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Differential gene expression analysis between healthy and diseased groups is awidely used approach to understand
themolecular underpinnings of disease. Awide variety of experimental and bioinformatics techniques are available
for this type of analysis, yet their impact on the reliability of the results has not been systematically studied.
We performed a large scale comparative analysis of clinical expression data, using several background correc-
tions and differential expression metrics. The agreement between studies was analyzed for study pairs of same
cancer type, of different cancer types, and between cancer andnon-cancer studies.Wealso replicated the analysis
using differential coexpression.
We found that agreement of differential expression is primarily dictated by themicroarray platform,while differ-
ential coexpression requires large sample sizes. Two studies using different differential expression metrics may
show no agreement, even if they agree strongly using the same metric. Our analysis provides practical recom-
mendations for gene (co)expression analysis.

© 2013 Elsevier Inc. All rights reserved.
1. Introduction

The use of microarray or RNA-seq technologies makes it possible to
measure the expression level of all human transcripts. Bymeasuring ex-
pression for patient cohorts and comparing to healthy controls one can
identify genes that show an altered level of expression— differential ex-
pression between healthy and diseased. This approach has been used to
identify genes involved inmany diseases, aswell as to create prognostic
gene signatures capable of classifyingpatients into high/low risk groups.

Despite the promising potential and results with high statistical sig-
nificance, doubts have been raised about their reliability. Surveys of
published top lists of differentially expressed genes have shown a low
degree of overlap between microarray expression studies for ovarian
cancer [11] as well as between microarray expression studies and
non-microarray-based clinical and biological data for schizophrenias
[20]. One might however question the statistical backing of the report-
ed overlaps being low. While numerically low, they are often signifi-
cantly larger than would be expected by chance.

Also the reliability of prognostic gene signatures has been questioned.
Michiels et al. [19] studied the stability of gene signatures for disease clas-
sification by examining the consistency of signatures generated from
multiple randomly resampled sets and found that there was a large de-
pendence on the set of patients of the study. They suggested that larger
sample sizes are needed for accurate results, the need for which has
been corroborated by other studies [7,28].
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If variation of expression across samples for a gene is large, detecting
differential expression becomes difficult due to overlapping expression
between healthy and diseased samples. It could also have the effect that
studieswith biased samplingwould be very inconsistent regarding such
a gene. Further, a change to a regulatory genemight affect the regulated
genes while the expression of the regulatory gene remains non-
differential [15]. However, important genes without detectable dif-
ferential expression can potentially be discovered by examining the
coexpression of gene pairs and the change of coexpression between
healthy and diseased individuals (for review see [6]). Differential
coexpression (DC) will likely be less error-prone for genes with a large
expression variation or biased sampling, andmay therefore bemore con-
sistent across studies than differential expression.

While differences in experimental procedures, biological differences
and differences in composition of tissue samples or groups of patients
can affect the results, there is also evidence that procedures chosen for
data analysis and calculation ofmetrics canhave a profoundeffect. Stud-
ies using homogeneous data with controlled RNA abundances have been
used to compare different preprocessing methods in combination with
different metrics of differential expression (DE) [4,17,31]. Even in con-
trolled conditions that lack biological variation, a strong dependency on
data processing methods was observed. The optimal combination of
methods however varied between data sets.

Cross-platform consistency, i.e. the reproducibility between differ-
ent microarray chips or other techniques, is an important measure of
reliability. This has been examined for platforms from different micro-
array providers in mouse [10] and human [2,26], showing a far from
perfect consistency of differential expression across platforms. In both
studies fold change (FC) performed better than significance analysis of
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microarrays (SAM) [27] and t-test.While consistency between different
platforms can be high, consistency across different Affymetrix microar-
rays has been found to be dependent on the similarity of probe sets and
the expression level of the transcript [22]. For example, Hwang et al.
[16] showed that Affymetrix microarray results cluster according to
platform rather than biological sample. They also noted that expression
patternswere often similar for different platforms, but at different abso-
lute levels, suggesting that gene coexpression would be less affected.
The extent towhich coexpression is sensitive to data processing, sample
sizes and platform has however not been tested systematically.

