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MGclus: network clustering employing shared
neighbors†

Oliver Frings,ab Andrey Alexeyenkoac and Erik L. L. Sonnhammer*abd

Network analysis is an important tool for functional annotation of genes and proteins. A common

approach to discern structure in a global network is to infer network clusters, or modules, and assume a

functional coherence within each module, which may represent a complex or a pathway. It is however

not trivial to define optimal modules. Although many methods have been proposed, it is unclear which

methods perform best in general. It seems that most methods produce far from optimal results but in

different ways. MGclus is a new algorithm designed to detect modules with a strongly interconnected

neighborhood in large scale biological interaction networks. In our benchmarks we found MGclus to

outperform other methods when applied to random graphs with varying degree of noise, and to

perform equally or better when applied to biological protein interaction networks. MGclus is

implemented in Java and utilizes the JGraphT graph library. It has an easy to use command-line interface

and is available for download from http://sonnhammer.sbc.su.se/download/software/MGclus/.

Introduction

Understanding the relationship between the logical organization
of biological networks and their functions has become an
important challenge in systems biology.1,2 The most commonly
followed strategy to reduce complexity and extract important
information is to partition the data into local components that
are densely connected.1,3,4 The general problem of identifying
densely connected components in networks has been studied
intensively in recent years and is known under different names such
as network module prediction, network clustering, community
detection, and graph partitioning.5

It has been shown that biological networks have a modular
organization,6 whereas densely connected modules, or network
clusters, can often be related to functional gene modules or
regulatory pathways.7–9 Extracting functional modules has not
only become a fundamental aspect of systems biology work
flows, but also many other areas of bioinformatics such as the
analysis of co-expression networks, prediction of protein function,
finding functional complexes, and understanding cellular
organization.6,10–14 Large-scale gene interaction networks are

constantly growing and have become available for a large
number of model organisms.15–17

Popular network clustering approaches include CFinder,18

FastCommunity,19 MCode,7 MCL,20 MINE,21 NEMO,5 SPICi,22 and
Cohtop.23 Briefly, the Clique Finder (CFinder) method is based
on the Clique Percolation Method (CPM) to locate k-clique
percolation clusters. A k-clique is a complete subgraph of size
k whereas two k-cliques are said to be adjacent if they share
exactly k � 1 nodes. The FastCommunity method follows a
hierarchical agglomerative approach. It starts with each node
as its own community and then calculates in each step the
expected increase in modularity for the merge of each pair.
Molecular Complex Detection (MCode) has three main steps:
vertex weighting, complex prediction, and an optional post-
processing step that removes unwanted elements from the final
set of clusters. It starts with identifying a set of seed nodes
based on local density that are extended in a greedy fashion.
The Markov clustering (MCL) approach is based on modified
random walks on networks. MINE (Module Identification in Net-
works) is a clustering approach similar to MCode in that it uses
seed nodes that are determined based on the node degree and local
density as starting points. Seed nodes are extended in an iterative
manner grouping together nodes that improve the modularity
score. NEMO is based on complete-linkage hierarchical agglomera-
tive clustering. SPICi is an extremely speed-efficient local network-
clustering method. It builds clusters greedily starting from local
seeds that have a high weighted degree and then iteratively adds
nodes accounting for the local density around the growing clusters.
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The Cohtop method employs the Kullback–Leibler divergence to
assess the gain of merging a pair of clusters. Most methods have
in common that they have many user-adjustable parameters
which can be a huge complication for inexperienced users.

When defining network modules one typically wants to find
groups that are tightly connected, i.e. having a minimal number of
exterior edges and a maximum number of interior edges. However,
this can be too simplistic because most interaction networks
available today are static and far from complete. Interactions may
be missing for example if they only occur in a certain tissue, upon a
given stimulus, or in a particular developmental stage that has not
been sampled. When assessing the relevance of a set of nodes to
each other, it can therefore be of special importance to explicitly
consider their network neighborhood.

The MGclus method presented here aims to detect modules
not only by maximizing their interior edges while minimizing
their exterior edges, but also by promoting a common local
network neighborhood. This strategy is intended to circumvent
problems caused by incompleteness of biological networks.

Using three different benchmark sets, we demonstrate that
MGclus performs well when compared against other clustering
methods popular in the field. First, we performed a benchmark
on random clusters with a controlled degree of inter-cluster and
intra-cluster connectivity. Second, we benchmarked MGclus on
two S. cerevisiae PPI (protein–protein interaction) networks from
BioGRID. Third, we compared the clustering methods on a large
scale human interaction network from FunCoup. In all cases MGclus
outperformed or performed equally well as the other methods.

