaneous conservation to both spe-
cies also outperforms the accuracies obtained when con-
sidering only one of the two other species (Figure 4C and
4F). The GO annotation system slightly favors the conser-
vation to S. cerevisiae while the situation is inversed for
KEGG.

While both S. cerevisiae and C. elegans benefit positively
from considering the conservation to any of the two other

Evaluation of distance measuresFigure 3 (see previous page)
Evaluation of distance measures. Four of the most commonly used gene co-expression distance measures were evaluated 
in terms of their ability to detect biologically relevant gene associations according to biological process Gene Ontology annota-
tions (A, B, C) and the KEGG PATHWAY map annotations (D, E, F). We incorporated gene pairs, starting with the highest co-
expressed ones, continuing successively with weaker interactions, and predicted their accuracies. The impact of this incorpora-
tion on the prediction accuracies for the three species S. cerevisiae (yeast) (A, D), D. melanogaster (fly) (B, E), and C. elegans 
(worm) (C, F) and for four commonly used distance measures are shown. The background accuracy 'b' (grey horizontal lines) 
is the average over all gene association and represents the expected accuracy for a randomly chosen gene pairs. For the S. cer-
evisiae, D. melanogaster, and C. elegans datasets, the analysis is based on 1771, 2065, and 2065 genes, respectively (see also Fig-
ure 2). The top 8000 interactions obtained using the Spearman correlation, which was used in the conservation of co-
expression study shown in Figure 4, contain 1131, 1308, and 1117 genes for S. cerevisiae, D. melanogaster, and C. elegans, respec-
tively.
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species, the incorporation of S. cerevisiae could even
decrease accuracies below the level of D. melanogaster
alone. Here we can only speculate about the reasons: The
relatively large number of ribosomal gene interactions
found for the S. cerevisiae dataset (see findings above)
might not correspond to highly scoring interactions in the
D. melanogaster or C. elegans dataset, and therefore lead to
decreased accuracy. Another explanation is that the infor-
mation content of the S. cerevisiae dataset might be rela-
tively poor so that it benefits from the incorporation of
any of the two other datasets. Therefore it only gives little
advantage to the C. elegans dataset, and even has a nega-

tive influence to the D. melanogaster dataset. Accounting
for the conservation to C. elegans increases accuracies so
that the combination of S. cerevisiae and C. elegans still
gives an overall gain.

Influence of dataset and normalization
During our analysis we recognized the strong influence of
the normalization scheme on the performance of the dis-
tance measures. Specifically for the Euclidean distance we
observed an extremely poor performance when expres-
sion data was not z-normalized (data not shown). The
Pearson correlation and the mutual information were

Function prediction can be improved by combining co-expression of orthologous gene pairsFigure 4
Function prediction can be improved by combining co-expression of orthologous gene pairs. The prediction accu-
racy for co-expressed genes in a species was compared to the accuracies obtained from gene associations that are conserved 
across two or three species considered in this study. The gain in accuracy was obtained as the ratio of the accuracy of the com-
bined co-expression to the accuracy obtained for one species alone. The analysis was based on 697 genes (see also Figure 2) 
for which orthologous genes were found across all three species.
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only slightly affected. The Spearman correlation was not
affected at all since the rank ordering inherent in this
method is invariant to z-normalization.

For S. cerevisiae, we also tested the performance of distance
measures and their influence on conservation to a second
dataset [20] that contained up to 300 experimental condi-
tions. Compared to the Spellman et al. dataset we used in
the analysis presented here, the Hughes et al. dataset con-
tained many genes with a higher number of extremely
high (and probably biologically not meaningful) expres-
sion values (data not shown). Resulting from these out-
liers, we observed poor performances for the best co-
expressed gene pairs. Even after removing these outliers,
the Hughes et al. dataset gave less good results in our eval-
uations so that we decided not to employ it for our analy-
sis.

Discussion
We have introduced a method to assess the relevance of
gene co-expression on the basis of biological expert
knowledge. This can be useful for boosting the accuracy of
interactions predicted from microarray expression data.
This is of particular value for species with limited availa-
bility of expression data, given that several organisms
already are associated with large amounts of microarray
data. In addition to the established binary measure for the
co-occurrence of genes on the same KEGG PATHWAY
map, we follow a more recent suggestion [14] that utilizes
the annotation graphs defined by the Gene Ontology
(GO) consortium. In this more fine-grained approach the
functional similarity between two genes is a continuous
value between zero and one, with higher values represent-
ing gene association with higher biological relevance. In
our method, we evaluate the gene interactions in a top-
down manner, starting with the most co-expressed pair
and including each next best co-expressed gene pair one at
a time. This way the impact of successively incorporated
gene associations becomes apparent and the disadvan-
tages of binning procedures can be avoided. It is particu-
larly useful for revealing whether the strongest co-
expressed gene pairs constitute the most promising candi-
dates for experimental assays to detect the functions of
uncharacterized genes.