Evaluating consistency in a statistically sound manner is of utmost
importance. The expected result of comparing two top lists is highly de-
pendent on the chosen number of genes to include. An alternative ap-
proach, which avoids the arbitrary choice of how many top DE genes
to consider, is to use the entire list of DE-ranked genes and calculate a
global overlap between two such lists. [33] provide a good overview of
different methods for sound comparisons of ranked lists, which are all in-
corporated in the GeneSelector R package.

If several effectivemethods exist for detecting DE, why is the consis-
tency of results not higher? The problemmay be related to e.g. the poor
generalizability of prognostic gene signatures, which is likely caused by
putting too much focus on achieving high accuracy while issues of con-
sistency are ignored [12]. This is exemplified by e.g. thework of Zervakis
et al. [30]who showed the importance of complementing cross validation
with independent validation in order not to overestimate accuracy. That
two independent sets of differentially expressed genes, representing al-
ternative gene signatures for the same disease, exhibit a low consistency
between studies couldmerely be an indication thatmultiple valid alterna-
tive sets exist. For cancer, good outcome prognosis is easily obtained even
for gene signatures based on random gene sets [21]. This indicates that
because cancer exhibits vast phenotypical changes, with rewiring of the
cellular machinery and uncontrolled growth, statistically significant re-
sults from differential (co)expression analysis can readily be obtained.
In general one would expect to see large changes of gene expression for
cancer compared to normal.

However, what if the expression changes in one cancer are observed
in multiple cancer types, or even in non-cancer diseases? If that were
the case, can we be certain that a significant differential expression, or
coexpression, between normal and diseased states, is informative about
our disease of interest? Or will the same genes/gene pairs be identified
as being differentially expressed/coexpressed in related diseases, or
even in diseases in general? In order to test this hypothesis we extend
previouswork by performing a systematic large scale analysis of clinical
expression data sets, taking into account bothmicroarray platform gen-
eration, sample size, background correction, as well as metric. We do
this with a focus on cancer on account of the heterogeneity of the dis-
ease and the high availability of data, and perform the analysis both
for DE andDC (see Fig. 1 for an overviewof theworkflow and concepts).

2. Methods

2.1. Literature mining

GEO [3] was searched for cancer studies including both normal and
diseased samples using Affymetrix chips with at least 5 samples per
sample group. The initial list was restricted to studies with at least 3
studies per cancer type, same tissue for disease/normal, and with all
samples analyzed using the same Affymetrix platform. Five studies were
removed in this step. Annotations were retrieved using GEOmetadb [32]
andweremanually annotated for diseased/normal states to obtain rough-
ly coherent sample groups across studies. Where possible, samples from
whole tissues were chosen over samples from single cell types, and sam-
ples from cell lines were always excluded. Samples were annotated to
maximize the number of samples of matching tissue. This resulted in a
set of 4 studies of lung cancer, 7 of colon cancer and 11 of breast cancer.
For the tissues of these 3 cancer types, GEO was searched for non-
cancer studies but otherwisewith the same criteria as before. For breast
no study could be foundwith normal/disease groups; instead a study of
parous/nulliparouswomen (having given birth/not given birth)was se-
lected. The 3 non-cancer studies were processed in the samemanner as
the cancer studies. For details of the included studies, see Table S1.

2.2. Data retrieval and processing

Data retrieval and processingwas carried out in an automated fashion
using R. Briefly, raw.cel files were retrieved using GEOquery [5] and back-
ground corrected with bothMAS5 and GCRMA using the affy [8] package
with default settings. Probesweremapped to entrezid using annotate [9],
when multiple probes mapped to the same gene they were averaged.

3. Metrics

3.1. DE

t-Test and SAM were calculated on log2 transformed expression
values while FC was calculated on non-transformed expression values.