Methods

The MGclus method is designed to find sub-network structures
(clusters) that have an uninterrupted path between any two given
nodes (cluster members), minimize the number of exterior
edges, and maximize the number of interior edges.

To balance the number of inner and outer edges, at each
step of the clustering, for each pair of distinct clusters {i,j} the
merge gain (MG) is evaluated.

Theory

The MG for two clusters is defined as follows:

MG = 2Eij � (Ei + Ej) (1)

where Ei and Ej are the clustering efficiency (similar to modularity)
of clusters i and j, and Eij is the efficiency for the union of i and j,
which is assessed by:

Ei = Ni,internal/Ni,total (2)

where:

Ntotal = Nnodes
2 (3)

Ninternal ¼
XNnodes�cluster�1

x¼1

XNnodes�cluster

y¼xþ1
ndðx;yÞ þ

ffiffiffiffiffiffiffiffiffiffiffi
nsðx;yÞ
p

(4)

The degree of internal connectivity of a cluster ((4)) is assessed,
by iterating over all pairs {x,y} of nodes (Nnodes–cluster) in it. If a

pair of nodes {x,y} has a direct link between them, nd(x,y) is the
weight of the edge connecting them (0 otherwise). ns(x,y) is the
sum of the edge weights between x and y and their common
neighbors. The neighbors shared between x and y might
eventually not belong to the formed cluster, but serve as an
indirect measure of the mutual relevance of x and y. In the case
of an unweighted network the weight of all edges is set to 1,
otherwise they should be between 0 and 1.

Algorithm

In each iteration, MG is assessed for all pairs of clusters {i,j}
where i and j are initially individual nodes. MG is only calculated
for cluster pairs that have at least one direct link connecting
them. In order to be considered for merging, the MG for a given
pair of clusters {i,j} has to be higher than the merge gain cut-off
CMG. The default CMG is 0, i.e. the MG needs to be positive and
the union of i and j must account better for the network
modularity than i and j taken separately. In each iteration I, all
cluster pairs are ranked according to their MG and the t top pairs
(t = 100) are merged. A merge is however only allowed if none of
the two clusters was already merged in the same iteration.
Therefore, the number of performed merges is in practice
normally lower than t.

The clustering terminates when no further cluster pairs with
an MG higher than CMG are found. Depending on the network
size and sparseness, a typical run requires between 50 and 100
iterations. In this way, the agglomeration becomes relatively
well balanced, i.e. no particular size configurations, such
as addition of single genes to large clusters, or merging of
equally sized clusters are favored. To control the number and
compactness of the found clusters the user can specify CMG.
A higher cut-off will typically result in more clusters of smaller
size and higher density.

Implementation

MGclus is implemented in Java and utilizes the JGraphT graph
library for performance oriented handling of large data sets.

As input, the method takes a tab-separated network file, with
node names in the first and second column and an optional
edge weight in the third column. Via the command line interface,
the user can further specify various parameters including the
merge-gain cut-off.

Clustering methods

Besides MGclus we considered eight widely used clustering
methods, namely CFinder,18 FastCommunity,19 MCode,7 MCL,20

MINE,21 NEMO,5 SPICi,22 and Cohtop.23 Note that MCode and
NEMO are only available as Cytoscape plugins and could there-
fore not be included in all benchmarks. To apply MINE to the
random clusters, we used a Perl implementation provided by
the authors. The parameter settings used to run the individual
methods are given in the ESI.† We stopped runs that ran longer
than 24 hours. All benchmarks were conducted on an Intel Core
i7 with 16 GB of memory.
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Interaction and gold standard datasets

To evaluate the performance of all methods quantitatively, a set
of random clusters with varying degree of inter-cluster and
intra-cluster connectivity was assembled. Each set contained a
defined number of random clusters each of size 10. Assembly
started with a set of unconnected nodes whereas each node was
assigned to a particular cluster. The nodes were then randomly
connected to each other until a certain degree of inter-cluster and
intra-cluster connectivity was reached. Inter-cluster connectivity
was iteratively chosen between 0.01 and 0.15 and intra-cluster
connectivity between 0.1 and 1.0. The average accuracy of each
method was assessed after 50 randomization runs.

