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ABSTRACT

Motivation: Computational assignment of protein function may be
the single most vital application of bioinformatics in the post-
genome era. These assignments are made based on various
protein features, where one is the presence of identifiable domains.
The relationship between protein domain content and function is
important to investigate, to understand how domain combinations
encode complex functions.

Results: Two different models are presented on how protein domain
combinations yield specific functions: one rule-based and one
probabilistic. We demonstrate how these are useful for Gene
Ontology annotation transfer. The first is an intuitive generalization
of the Pfam2GO mapping, and detects cases of strict functional
implications of sets of domains. The second uses a probabilistic
model to represent the relationship between domain content and
annotation terms, and was found to be better suited for incomplete
training sets. We implemented these models as predictors of Gene
Ontology functional annotation terms. Both predictors were more
accurate than conventional best BLAST-hit annotation transfer and
more sensitive than a single-domain model on a large-scale dataset.
We present a number of cases where combinations of Pfam-A
protein domains predict functional terms that do not follow from the
individual domains.

Availability: Scripts and documentation are available for download
at http://sonnhammer.sbc.su.se/multipfam2go_source_docs.tar
Contact: Kristoffer.Forslund@sbc.su.se

Supplementary information: Supplementary data are available at
Bioinformatics online.

1 INTRODUCTION

As the rate of genome sequencing increases, a wealth of new
proteins await functional annotation. While fully automated protein
annotation may be utopic, the development of tools that narrow
the hypothesis space is crucial and possible (Friedberg, 2006).
Most forms of semi-automatic protein annotation are in some form
transfer methods, which build on finding already annotated proteins
related to the query and transferring their annotations to it. Some
methods exist that rely on mRNA or protein co-expression data
for such annotation transfer (Massjouni et al., 2006; Zhu et al.,
2007), but the majority of annotation transfer tools rely ultimately
on protein sequence (Friedberg, 2006). These range from methods
using high-level sequence features such as localization signals or
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motifs to simple similarity searches to find annotated homologs.
A third class of methods extend existing annotations to maximize
internal consistency across the set of annotated proteins. Likewise,
methods vary in the way in which these features are integrated and
evaluated for inferring transfer. A standard approach is simply to
transfer annotations from some fashion of best-annotated BLAST
hit (Altschul et al., 1990; see Jones et al., 2005) or from more
complex analysis of BLAST or BLAST-like results (Hawkins et al.,
2006; Verspoor et al., 2006). From there on, various machine
learning approaches have been applied, including but not limited
to Bayesian networks (Engelhardt ez al., 2005; Nariai et al., 2007),
Support Vector Machines (Vinayagam et al., 2004) and several
flavors of rule-based classification (Hayete and Bienkowska, 2005;
Kretschmann ez al., 2001; Schug et al., 2002; Syed and Yona,
2003). Moreover, the approaches for evaluating annotation transfer
tools vary considerably, both with regard to benchmarks, annotation
systems, and evaluation metrics (Friedberg, 2006; Jones et al., 2007).
As a result, there is no solution to this problem that as yet has been
universally shown to be effective.

Among relevant sequence features of a protein, domains occupy
a key position. They are sequential and structural motifs found
independently in different proteins, in different combinations, and
as such seem to be the building blocks of proteins above the raw
amino acid sequence level (Richardson, 1981). Several approaches
to define and delimit different domains have been developed, some
based on observed distinct structure classes (Murzin et al., 1995),
others on clustering conserved subsequences (Mulder et al., 2007,
Sonnhammer et al., 1998). One of the most widely used domain
schemata is the Pfam database (Finn ef al., 2006; Sonnhammer et al.,
1998). At the core of this database are sets of distinct representative
sequences, manually selected for each domain family, for which
then Hidden Markov Models are generated and are used for domain
annotation of the rest of the protein sequence space. Thus, Pfam
domain assignment is generally straightforward and achieves good
coverage.