3.1.1. Fold change (FC)
For each gene the average was calculated for both normal and dis-

eased states, initial fold change was calculated by dividing the diseased
state averagewith the normal state average. Prior to ranking, initial fold
changes below 1were transformed by dividing 1with these fold chang-
es; this was in order to treat downregulation equally to upregulation.

3.1.2. t-Test
A two sided t-test was performed using the t.test function and sub-

sequently BH (Benjamini–Hochberg) corrected using padjust.

3.1.3. SAM
SAMwas performed using the sam function from siggenes [25] with

default settings.

3.2. DC

3.2.1. dSpearman (dS)
Spearman correlations were calculated for each gene pair, separate-

ly for the diseased and normal states. dSpearmanwas subsequently cal-
culated as the absolute of the difference in correlation between the
states.

4. Measuring the agreement between studies with overlapScore

In previous work, usually the set of shared differentially (co)
expressed genes has been used to assess the agreement between stud-
ies. However, this approach depends on the choice of arbitrary cutoffs.
An approach that does not suffer from this drawback is to instead
measure the intersections between entire gene lists, ranked accord-
ing to differential (co)expression, for all possible depths [29]. This
raw overlap score is calculated by taking the cumulative sum of in-
tersections over all depths. Because the intersection increases to-
wards the end, the contribution of each depth is weighted by a
decay in order to prioritize overlap at the top of the list.

It is recommended to determine the optimal decay through resam-
pling, but due to the large number of comparisons, this was not feasible.
Instead we opted to compare different decays by simulation. Random
lists were generated from a template by either adding general Gaussian
noise, adding Gaussian noise proportional to rank or adding both general
and proportional noise. A linear penalty was found to give robust scores
with good signal to noise ratio whereas a quadratic penalty gave worse
robustness/signal to noise and an exponential penalty required list
length specific tuning in order to give comparable quality to a linear
penalty (data not shown).



Fig. 1.Workflow and concepts. Starting from a study containing expression data for both patients and controls, differential expression is calculated and used to rank genes. The ranking of
differential expression for pairs of studies is compared, resulting in an overlap scoremeasuring the agreement. The same source data is used to calculate the correlation between all pairs of
genes, separately for patients and controls. The difference in correlation for the two groups is calculated and used to rank gene pairs. Same as for differential expression, the ranks are then
used to compare pairs of studies in order to gain a measure of their agreement.
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The overlap score was calculated for pairs of studies using an opti-
mized version of getStabilityOverlap from geneSelector (Boulesteix and
Slawski, 2009). However, the expected overlap score depends on the list
length, and it does not by itself provide a significance estimate. Getting
a high intersection at an early point is more likely with a shorter list,
hence one would expect a higher score for shorter lists.



24 G. Östlund, E.L.L. Sonnhammer / Genomics 103 (2014) 21–30
To resolve this, we model the expected score for a comparison be-
tween two random lists using the hypergeometric distribution, and
use this to normalize for list length. Calculating the probability of ob-
serving an overlap score equal to or higher than a given limit is compu-
tationally infeasible as the number of possible random lists is equal to
the factorial of the list length. It is however possible to calculate the
probability of observing an intersection equal to or greater than a given
limit, given a list length and depth. Similarly, given a p-value, list length
and depth, it is possible to calculate a limit of intersection (I) for which
it is less likely than p to observe an equal or higher intersection.

P intersectionN ¼ Ijlist length; depthð Þbp
I ¼ f list length; depth; pð Þ:

Such a limit of intersection can be calculated for all depths in a fairly
efficient manner (see Supplementary material for details) for any given
p-value and list length. We then calculate the overlap score for I across
all depths to associate each p-value with an equal or higher overlap
score. This enables determining significant deviance from the expected
as the p-value used to generate I is a conservative approximation for
the probability of observing an overlap score equal or higher than the
overlap score for I.

In order to obtain a boundary above for which observed overlap
scores are significant, I was calculated for all pairs of studies using
cIterHyper (Supplementary material) with a multiple testing corrected
p-value corresponding to a familywise error rate (FWER) below0.01, to
obtain I. The multiple testing corrected p-value was obtained by divid-
ing the desired FWER (0.01) with the number of pairwise comparisons
(2 background corrections ∗ 4 metrics ∗ 300 pairs of studies), see Fig. 2
for details. Significance boundaries were then obtained by calculating
the overlap score for the generated I for each pair.