Distance calculations for gene expression profiles are
extensively performed, mainly for the clustering of gene
expression data [10]. However, the present study is one of
the first to systematically evaluate the direct impact of the
different distance measures on the detected gene associa-
tions for several species. In general, distance measures are
chosen without justification or considering the suitability
of the species or experimental conditions of the expres-
sion data under consideration. Our evaluation of several
commonly used distance measures on expression data of

three different species draws a fairly consistent picture.
Both annotation systems, GO and KEGG, mainly coin-
cided in the results we obtained. Considering the general
results over all three species, we neither found a distance
measure that underperformed when compared to the
other measures nor was one of them clearly outperform-
ing the others. The preprocessing of the gene expression
data constituted a crucial parameter for our analysis (data
not shown). Here, the Euclidean distance appeared specif-
ically sensitive to outlying values and produced poor
results when the data preprocessing was not sufficiently
balanced.

We systematically compared the prediction accuracies of
gene co-expression obtained from a single species to the
accuracies obtained from interactions that are conserved
across two or three species [see Additional file 1]. By eval-
uating the accuracies among gene co-expression that was
conserved between all the three species used in this study
at the same time, we extended previous investigations in
which the impact of conservation has been evaluated on
only one species (most often on S. cerevisiae) and on
broad functional classes (e.g. MIPS complexes) [7].

Conclusion
By assessing the biological relevance of gene interactions
directly, and not via the overrepresentation analyses of
annotations for potentially functionally related groups of
genes, we were able to systematically analyze various nor-
malization parameters and distance measures. Even
though the presented analysis exemplifies the proposed
method only with a few species, datasets, and distance
measures, it can be applied to evaluate a wide variety of
data resources and the impact of various parameter set-
tings.

Methods
Gene expression data
We used gene expression data from the three species Sac-
charomyces cerevisiae [21], Drosophila melanogaster [22],
and Caenorhabditis elegans [23]. We normalized the genes
for each of the three datasets. For the D. melanogaster and
the C. elegans datasets, we first removed log-ratio expres-
sion values that had a distance from the median of more
or less than 5 times the inner quartile range. For all three
species we then z-normalized the expression values for
each gene to a mean of zero and a standard deviation of
one.

Orthology
The orthology database InParanoid [24] (version 4.0) was
used to determine the subsets of genes that were shared
between each of the three pair wise species comparisons
and for the three-way species comparison. For simplicity,
we only used the two seed orthologs from each InPara-
Page 7 of 9
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noid ortholog group for the analysis. If a group contained
multiple seed orthologs, the first one was taken. Applying
this procedure, we obtained different dataset sizes for the
pair wise species comparisons and for the three-way com-
parison (Figure 2).

Distance measures and normalization
We evaluated a set of commonly applied distances meas-
ures in gene expression data analysis. These measures
were the Pearson correlation [10], the Spearman correla-
tion [11], the Euclidean distance [12], and the mutual
information [13]. Except for the Euclidean distance,
which already fulfills the requirements of a distance meas-
ure, these measures were transformed into distances by
subtracting their absolute value from unity and were then
linearly scaled to range between 0 and 1. To reduce the
effects arising from undefined data, we only considered
distance values where two genes had at least 80% of their
expression values simultaneously defined. We estimated
the mutual information using the standard histogram
procedure [25] and chose appropriate histogram resolu-
tions depending on the number of experimental condi-
tions of each of the datasets (5 bins for the D. melanogaster
dataset with 70 experimental conditions, 10 bins for the
C. elegans dataset with up to 548 experimental conditions,
and 5 bins for the S. cerevisiae dataset with 77 experimen-
tal conditions). For the mutual information, we addition-
ally considered the finite size effect that describes the
systematic overestimation of the mutual information
depending on the number of data points from which it is
calculated [26]. By correcting for this effect, we avoided
biases arising from a different number of undefined val-
ues in the gene expression data.

Significance of accuracies
We estimated the significances of the prediction accura-
cies with a permutation test. We randomly permuted the
ordering of the gene pairs in the list, which was originally
obtained using the co-expression distance measures under
consideration, and re-calculated the accuracies for the
whole range of thresholds. From 1000 random realiza-
tions we estimated the mean and the standard deviation
of the accuracies. The significances were obtained from
the difference of the mean values between original and
randomized data in terms of standard deviations of the
randomized data and are also referred to as z-scores. All
accuracies depicted in Figures 3 and 4 were highly signifi-
cant (p << 1e-04).
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