Under the assumption that domains are structural protein
architecture modules, it makes sense that protein function should
follow largely from domain architecture. This in turn would imply
that many aspects of such function could be inferred without
recourse to more detailed information about the raw sequence
(Bashton and Chothia, 2007). Whether this is indeed the case,
and if so, what the inner workings of the relationship between
domain architecture and function are, is unknown. However, we
are beginning to accumulate enough data from diverse sources to be
able to test the extent to which this hypothesis is true.
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It is also known that certain sets of domains are frequently
found together, which may indicate functional cooperation. This
conservation of domain context has been the basis for work
attempting to improve domain detection by integrating such context
information (Beaussart et al., 2007; Coin et al., 2003) and for
detecting homologs using domain content similarity (Song et al.,
2007). On the whole, it seems clear that domain context is important
for protein function.

Attempts have been made to link the terms of the Gene Ontology,
which is a widely-used controlled protein annotation vocabulary
(Ashburner et al., 2000), to InterPro domains. The InterPro database
is a metadatabase of several constituent domain schemata, each with
some automated method for determining whether a protein sequence
belongs to a given domain family or not (Mulder et al., 2007). This
interpro2go map (Mulder ef al., 2007) is based on the premise that if
annotated proteins possessing a given domain are never found in a
trusted training set without a given GO term, that term is implied by
the presence of the domain. By subsequently mapping INTERPRO
domains to Pfam domains, the Pfam2GO approach thus enables a
study of the relationship between Pfam domains in isolation and
Gene Ontology functional assignments (Hayete and Bienkowska,
2005; Mulder et al., 2007). Hayete and Bienkowska (2005) built a
model using decision trees to predict GO terms from combinations
of Pfam domains and other sequence features, and Schug et al.
(2002) built a similar rule-based predictor using ProDom and CDD
domains, both with some measure of success. It is reasonable to
assume that a significant number of protein functions arise from
the interplay between domains, where a combination of domains
implies a certain function with greater specificity than the individual
domains. This project presents a model for such interplay, and
attempts to chart which such cases exist.

In evaluating this hypothesis on the interaction of domains to
form specific functions, we implement it as a simple, standalone
function annotation tool, enabling us to test how well it holds up in
practice. Clearly, for maximum effect, protein function prediction
should make use of all available data, including non-sequence
based information such as interaction data. Our purpose here is
not primarily to present a full-fledged prediction tool, but rather
to present an approach by which such tools may make use of
domain architecture information to transfer annotation between
distantly related proteins. In contrast to previous work, our present
approach makes use only of Pfam-A domain architecture. Moreover,
it is more intuitive, computationally faster, and better scalable than
previous decision tree-based approaches, lending itself not merely
to prediction but also to drawing specific conclusions concerning
domain functional interplay.

2 METHODS

This work makes a number of simplifying assumptions. Protein function
in this context specifically refers to any Gene Ontology term assigned to a
protein. A protein assigned a specific term is also by definition considered to
have any ancestors of that term in the GO graph as well. The predictors may
assign any term individually regardless of GO level, but if a term is assigned,
all its ancestors are also assigned automatically. By the domain architecture
content of a protein is meant the set of Pfam-A domains it contains. Thus,
both the sequential order of domains and the number of times each domain
occurs in a protein is ignored with regard to functional interplay. A domain
is simply regarded as absent or present. This is done primarily on grounds
of the assumption that the presence or absence of the domain at all is more

vital for its functional contribution to the protein than its sequential position,
but it also helps avoid building a model too complex. Thus, the domain
architecture A*B*B*A*C contains the domain subsets {A}, {B}, {C}, {AB},
{AC}, {BC} and {ABC}. We consider two possible forms of the relationship
between the domain set of a protein and its function.

2.1 Strict implication

In analogy with the Pfam2GO approach, we state that a domain (sub-)set with
a GO term strictly implies that term if and only if all instances of annotated
proteins displaying that set of domains also display the term. This may or
may not mean that the properties of those domains in combination causes
a protein to have that function. In case a domain set and one of its subsets
(such as {AB} and {A}) both imply a functional term, only the smaller
subset is considered to imply it, in keeping with Occam’s razor and seeking
the simplest possible explanations. Thus, a multi-domain set will only predict
a GO term if all its domain subsets are supported by at least one training
example lacking the GO term. Finding the set of such non-redundant strictly
implying domain set-GO term relationships from a set of annotated proteins
is fairly straightforward.

