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Avoiding pitfalls in L1-regularised inference of
gene networks†

Andreas Tjärnberg,‡ab Torbjörn E. M. Nordling,‡*acd Matthew Studham,a

Sven Nelandercd and Erik L. L. Sonnhammerabe

Statistical regularisation methods such as LASSO and related L1 regularised regression methods are

commonly used to construct models of gene regulatory networks. Although they can theoretically infer

the correct network structure, they have been shown in practice to make errors, i.e. leave out existing

links and include non-existing links. We show that L1 regularisation methods typically produce a poor

network model when the analysed data are ill-conditioned, i.e. the gene expression data matrix has a

high condition number, even if it contains enough information for correct network inference. However,

the correct structure of network models can be obtained for informative data, data with such a signal to

noise ratio that existing links can be proven to exist, when these methods fail, by using least-squares

regression and setting small parameters to zero, or by using robust network inference, a recent method

taking the intersection of all non-rejectable models. Since available experimental data sets are generally

ill-conditioned, we recommend to check the condition number of the data matrix to avoid this pitfall of

L1 regularised inference, and to also consider alternative methods.

1 Introduction

Gene regulatory network (GRN) inference, also known as
reverse engineering or network reconstruction, is an essential
endeavour in systems biology. Several studies1–3 state that
mRNA transcriptional regulatory networks can be inferred
based on gene expression data obtained from in vivo experi-
ments in which all genes of interest are systematically perturbed
and the resulting expression changes are measured. To be
biologically realistic, the network needs to be relatively sparsely
connected, in other words, only a fraction of all possible links
exist. The LASSO method4 and its derivatives, all of which use
L1-regularisation to induce sparsity, achieve this and have
become popular for GRN inference. Several other modelling
techniques exist such as Bayesian,5,6 information theoretic,7,8

neural networks,9,10 Boolean11,12 and dynamical systems.1,13

Nonetheless, in this study we focus on L1-regularisation methods,
in particular LASSO, Elastic Net,14 and Bolasso,15 due to their

widespread usage. We show that they fail to infer the correct
network even when the data are informative enough for correct
inference by other methods. We also test the methods on the
in vivo data collected by Lorenz et al.2 for inference of the Snf1
network in S. cerevisiae and relate the results to our simulations
on in silico data with known golden standard networks.

Theoretically, LASSO has been shown to be able to recover the
correct network under certain conditions, such as the Strong
Irrepresentable Condition (SIC) and Restricted Isometry Property
(RIP).16–18 In a network inference context, these conditions
concern the relation among observed vectors of expression
changes. However, even results based on SIC only ensure that
the LASSO estimator is sign consistent with a probability that goes
to one as the number of samples goes to infinity. Some of the
inferred links could thus not exist in reality, in particular for the
low number of samples seen in biological data sets. In real
applications, SIC is of little use because it cannot be calculated
without knowing the true network. Even though performance of
L1-regularisation methods has been analysed rather extensively, we
have not seen any article reporting that they fail for sufficiently
informative data, which we show here.

In a number of cases, when reverse engineering algorithms
have been applied to biological networks, believed to have a well
understood connectivity, networks with a different connectivity
have been obtained. For instance, Lorenz et al.2 reported a mere
62% sensitivity and 69% precision with 24% of the predicted
regulatory interactions having the opposite sign in the model of
the Snf1 network in S. cerevisiae. Moreover, benchmarking studies,
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such as the Dialogue for Reverse Engineering Assessments and
Methods (DREAM), have shown that GRN inference usually results
in a large fraction of false positives, i.e. inferred links absent in the
true network, and false negatives, i.e. missed links present in
the true network.19,20 This has in later years lead researchers to
complement expression data with other data types, such as binding
data, ChIP-seq, and a priori information.21,22 Note that we here
speak about addition of other data types to guide the inference
method and not integration of other data types in the model. In the
former case the degree of freedom of the model is kept fixed and
the data are intended to constrain model parameters, while the
degree of freedom in the latter case is increased. Use of these, so
called multi-data-type genomic datasets, makes it harder to assess
the performance of inference methods compared to expression
data alone. It is in particular harder to know to which degree a link
is supported by expression data versus a priori information. Even if
the complete topology of the network is provided, e.g. from ChIP
binding data, the signs (activation/repression) of the links still need
to be inferred. Addition of other data does not fix the method per se.
We therefore think that awareness of the pitfall of L1-regularisation
methods that we report here is more essential than before.

A number of GRN inference benchmark studies23–25 have been
published, spanning a wide range of methods and data sets.
In general, the conclusion is that although they tend to perform
better than random, all inference methods produce models that
are far from correct. The dependency on the nature of the data is
strong as a method may do well in one benchmark but poorly in
another one. Selection of the regularisation coefficient, which
determines the sparsity of the estimate, is a major issue because it
must be correct for the estimated network model to be correct.26

Vinh et al.27 detail the difficulties of benchmarking, especially on
small networks, where sparsity cannot be achieved to any larger
degree due to the network’s small size. They show that methods
for inference of GRNs do not construct any good networks with
sufficient confidence and that the parameter settings of the
algorithms are crucial to find a good estimate of the structure
of the network. However, no method for optimising these crucial
parameters is given. Jörnsten et al.28 show that the structural
agreement between network models inferred for the same bio-
logical system using bootstrapping based on measurements
obtained at two different platforms only is good for a narrow
range of the regularisation coefficient. This makes it important to
assess how the accuracy of different inference methods depends
on data and system properties, which we here do for five methods.