As mentioned, overlap score depends on list length. For exam-
ple, there is an approximately 5% difference in the overlap score
at FWER b 0.01, for the smallest intersection of DE studies compared
with the largest. This effect was adjusted for by normalizing the overlap
score for all pairs to a common size of intersection (list length). Briefly,
overlap scores were generated for I based on p-values ranging between
−5 and 5 standard deviations of the normal distribution, separately for
each intersection size. The overlap scores and corresponding p-values
for each list length (the intersection of two gene lists) were then used
to fit beta distributions. These beta distributions were first used to con-
vert the overlap scores of study pairs to p-values, using the beta distri-
bution for the intersection size of the two studies in each pair. Then
the p-value of each study pair was converted back to an overlapScore,
using the beta distribution for the normalization intersection size, which
was set to the number of genes in the GPL570 platform, i.e. 19701. See
Suppl. Fig. 1 for an illustration of this process.

4.1. Significance testing

Significance testing for differences between pair types was per-
formed using wilcox_test from the coin R package [13].

5. Results

We address a number of important questions in differential expres-
sion (DE) and differential coexpression (DC) analysis. For instance, how
consistent are results across studies of the same or different diseases?
How does the choice of experimental platform affect the results? How
does the choice of data processing and DE measure affect the results?
DC can be seen as a high-dimensional complement to DE; what strengths
and weaknesses does it have?

To answer such questions, we collected 25 gene expression studies
with normal and cancer states for lung, breast and colon. As the choice
of background correction and metric can have an impact, we processed
the data using both MAS5 and GCRMA before proceeding to calculating
DE by fold change, t-test, and SAMp-values, aswell as DC by differential
Spearman correlation. The studies were then compared using the ranks
ofmetrics, rather than rawmetrics, of genes and pairs. Thiswas done for
each metric separately for both DE and DC. While using ranks may
result in a loss of precision it is more robust to systematic differences
between the studies. See Fig. 2 for an overview of the analysis pipe-
line. This resulted in a total of 1800 pairs of studies for DE and 600
pairs for DC.

Choosing a set (small) cutoff of the top K genes/pairs for determining
overlap is inherently volatile due to the risk of obtaining a high, or low,
overlap purely by chance. It would likely introduce bias in that any cut-
off would bemore suitable for some pairs of studies than for others. Any
results or conclusions drawn from the comparisonwould thus be highly
dependent on the chosen cutoff. We instead opted to use the overlap
score which includes all data contained in both studies, and thus does
not require choosing an arbitrary cutoff. It is conceptually quite simple;
it is a weighted average of intersection over all depths, with decreasing
weights for increasing depth. This means that an overlap of highly differ-
entially (co)expressed genes/pairs contributes more to the score than an
overlap of lowly (co)expressed genes/pairs. The way it was used in this
study corresponds to the average intersection over all list depths and
thus allows for easy interpretation. Since the likelihood of observing a
given overlap score is dependent on list length, all overlap scores were
normalized by list length to overlapScores for a length corresponding to
the number of genes in the GPL570 platform (Suppl. Fig. 1).

To determine significant agreement between pairs of studies, the ex-
pected overlap score for pairs of random lists can be modeled using the
hypergeometric distribution. However, this is not fully appropriate for
gene lists. The hypergeometric distribution assumes independence be-
tween genes and since genes are often functionally dependent of each
other, one would not expect the model to be fully accurate. Furthermore,
some genes (such as stress response genes), might be more prone to be
altered compared to others (such as housekeeping genes). Also, experi-
mental procedures, measurements and data processing could also intro-
duce biases. In an extreme case one could picture a method that gives
genes a score according to their alphabetical ordering would show a per-
fect agreement for any two studies compared. Because of this it is impor-
tant to contrast the results of the comparison against cases where one
would not expect to find any/as high agreement, as a baseline.