The use of strict implication has one important drawback: it can be foiled
by false negatives in the training set. A single protein missing a valid GO term
annotation is enough to disqualify the domain sets present in its architecture
from predicting that term. While this can be avoided partly by using only
manually annotated proteins as a training set, this approach still cannot
protect from cases where only part of the function of a training set protein
is known. Relying only on manually annotated proteins, while prudent at
this stage, makes large-scale analysis difficult. Furthermore, domain sets
occurring once only will imply any functional terms associated with that
single protein. All of these problems will decrease as databases improve, and
eventually, strict implication predictions should become stable. Our goal at
this stage is to extend the Pfam2GO framework to multi-domain sets, and
the resulting predictions could then be manually evaluated.

2.2 Probabilistic approach

The second form of relationship between domain content and function is
probabilistic, similar to a Naive Bayesian network (Friedman et al., 1997).
Consider a functional annotation term F (in this case a Gene Ontology term,
but the approach would be analogous using another annotation vocabulary)
and a domain set D. The probability that a protein exhibiting D would possess
F is modeled as

P(F|D)=P(D|F)P(F)/P(D) ()]
and for the complement 1 F, that is, the case that the protein does not possess F
PGF|D)=P(DRF)PGF)/P(D), (@)
where P(F|D)+P(1F|D)=1. Thus, we have the odds ratio « as
a=P(F|D)/PGF|D)=P(D|F)P(F)/P(DRF)P(F) 3
and
P(FID)=a/(1+a), 4

which is the posterior probability of annotation F given D. From a sufficiently
large training set, the prior probabilities of F" and 1F can be estimated. The
same may or may not be true for P(D|F) and P(D|yF), particularly if the
domain set is uncommon. This is where the Naive Bayesian-like assumption
comes in — the distinct sets for which P(D|F) and P(D|4F) significantly
differ are assumed to occur independently. This is clearly not the case, as
any multi-domain protein will contain some domain sets that are subsets to
others, but the simplification may nevertheless be sufficiently reasonable that
predictions remain possible. Following this, we have

P(D|F)/P(DF)=I1P(D;|F)/P(Di1F) ()
and the odds ratio
a=TI(P(Di|F)/P(D;|1F)) x P(F)/P(F), (6)

where the product is taken over the i=0..K subsets of D. There are K=
2N —1 such subsets for N unique domains in D.
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Table 1. Cross-validation results

Dataset All Pfam-A domains only Curated annotations only

Dataset size 654 180 proteins 506 315 proteins 31861 proteins

Sens. (%) Spec. (%) Prec. (%) MCC Sens. (%)

Spec. (%) Prec. (%) MCC Sens. (%) Spec.(%) Prec.(%) MCC

Best BLAST 87.8 >99.9 82.1 0.85 89.6
Pfam2GO 533 >99.9 99.6 073 655
MultiPfam2GO  56.7 >99.9 99.4 075  69.7
Probabilistic 69.1 >99.9 93.9 0.81  85.0

>99.9 82.5 0.86  38.0 >99.9 424 0.40
>99.9 99.7 0.81 5.5 >99.9 55.2 0.17
>99.9 99.4 0.83 7.5 >99.9 523 0.20
>99.9 93.9 0.89 259 >99.9 59.3 0.39

The probability model is thus taken as follows: let f(D;|F),N(D;|F)
be the frequency and number of proteins, respectively, of (sub-)set D;
among proteins with annotation F, and f (D;|1F), N(D;|1F) the corresponding
frequency and number of proteins without the annotation. Sampling is done
using pseudocounts, that is, all tallies of proteins in different categories from
the dataset are incremented by one. Then:

P(Di|F)/P(DilWF)=f (Di|F)/f(Di R F). (O]

As aresult, what needs to be sampled are frequencies of all domain sets with
and without each annotation, as well as the prior distribution P(F)/P(1F),
which can be taken as the frequency f(F)/f(;1F), for each annotation F.