We utilized S. cerevisiae protein interaction data from BioGRID
(version 3.1.77).24 Similar to the work of Song et al.,4 two different
networks were assembled. We retrieved all protein interaction
data available for S. cerevisiae from BioGRID and then filtered the
link set so that the first network contained all high-throughput
physical interactions whereas the second network was further
limited to data from experiments utilizing the yeast two-hybrid
technique. The first network contained in total 4152 proteins and
15 177 links and the second smaller network contained 2413
proteins and 4157 links. In the following we will refer to those
two networks as the small and the large S. cerevisiae network. As a
reference for functional groups in S. cerevisiae we used functional
complex annotations from the CYC2008 database.25 The data set
contained in total 401 complexes comprising 1914 genes. For
benchmarking the different clustering methods, we filtered for
genes present in both the CYC2008 database and the S. cerevisiae
networks. In the case of the smaller network 991 genes were also
present in the CYC2008 database and 1544 in the case of the
bigger network.

A more comprehensive network was derived from the FunCoup
database.15,16 The FunCoup database provides global interaction
networks for a variety of species and combines different types
of evidence: protein–protein interactions, mRNA co-expression,
sub-cellular co-localization, phylogenetic profile similarity,
co-targeting by either miRNA or transcription factors, protein
co-expression, and domain–domain interactions. It further
transfers evidence from other eukaryotic species via orthologs.
In this study we used the human FunCoup v2.0 network. The
link set was limited to the subset that was trained on the PPI
gold standard and had a confidence score of 0.9 or higher. The
whole network included 9831 unique genes with 671 267 links
between them. All references to the FunCoup human network
refer to this subnetwork. As a reference to benchmark different
clustering methods on the FunCoup network we collected
human pathway annotations from the KEGG database26 and
considered each pathway as a cluster. Our pathway data set
contained 198 pathways spanning 5043 genes. The intersection
of the human FunCoup network and the pathway data set
contained 3298 genes.

Cluster evaluation

The accuracy of the different clustering methods was assessed
based on the overlap between clusters and reference groups.

As a measure of the overlap between two sets of proteins we
used the Jaccard similarity coefficient. It is defined as the size
of the intersection divided by the size of the union. We
determined the average Jaccard similarity coefficient for each
method on each benchmark set. Comparing different clustering
methods is complicated by the fact that some methods attempt
to cluster the whole network while other methods leave big parts
of the network unclustered. To correct for this fact we included
unclustered nodes as singletons, as this makes results more
comparable between methods. Furthermore, only genes present
in both the network and the reference groups were included in
the score calculation. This means that clusters are filtered for
annotated genes and that the size of clusters might potentially
be changed.

Results

We developed a new algorithm MGclus to detect modules, or
clusters, in a network. It specifically searches for clusters with a
strongly interconnected neighborhood, which is often the case
in large scale biological interaction networks. MGclus was
compared to a selection of widely used clustering methods
including MCL,20 CFinder,18 FastCommunity,19 MCode,7 MINE,21

NEMO,5 SPICi,22 and Cohtop.23 Three different benchmarks
were conducted. We started by comparing the clustering methods
using simulated random clusters. The second benchmark was
based on two S. cerevisiae PPI networks derived from BioGRID. In
the last test we compared the clustering methods on a large scale
human network from the FunCoup database.

The comparison of different clustering methods is complicated
by the fact that some methods only report clusters for small parts of
the network, yielding high accuracy but low coverage. To correct for
this we included unclustered genes as singletons, as this makes
results more comparable between methods. Some methods
such as MINE and MCode reach a higher score when not
counting singletons, but then suffer from very low coverage
(see Table S1, ESI†).

To quantitatively evaluate the performance of all methods
considered, they were tested on a set of random clusters with
varying degrees of inter-cluster connectivity and fixed intra-
cluster connectivity. In each run the number of random clusters
was set to 15 or 30, and each cluster contained ten nodes.
Nodes were randomly connected to each other until a certain
degree of inter-cluster connectivity was reached. After 50 itera-
tions the average Jaccard similarity coefficient for each method
was determined. Furthermore, we repeated the analysis with 5,
10, 15, and 30 random clusters with a wider range of inter-
cluster and intra-cluster connectivities (see ESI†).

Fig. 1 shows the results for 15 and 30 random clusters with
fixed intra-cluster connectivity (0.8) and varying inter-cluster
connectivity. We found MGclus to perform clearly better than
other methods in both tests. For 15 random clusters, all
methods except for MGclus, MCL, and SPICi had an average
Jaccard score below 0.5 at all inter-cluster connectivities above
0.04. This became even more apparent for 30 random clusters,
where only MGclus and SPICi reached a Jaccard score above 0.5
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at inter-cluster connectivities above 0.04. In both benchmarks,
MGclus substantially outperformed the other methods at all levels
of inter-cluster connectivity except for the lowest. This was generally
observed also for a wider range of parameters (see ESI†).