We analyzed the agreement between studies in three different cate-
gories of pairs: (1) pairs of same cancer type (same cancer), (2) pairs of
different cancer type (different cancer), and (3) pairs between cancer
and non-cancer studies (cancer non-cancer). In principle one would ex-
pect same cancer types to overlapmore than different cancer types, and
both of these to overlapmore than non-cancers. If this is not observed, it
would raise questions about the reliability and biological meaningful-
ness of the data and/or methodology. If the agreement between cancer
types is as large as within the same type, one would not expect to be
able to drawconclusions regardingwhich genes are important for a spe-
cific cancer type, but only about the importance for cancer in general. If
the aim is to construct prognostic gene signatures, onewould not expect
to be able to discern between different cancer types. Similarly, if agree-
ment between cancer studies and non-cancer studies is significantly
high, it would be uncertain if conclusions based on DE or DC would be
applicable to cancer rather than (related) diseases in general.

With the resulting collection of pairwise comparisons of studies
(Table S2), we analyzed the data in an attempt to determine whether
the different processing procedures would give consistent results for
studies of the same cancer type, and if it would be more consistent be-
tween cancers of the same type than between different types or be-
tween cancer and non-cancer.

5.1. DE agreement depends mainly on microarray platform

Clustering pairs of studies based on DE showed a strong preference
to group together studies that used the same Affymetrix platform



Fig. 2.Analysis pipeline for making pairwise comparisons (overlap scores) between clinical gene expression data sets using a range of normalizations andmetrics. Briefly, 25 clinical stud-
ieswere normalizedwith both GCRMAandMAS5. Differential expression (DE) and differential coexpression (DC)were calculated using three DEmetrics (FC, SAM, and t-test) and oneDC
metric (dS). This resulted in 1800 (2 ∗ 3 ∗ (25 ∗ 24) / 2) pairs of studies for DE and 600 (2 ∗ (25 ∗ 24) / 2) for DC.
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(Fig. 3A). For instance, all studies using GPL570 are in one group which
includes all non-cancer studies, whereas studies of the same cancer type
using other platforms fall outside of the group.Within a cluster of stud-
ies using the same platform however, the studies are correctly clustered
according to cancer type.

By plotting the overlapScore distributions for all study pairs, sep-
arated into same platform (Fig. 4A) and different platform (Fig. 4B) it
is clear that hardly any (5%) of the pairs from different platforms
obtain a significant overlapScore. For study pairs using the same plat-
form the overlapScore is generally significant and correlated with the
minimum sample size (in either study), but this trend is not ob-
served for pairs using different platforms. In light of this, further
analysis for DE was performed only with pairs where both studies
use the same platform. The effect of the average sample size was
also examined but was found to have a lower impact than the mini-
mum sample size (data not shown).

image of Fig.�2
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Fig. 4.Microarray platform and sample size dependencewhen comparing two studies. Distributions of overlapScores between studies using the samemicroarray platform (A for differen-
tial expression (DE); C for differential coexpression (DC)) and pairs using different platform (B for DE; D for DC) are shown and all categories of pairs are included. Each * overlapScore is
plotted at theminimum sample size of any sample group in the pair. The horizontal dashed line denotes the limit of significance (FWER b 0.01) based on the hypergeometric distribution.
For DE, hardly any study pairs using different platforms reach a significant overlapScore (B), but for DC this platform dependence is not observed. Instead, DC has a more pronounced de-
pendence on the sample size.
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5.2. DC agreement depends on sample size but not on microarray platform