2.3 Reducing Bayesian naivete

While the above model works well, the assumption of independent
occurrence of domain subsets is problematic, not least because it will tend
to cause false annotation transfers to proteins with many domains. For the
reasons presented, explicit handling of dependencies between domain subsets
is difficult. We experimented with several variants of the model where this
effect would be reduced, including using only the highest-scoring subset
for each combination of protein and annotation term, and concluded that
using an averaged contribution from each subset improves accuracy with
only a small loss of sensitivity (data not shown). This is effectively a form
of normalization with the respect to the size of the domain set. Hence, the
model is adjusted so that Equation 6 becomes

a=(TI(PDi|F)/P(DinFN)(1/K) x P(F)/PGF). ®)

2.4 From models to predictors

To test the usefulness of the above models, we applied them as predictors
of Gene Ontology terms (drawn from all three sub-ontologies) under 10-
fold cross-validation. Prediction is fairly straightforward: under the strict
implication model, all annotations implied by its (sub-)sets are transferred to
it, under the probabilistic model, all annotations with posterior probability
over a given threshold are also transferred to it. Next, predictions are
completed under the Gene Ontology True Path Rule (see ontology description
at the Gene Ontology website, http://www.geneontology.org), that is, if a term
has been transferred, all its ancestor terms are automatically transferred also.

2.5 Datasets

Primarily, we are interested in the case of transfer between proteins that are
evolutionarily well separated. If annotated homologs exist with which the
query has nearly full-length sequence identity, there is no point in going
beyond a simple BLAST search. Because of this, we chose the UniRef50
nonredundant dataset, which was downloaded on September 3, 2007. It
is generated by choosing a reference sequence for all clusters of proteins
(mainly taken from UniProt) sharing more than 50% sequence identity
(Suzek et al., 2007). Those UniRef50 proteins which had Gene Ontology
annotation according to the Gene Ontology Annotation (GOA) database

(Camon et al., 2004), and whose representative proteins are present in
UniProt (Wu et al., 2006), were used as our test set for a 10-fold cross-
validation procedure. The Gene Ontology annotation flatfile used for the
predictor performance evaluation was likewise downloaded from the Gene
Ontology Consortium on September 3, 2007. Most, but not all, of these
sequences have at least one Pfam-A domain and are thus amenable to our
analyses. While other studies have shown that functional transfer from
sequences that are annotated electronically is error-prone (Jones et al.,
2007), the decision was made to include such training examples. This makes
the dataset less biased towards extensively studied proteins, as well as
large enough for cross-validation to make sense. Domain architectures from
version 22.0 of Pfam were used.

Three versions of the dataset were used. The ‘All annotations’ version is
the raw data from Gene Ontology and UniRef50. The ‘Curated annotations
only’ version is the subset which results when excluding Gene Ontology
annotations with evidence code IEA (Inferred by Electronic Annotation).
Last, the ‘All annotations, only proteins with Pfam-A domains’ version is
the subset where proteins without Pfam-A domains have been excluded.
The sizes of the relative datasets are shown in Table 1. For each dataset,
all three sub-ontologies (Biological Process, Molecular Function, Cellular
Localization) were used.

2.6 Reliability of functional implications
To compute a confidence score (P-value) for the functional implication of an
annotation term F by a domain combination D, we utilize the following
procedure. It is assumed that D is always found to co-occur with F in
the training data. Let D; be the individual domains (single-domain subsets)
making up D.

We sample the frequencies f(F'|Dj1D) and take

P(F|DjvD)=f(F|Dj D). ©)
Then, under the null hypothesis that there is no domain functional
interplay on D,
P(F|Dj)=P(F|DjyD) (10)
and so
P(F|D)=1-TI(1—-P(F|D))). (11)

The number of proteins with set D found with or without F will then
be binomially distributed, and we may compute the P-value for each
domain combination-annotation term combination as the probability that the
observed number would follow from the null hypothesis.