In the second benchmark we utilized S. cerevisiae protein
interaction data from BioGRID.24 Two different networks were
derived: a smaller network that was limited to data from yeast
two-hybrid experiments, and a larger network that contained all
high-throughput physical interaction data. Accuracy of the
clustering methods was assessed using reference groups from
the CYC2008 database.25

Fig. 2A and B shows the results of this benchmark. The
overall outcome was the same on both networks. MGclus scored
the best, closely followed by MCL and FastCommunity. It is
notable that many methods left huge parts of the network
unclustered, limiting their practical usefulness for many users.
For example, MCode clustered only 9 percent of the small
network, CFinder only 19 percent, and NEMO only 16 percent
(Table S1a, ESI†). This low coverage does not impact the benchmark
results much however, because most genes are unannotated. All
methods except for MINE, that took 35 minutes to cluster the bigger
network, ran in a reasonable time (Table 1).

In the last benchmark we used a human large scale protein
interaction network derived from high-confidence links in the
FunCoup database, using KEGG pathways as reference clusters.
Results are shown in Fig. 2C. Overall the recovery of reference
groups was much lower than that for the S. cerevisiae networks.
This is not unexpected as the network contains about 44 times
more links and about 2.4 times more nodes than the large
S. cerevisiae network. MGclus performed best followed by Cohtop.
The two methods CFinder and NEMO could not be included into
the comparison, as CFinder failed to cluster the network in a
reasonable time and NEMO crashed after a while. It remained
unclear why NEMO failed on the human network. However, since
it performed successfully on the two smaller S. cerevisiae net-
works, it is likely related to the bigger network size.

An important feature of MGclus is that it accounts for shared
network neighbors. To assess the value of this, we compared
MGclus with and without the use of shared neighbors
(MGclusNCN). We found that MGclus benefits particularly in
early steps of the clustering from accounting for shared net-
work neighbors as it helps to accurately group nodes with high
mutual relevance. Among the random clusters MGclusNCN
performed very poorly and noticeably worse on the other three
networks, demonstrating the usefulness of incorporating the
network context into the clustering procedure.

Discussion

As large-scale gene interaction networks keep growing and
become available for a large number of organisms, there is
an increasing need for tools to accurately extract informative
patterns from these networks. However, although many methods
have been proposed there is no obvious optimal solution, and
most methods provide rather different results. MGclus is
designed to promote the shared local network neighborhood
during the clustering. We found that accounting for shared
network neighbors is especially useful at early steps of the
clustering, as it helps to reliably group nodes with high mutual
relevance.

As a benchmark we quantitatively assessed the ability of
different clustering methods to recover the random cluster with
a controlled degree of inter-cluster connectivity and intra-
cluster connectivity. While differences in performance were
less apparent for a smaller number of random clusters, MGclus
performed notably better than other popular methods when
increasing the number of clusters.

Fig. 1 Accuracy benchmark using simulated data. Various clustering methods were
benchmarked on random graphs with (a) 15 random clusters or (b) 30 random
clusters of size 10. The intra-cluster connectivity was fixed (0.8) and the inter-cluster
connectivity was varied between 0.01 and 0.15. The shown Jaccard similarity
coefficient between predicted and true clusters is the average of 50 runs. Vertical
error bars on data points represent the standard deviation for each method. We also
included a version of MGclus that does not use shared neighbors to calculate the
clustering score (MGclusNCN). Without shared neighbors MGclus performed very
poorly, thus demonstrating the usefulnesses of incorporating shared neighbor counts
in the cluster finding process. Only methods that can be run standalone were included
in this benchmark.
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We then applied all methods to a number of real biological
networks, where MGclus also performed at the top. A problem
that we encountered is that many methods only predict clusters
for a small part of the networks, which can hinder their
practical usefulness. It also makes it hard to compare the
results between methods. To make the comparison as fair as
possible, we counted unclustered nodes as singletons.

A common issue for non-expert users is that some methods
have a number of user-adjustable parameters that can greatly
influence their performance. However, without knowing the
optimal clustering beforehand, it is impossible to know how
parameters should be set. It is therefore important that methods
have reasonable and robust standard parameters. We generally
found MGclus to perform well with the default merge-gain cut-off
(CMG) and only recommend to change CMG if one wants to
enforce a smaller or a larger cluster. As a rule of thumb, a higher
CMG will result in a larger number of clusters of smaller size and
higher density.

In conclusion, MGclus has proven to be suitable for detecting
modules at both protein complex- and pathway-scales in small as
well as large-scale biological networks. It performed notably
better than other methods when applied to random clusters,
and better or equally well when applied to high throughput PPI
networks.
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