As shown in Fig. 3B, DC does not suffer from the strong platform de-
pendence as DE. Studies of the same cancer type using different plat-
forms cluster together, where they do not with DE. However, studies
with few samples tend to be clustered near the root in biologically not
meaningful ways. This is the Achilles heel of DC— if the number of sam-
ples is too low, the Spearman correlation becomes unreliable. Surpris-
ingly, one breast cancer study GSE15852 with 43 or more samples in
both groups did not cluster with other high-sample size breast cancers
(marked with a star in Fig. 3B). The study was conducted by Pau Ni
et al. [23] and was prompted by a prior study by Hsiao et al. [14],
which showed that cancer predisposition varies between western and
Fig. 3. UPGMA (unweighted pair group method with arithmetic mean) trees based on overlap
differential expression (DE) (A) and differential coexpression (DC) (B). The cancer type (tissue
Non-cancer studies are namedNC_*. In theDE tree, the platform is the dominant clustering facto
for studies with few samples. DE was calculated with FC and GCRMA normalization; DC was ca
structed for other combinations of metric and normalization show a similar general structure.
Asian women. Like Pau Ni et al. [23] we see no notable difference for
DE from western studies that use the same microarray platform. How-
ever, the divergent placement when using DC indicates that the differ-
ence in predisposition might be linked to changes in regulation.

In Figs. 4C and D, no clear difference can be seen between the
overlapScore distributions for pairs using the same or different platforms.
There is however amore pronounced tendency than for DE to get a lower
overlapScorewith smaller number of samples, although some exceptions
exist. Pairs between GSE21422 and two other breast cancer studies have
an overlapScore close to 1 despite GSE21422having only 5 samples for the
normal group. Agreement between GSE21422 and other breast cancer
studies is generally low though, confirming the impact on reliability
from the low number of samples.
Scores, showing the relatedness of different clinical gene expression studies measured by
), microarray platform, and minimum number of samples are color coded for readability.
r, while for DC the studies are generally correctly clustered according to cancer type, except
lculated as difference in Spearman correlation (dS) with MAS5 normalization. Trees con-

image of Fig.�4


Fig. 5. Scatter plot of overlapScores when normalizing with MAS5 versus with GCRMA. The left plot shows differential expression (DE, same platform pairs), using the averaged
overlapScores for all three DE metrics, and the right plot the differential coexpression (DC, all pairs). In the left plot the DE metrics are denoted by symbols: circle for t-test, triangle for
FC and cross for SAM. The colors correspond to the three pair categories: green for same cancer pairs, blue for different cancer pairs, and red for cancer non-cancer pairs. There is a strong
correlation between the normalizations for both DE and DC, with a larger uncertainty for cancer non-cancer pairs for DC. Notably, there is an increase in overlapScore when using FC in
combination with GCRMA; this is observed for all pair types.
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5.3. The choice of background correction has minor impact

Prior studies have shown that the background correction can have a
noticeable impact on DE accuracy for a single study [17,28,31]. Does it
affect the agreement between studies too? To examine the impact of
background correction, overlapScores usingMAS5 andGCRMAwere com-
pared for the three pair types. As seen in Fig. 5, there is a high agreement
between the two background corrections. The Pearson correlation for DC
is 0.93, and 0.89 for DE when restricted to only same platform pairs but
including all three DE metrics. For individual DE metrics the correlation
is higher. For FC it is 0.93, with GCRMA giving systematically higher
overlapScores than MAS5. For SAM and t-test the correlation is 0.99
and 0.97 respectively, with no bias towards either background correc-
tion. Based on this, subsequent analysis was performed using MAS5
andGCRMApooled for SAM, t-test, and dSpearman,while the two back-
ground corrections were generally handled separately for FC.