2.7 Mapping of domain combinations to gene
ontology terms
The models presented above for the relationship between protein domains

and protein functions were used to construct predictors. From the second
approach, the extension of Pfam2GO to multidomain combinations,
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we generated a collection of domain sets—Gene Ontology term
correspondences from all proteins with Pfam-A domains in Pfam 22.0 (which
includes 73% of UniProt proteins) that were annotated with at least one Gene
Ontology term. The GO annotations flatfile used for the final mapping was
downloaded on February 4, 2008, as was the corresponding Pfam2GO flatfile
used in the analysis.

A correspondence between a domain set and an annotation term was listed
if P <0.001, according to the previous section. These correspondences or
predictions were then made non-redundant in several ways. If an implication
follows from another because one annotation term is a parent or ancestor
of the other, only the more specific term is listed. We computed confidence
values for every functional prediction as described previously. If one domain
set was a subset of another predicting the same term, only the one with
the lower P-value was retained. We also excluded any correspondence
represented by less than 10 proteins in UniProt, or represented by only one
unique Pfam-A domain architecture, as we judged there to be insufficient data
in such cases. Last, we excluded any prediction which could be replicated
solely from Pfam2GO, as our purpose specifically was to find predictions
that can be made from domain combinations but not from single domains.

2.8 Best BLAST annotation transfer

As a full length sequence comparison annotation transfer method, we
implemented a simple BLAST-based transfer tool. A protein was assigned the
annotations of its best BLAST hit in a training set of GO-annotated proteins,
as well as any ancestor terms of these annotations. If there were no hits at
the E-value cutoff 1e-6, no annotations were transferred. We used BLASTP
in the NCBI BLAST package, version 2.2.16, and left all other parameters
at their default settings.

2.9 Performance evaluation statistics

We used the following definitions with regard to the gold standard set used
for the testing: TP—true positives, predicted assignments of annotation terms
to a protein which are correct. FP—false positives, predicted assignments of
annotation terms to a protein which are not correct. TN—true negatives,
not predicted assignments of annotation terms which are correct. FN—
false negatives, not predicted assignments of annotation terms which are
not correct.

Sensitivity is defined as TP/(TP+FN), i.e. the fraction of positive cases
that are detected. Specificity is defined as TN /(TN + FP), i.e. the fraction
of negative cases that are detected. Precision is defined as TP/(TP+FP),
i.e. the fraction of positive predictions that are true. Matthew’s Correlation
Coefficient (MCC) is a composite score combining the separate criteria tested
using the other metrics. It is defined as (TP-TN —FP-FN)//(TP+FP)-
(TP+FN)-(TN +FP)-(TN +FN)). It scales between —1 and 1. An MCC
score of 1 would mean a perfect predictor, whereas an MCC score of —1
would mean a predictor which is always wrong. A score of 0 means a random
predictor.

The analysis was performed using 10-fold cross-validation. The dataset
was divided into 10 parts, and predictions were made for each part using
the remaining nine as a training set for the domain-based predictors and as a
reference database for the BLAST analysis. The final performance evaluation
statistics were averaged across the 10 partitions of the data, with very little
variation in the results observed between the partitions.

3 RESULTS

We developed two new methods for predicting protein function from
domain content. To evaluate the performance of these methods and
to compare them to existing methods, we derived three datasets
based on the UniProt50 database. This is a non-redundant subset of
UniProt at the 50% level, i.e. no protein is more than 50% identical to
another one. We also used the subset of UniProt50 with only curated

function annotation (which is a small fraction of GO-annotated data),
and the subset with assigned Pfam-A domains.

By evaluating the respective predictive capacity of the methods,
we assessed the usefulness of their underlying models for the
relationship between domain architecture and protein function.