5.4. Cancer and non-cancer studies agree significantly

We examined the overlapScores that each DE metric yields on aver-
age for the three categories of pairs, and tested if there were significant
differences between the categories. All metrics gave the highest mean
overlapScore for same cancer pairs; lower for different cancer pairs; and
yet lower for cancer non-cancer pairs (Fig. 6). FC corrected with GCRMA
resulted in a substantially higher mean overlapScore than the other
Fig. 6. Mean overlapScores for pairs of three categories: (1) same cancer type; (2) different ca
(Wilcoxon rank sum test) compared to the category to the right for the samemetric, and the er
(FWER b 0.01). There is a significant difference between all categories for all metrics, except for
themost pronounced separation for DE. It is evenmore pronounced for DC, but onlywhen the n
significant mean overlapScore, and different cancer pairs have a highly significant mean ove
normalizations.
metrics, for all categories. In fact, FC with GCRMA resulted in a higher
mean overlapScore between cancer non-cancer pairs than all the other
metrics yielded between different cancer pairs. SAM produced a relatively
clearer separation of pair types than other metrics, although all metrics
showed a significant difference between the pair categories. It is note-
worthy that the mean overlapScore for cancer non-cancer pairs was
above the significance (FWER b 0.01) level using FC or SAM, and just
below it for t-test. If the changes in cancers and the non-cancer diseases
were truly independent one would not expect to observe a single cancer
non-cancer pair with an overlapScore above the significance level. Howev-
er, significant scores for cancer non-cancer pairs were observed for all
metrics. This indicates that even though a given cancer typehas its unique
characteristics, basic processes exist that are activated in very different
diseases, which produces a gene expression agreement higher than ex-
pected by chance. For example, GSE18842 (lung cancer) and GSE30010
(breast non-cancer) when compared using FC with GCRMA normaliza-
tion has an overlapScore of 0.61, p b 1.19e–210. Such general processes
may e.g. be connected to inflammation, which can be caused by a multi-
tude of disease. When comparing pair categories the dependence of DC
agreement on the number of samples is also clear. As seen in Fig. 6, dS
overlapScores for pairs with a small sample size are quite low; there is
no significant difference between same- and different cancer pairs, and
cancer non-cancer pairs generally have overlapScores below the signifi-
cance level. There is a vast increase in overlapScores for same- and different
cancer pairs with a higher number of samples. The separation between
ncer type; and (3) cancer non-cancer. Asterisks denote a significant (p b 0.01) difference
ror bars correspond to a 99% CI. The horizontal dashed line denotes the limit of significance
between same- and different cancer pairs for dSwith a low number of samples. SAM shows
umber of samples is high. Notably, except for t-test and dS, cancer non-cancer pairs have a
rlapScore for all metrics. SAM, t-test and dS used the average from GCRMA and MAS5

image of Fig.�5
image of Fig.�6
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pair categories is good, and cancer non-cancer pairs remain below the sig-
nificance level. ForDE the number of samples had no effect in this analysis
(data not shown).

5.5. Using different metrics decreases agreement

In order to study the impact of comparing studies that use different
metrics, we selected a subset of breast studies. We then proceeded to
compare study pairs in all possible combinations of metrics and back-
ground corrections. Surprisingly, as seen in Fig. 7, while pairs where
one study uses FC and the other t-test reach a fairly high overlap, the
agreement is near the limit for significance (FWER b 0.01) when one
study uses FC and the other uses SAM. In fact, the overlapScore is similar
for cancer non-cancer pairs using the samemetric as for same cancer pairs
when SAM is used for one study and FC for the other. Using the same
background correction compared to using different background correc-
tions had a negligible impact (data not shown).

6. Discussion

We have developed a generalized method to compare ranked gene
lists and have applied it to assess agreement between clinical gene
expression data. Comparing ranked lists is a very general and common
task in many types of research, particularly in functional genomics. This
methodology avoids choosing an arbitrary cutoff parameter, which is
how such comparisons are normally made. It is a generalized framework
and should finduseful applications inmany other situationswhen com-
paring ranked lists. The biological analysis that we have performed
gives many new insights into what artifacts that can be expected from
choosing among standard techniques for normalization and measuring
DE. Among themost striking results are the huge dependence onmicro-
array platform for DE, and that using different DE metrics for two stud-
ies can eradicate an agreement that is strong when using the same
metric. Both of these problems are non-issues for DC, but this approach
requires sufficiently high sample sizes.

While this study was performed only using older Affymetrix micro-
arrays, the results can be contrasted against other studies using newer
Affymetrix microarrays or platforms from other providers. In a compar-
ison by Affymetrix [1], the Affymetrix GeneChip Human Genome U133
Plus 2.0 (GPL570) platform had a 0.77 correlation of FC with both the
newer human exon and human gene platforms. It was commented that
discrepancies in part could be due to the fact that GPL570 does not dis-
criminate between different transcript isoforms. In a study by Robinson
and Speed [24] using the same data, the GPL570 platform had an overlap
for the top 2000 differentially expressed genes of 65%with the other plat-
forms. As a comparison, the two independent lung cancer studies used
here that employ GPL570 have a 0.86 correlation of FC and an overlap
greater than 70% for the top 2000 differentially expressed genes for all
Fig. 7. Comparing studies using different metrics. OverlapScore distributions were generated fo
corresponds either to pairs using different metrics or all pairs using the same metric pooled. T
the two studies is calculated using different metrics the overlapScore is clearly lower than when
as cancer non-cancer pairs using the samemetric. Boxesmark themedian and quartiles, while th
the box.
DE metrics. While this is a single example, it is quite noteworthy that
two independent studies using the sameplatformbut based on complete-
ly different biological material have a higher agreement than the same
platform has with newer platforms based on the exact same biological
material. These results can also be contrasted against comparisons be-
tween platforms using different technologies, as done by Guo et al. [10].
All of the 5 platforms they tested overlapped the other ones by less
than 65% for the top 2000 differentially expressed genes, even without
adjusting for the shorter list length in this comparison. In other words,
platforms of different technologies appear to be less coherent than dif-
ferent platforms of the same technology/manufacturer.

The fact that differentmetrics agree poorly evenwhen eachmetric is
informative indicates a lack of comparability. A way to improve this
could be to combine differentmetrics. For example, an ad hoc combina-
tion of twometrics by applying a cutoff based on one and ranking by the
other has been used [10,26]. A more prudent approach would be to sys-
tematically evaluate ways of combining metrics.

This study was performed without taking differences between stud-
ies into account, and instead assuming that published studies should be
of sufficient quality to provide generalizable results. As has been shown
in our analysis, this assumption is sometimes compromised; for example
some studies have too few samples in at least one group to be reliable
with t-test or dSpearman. Another confounding factor is that different
studies are performed using different compositions of cancer- and tissue
sub types. Correcting for this would be desirable but is often difficult
due to poor annotations; it would also have the negative effect to reduce
the number of samples.

While expression agreement is high for same cancer pairs of studies,
agreement is also significant between studies of different cancer types.
Generally there is also agreement between cancer and non-cancer studies
that is significantly higher than expected by chance. The reason is proba-
bly that some genes are more likely to show differential (co)expression,
regardless of cancer or not. This is not unexpected as any type of disorder
in an organ may trigger the same types of stress responses, such as apo-
ptosis, proliferation, or repairmechanisms. Indeed, based on gene expres-
sion analysis, cancer can be seen as a wound that does not heal [18].

What are the implications of such cross-disease commonalities for
differential gene expression analysis? Even if significant DE/DC is ob-
served for a disease, one cannot safely conclude that these genes are
specifically affected in this disease, rather than coming from general
responses. To get disease-specific information, for instance to develop
biomarkers for a disease, one would need to compare the obtained DE
p-values to an empirical background. This way it might be possible to
identify e.g. genes that are differentially expressed to a significant degree
in breast cancer when compared to other cancer types. Extending this
reasoning, itwould be prudent to construct amap of DE/DC across studies
and diseases to identify genes/gene pairs that unspecifically showDE/DC.
These could either be removed from consideration, or their DE/DC could
r breast cancer studies with either same cancer pairs or cancer non-cancer pairs. Each box
he horizontal dashed line denotes the limit of significance (FWER b 0.01). When DE for
the same metric is used. SAM compared to t-test or FC has as low, or lower, overlapScore

ewhiskersmark themost extreme data pointwithin 1.5 times the interquartile range from

image of Fig.�7
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be given some penalty. Although such a map would be limited to the ex-
pression data currently available, it would enable contrasting results of
single studies, in order to come closer towards drawing disease-specific
conclusions.

R scripts for automatic downloading and processing of GEO gene ex-
pression data sets are available upon request.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.ygeno.2013.10.006.
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