3.1 Evaluation

Four approaches were evaluated, two existing methods and two
new ones. First, best-BLAST annotation transfer, where annotations
were transferred to a query from its highest-scoring GO-annotated
BLAST hit. Second, Pfam2GO, implementing the Pfam2GO
approach under the current cross-validation scheme. It should
be noted that the publicly available Pfam2GO mapping also
undergoes additional manual curation, which is not performed
in our implementation at this stage. The first novel method is
MultiPfam2GO, which extends Pfam2GO to multiple-domains
MultiPfam2GO under a strict implication model. The second novel
method is a probabilistic Naive Bayesian model. Table 1 shows
the results in terms of average sensitivity, specificity, precision (or
positive predictive value), and the Matthews Correlation Coefficient
(MCC) composite score.

All methods had very high specificity (above 99.9%), a
consequence of our definition of true negatives. However, the
other statistics revealed large differences between the methods. On
the complete dataset, BLAST recovered a high fraction of true
annotations (87.8%), but at the cost of the highest false positive rate,
leading to a low precision (82.1%). Both strict implication methods
performed in the extreme opposite fashion, yielding almost perfect
precision scores (above 99%), but with very low sensitivity. The
probabilistic method performed in the middle of these extremes both
in terms of sensitivity and precision.

Limiting the analysis to only proteins with Pfam-A domains,
which is where the domain-based methods are at all applicable,
rendered these methods more sensitive. The probabilistic method
increased its sensitivity to 85%, only 4.6% below BLAST, yet
maintained a high precision (93.9%, 11.4% above BLAST). Its
utility as a balanced tradeoff between sensitivity and precision
(coverage and accuracy) is further shown in its high MCC score, the
highest for all datasets and methods. While BLAST remained very
sensitive, its precision stayed low even at lower E-value cutoffs (data
not shown). There was a significant gap between the sensitivity of the
strict implication methods and the probabilistic approach, indicative
of the high frequency of missing data in the training set, i.e. proteins
that should have a certain annotation but do not yet have it. The
probabilistic approach was as expected much better at handling
incomplete training data, which is a reality for the foreseeable future.
From a perspective of whole-genome annotation using domain-
based methods, the results would suggest first the application of the
probabilistic method, and flagging those annotations as relatively
more reliable that also are reproduced using the strict implication
methods.

Comparing the single-domain Pfam2GO method with its multiple
domain extension, the gain in sensitivity was smaller than we
had expected, typically a few percent. While clearly a fraction
of annotation terms can only be inferred from the presence of
multiple domains, in most cases there is some domain that always
co-occurs with the function. If the domains individually are not
found elsewhere, considering the combination would not improve
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Fig. 1. Protein domains may encode different functions in different combinations. This example shows several proteins that share many domains, and the
proteins’ functional annotations. Each protein is marked with its name in bold in the style of a FASTA sequence header, followed by a text description of
its putative function. The line below shows the domains as their Pfam-A accession numbers separated by dashes, in the order they occur in the protein. The
particular domains making up the predictive combination are highlighted in color. On the line below, the GO annotation terms assigned to the protein are
listed (the leaf nodes in the GO Biological Process and Molecular Function categories, taken from UniProt). The box at the top contains proteins with the
functional annotations GO:0006094 (biological process gluconeogenesis, orange) and GO:0004736 (molecular function pyruvate carboxylase activity, blue).
The domains that predict these functions are PF02786 (Carbamoyl-phosphate synthase L chain, ATP binding domain, turquoise), PF02785 (Biotin carboxylase
C-terminal domain, purple), PF00682 (HMGL-like, green), and PF00364 (Biotin-requiring enzyme, red). Below the box we list a number of other domain
architectures that the domains occur in, which are associated with other functions. Only in the specific domain combination in the box are the domains
associated with the two highlighted GO terms. A total of 175 proteins in the dataset used exhibit this domain combination.
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prediction further, even if the function depends on properties of all
the domains in the set.

For the dataset with only curated annotations, all methods
performed considerably worse. This set is apparently too small for
any method to achieve high sensitivity under cross-validation. At the
same time, it is known that current electronically annotated data can
be error-prone, so the figures on a sufficiently large experimental set
may be more realistic.

3.2 Protein function predicted by domain combinations

The performance evaluation indicates that protein function in many
cases is produced by a specific domain combination in a more
complex way than simply by adding the functions of the individual
domains. Exploring these cases would be interesting not least for
the purpose of learning how individual domain functions combine
to yield more specific functions.

As an example of such an informative combination, the set of
domains PF00364 (Biotin-requiring enzyme), PF00682 (HMGL-
like), PF02785 (Biotin carboxylase C-terminal domain), and
PF02786 (Carbamoyl-phosphate synthase L chain, ATP binding
domain) can be mentioned. These four domains in combination are
highly specific for the process of gluconeogenesis (GO:0006094)
and the associated molecular function of pyruvate carboxylase
activity (GO:0004736). While the domains are known to be
connected to proteins with this and similar roles, they are also found
independently in proteins with other roles, hence the presence of
any of these domains alone cannot be used to infer participation
in gluconeogenesis. When appearing together, however, we may
conclude this functional role reliably. See Figure 1 for some sample
proteins where these domains appear, together or in isolation, along
with their respective Gene Ontology term annotations. A larger
domain set, also including PF00289 (Carbamoyl-phosphate synthase
L chain, N-terminal domain) and PF02436 (Conserved carboxylase
domain) was also found to predict a gluconeogenetic function, but
was pruned from the prediction set as the four domains above
formed a more statistically significant subset. As shown in Figure 1,
gluconeogenetic proteins of this type display multiple distinct
domain architectures; however, the relative sequential order of the
domains appears to be conserved.

3.3 Mapping of domain combinations to
annotation terms

From our set of 2181143 UniProt proteins with Pfam-A domains and
Gene Ontology assignments, we selected a set of 805 statistically
significant mappings between 457 combinations of Pfam-A domains
and 186 Gene Ontology terms. Note that if a domain combination
predicts several annotation terms which are related as ancestor-
descendant in the Gene Ontology DAG, only the leafmost one will
be included. We present this MultiPfam2GO mapping in an online
format similar to Pfam2GO (with the addition of the P-value of
the inference), and will successively maintain and update it. For
certain predictions, the P-value is listed as 0, which means that
it is smaller than the smallest number the software can handle,
which is on the order of 10e-320. The datafile can be found at
http://sonnhammer.sbc.su.se/MultiPfam2GO, but is also included
here as Table S1. The distribution of domain combination sizes in
this prediction set is shown in Table 2.

Table 2. Distribution of domain combination size in mapping set

Number of domains Number of predicting combinations

2 582
3 161
4 59
5 2
6 1

The distribution of numbers of domains across domain combinations predicting
annotation terms in the MultiPFfam2GO mapping set.

4 DISCUSSION

We have presented two simple models, one conservative, one more
permissive, for how domains in a protein interplay to produce its
function. While neither method can capture all patterns that exist,
the approaches are nevertheless useful in integrating and extending
the knowledge we already have, and we demonstrate that, at least
for more distantly related proteins, our approaches are superior to
simple sequence similarity annotation transfer and to single-domain
strict implication.

The only previously published work on using Pfam domain
combinations for predicting Gene Ontology functions is, to our
knowledge, that of Hayete and Bienkowska (2005). It is difficult
to make a fair comparison to that method because of very different
benchmarking approaches. Still, our method achieved significantly
higher sensitivity and precision than reported in that work, in a
fraction of the computer time.

We demonstrate that domain functional interplay may not follow
directly from the properties of the domains in isolation. We have
thus started to unravel the language by which protein function is
encoded in a set of protein domains.

As databases grow in coverage and quality, an approach like
this, which scales well numerically, is likely to reveal even more
mechanisms and relationships, and has the potential of functioning
as an important component in automated genome annotation
pipeline. To avoid compound errors, a production implementation
of this method should ideally be trained on the latest set of curated
proteins available at the time.

Future work will likely include integrating predictors based on
these models in the form of a web service, queryable interactively
or in bulk. Another potential area of exploration is to extend this
framework from merely the use of domain sets to also take into
account conservation of sequential order of the domains, and to
investigate to which degree such conservation is important for
predicting protein function.

Funding: A grant from Pharmacia.
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