Data sets generated in vivo for gold standard networks are rare
for benchmark purposes due to a lack of knowledge about the
interactions among the genes. An attempt has been made to
create such a gold standard for benchmarking by recording an
in vivo data set from a synthetically engineered five gene network
in yeast, called IRMA.3 Penfold and Wild24 benchmarked time
series algorithms in addition to steady-state algorithms and
evaluated their performance on IRMA. They found that no
methods could retrieve the designed structure of IRMA from the
data. The IRMA network was perturbed by single gene over-
expression to trigger the response of the network and the change
in mRNA abundance was then measured when the system had

reached steady-state, as well as a time series sampled either every
10 or 20 minutes for up to 5 hours. For single gene perturbations
there is no guarantee that the gene space is sufficiently excited
to give informative data, i.e. that a sufficient variation in the
response of the genes over the experiments is achieved.29 Another
issue with gold standard networks is the definition of a link. The
inference method and model formalism have to yield the same
type of links as recorded in the gold standard in order for a
comparison to be meaningful and fair. The five methods
employed here infer so called influences, while gold standard
networks typically contain links corresponding to physical binding
between molecules.23 Simulated data sets are thus still necessary
for benchmarking due to the lack of ‘‘real’’ data sets that are
informative enough for accurate GRN inference and differences in
the definition of a link. It is thus not possible to exhaustively
demonstrate the pitfalls of L1-regularisation methods on real data,
despite the multitude of data that exist. However, we have applied
the studied inference methods to the in vivo data collected by
Lorenz et al.,2 compared the inferred networks to two reference
networks that can be seen as gold standards, and related the
accuracies to the expected performance in our simulations based
on the properties of the data.

In this study, we focus on analysing network and data
properties that are important for the accuracy of GRN inference.
In particular, the condition number of the network and response
matrices, as well as the Signal to Noise Ratio (SNR), are examined.
To this end, we generated a set of linear networks with essential
properties similar to real biological GRNs. These were then used
to generate both gene expression data sets that have properties
similar to published in vivo data and data sets that are informative
enough for inference of the correct network. This was done to
mimic real data sets, while varying the properties and utilising the
advantage of knowing the true network. We restrict ourselves
to linear models, because it is sufficient to demonstrate the
presented pitfall of L1-regularisation methods. Considering that
the class of linear models is a subset of the class of nonlinear
models, awareness of this pitfall is essential also when inferring a
nonlinear model. By identifying easily testable conditions that
need to be satisfied for successful GRN inference, we provide
guidelines useful for avoiding pitfalls that can cause poor network
models.

2 Problem description

In this paper we make the common assumption that the GRN
can be described by a linear dynamical systems model1,30,31

_xiðtÞ ¼
XN
j¼1

aijxjðtÞ þ piðtÞ � fiðtÞ

yiðtÞ ¼ xiðtÞ þ eiðtÞ:

(1)

In biological terms, the state vector x(t) = [x1(t),x2(t),. . .,xN(t)]T

represents actual mRNA expression changes relative to the
initial state of the system, the perturbation vector p(t) =
[p1(t),p2(t),. . .,pN(t)]T represents the applied perturbation, which
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may be corrupted by the noise f(t). The perturbations could be
e.g. gene knock-downs using siRNA or gene over-expressions
using a plasmid with an extra copy of the gene. The response
vector y(t) = [y1(t),y2(t),. . .,yN(t)]T represents the measured
expression changes that differ from the true expression
changes by the noise e(t). The parameters aij of the interaction
matrix describe the influence of an expression change of gene j
on gene i. A positive value represents an activation, while a
negative value represents an inhibition. The relative strength of
the interaction is given by the value of the aij parameter. We
make the common assumption that only steady-state data are
recorded, which simplifies our data model (1) to

Y = �A�1P + A�1F + E (2)

when the set of experiments is considered. Here Y is the
observed steady-state response matrix after applying the
perturbations P and A is the interaction matrix i.e. network.

By taking the transpose of the variables and ‘‘true’’ network
model, and introducing the notation used for regressors U 9
[f1,. . .,fj,. . .,fN] = YT, regressands N 9 [n1,. . .,ni,. . .,nN] = �PT,
regressor errors ! 9 [t1,. . .,tj,. . .tN] = ET, and regressand errors
P 9 [e1,. . .,ei,. . .eN] = �FT, we obtain the matrix form of the
standard linear data model used in errors-in-variables regres-
sion problems

U = Ǔ + !, N = Ň + P (3a)

UǍT = Ň U, N A RM�N. (3b)

Here M is the number of experiments/samples, i.e. data points,
and N is the number of states/nodes.

3 Materials and methods
3.1 Network inference algorithms

Least Absolute Shrinkage and Selection Operator (LASSO)
penalises models with small nonzero parameters by intro-
ducing a L1 penalty term in the objective function which equals
the sum of the absolute values of the parameters4

Âregð~zÞ ¼ argmin
A
jjAY þ PjjL2

2 þ ~zjjAjjL1
: (4)

The effect of the introduced L1 regularisation term depends on
the regularisation parameter z. If it is set to zero then the
ordinary least squares estimate is obtained, while a network
model with no links is obtained when it goes to infinity. The
regularisation term will trade the predictive performance of
models on the fitted data for a reduction of the number of
descriptive model parameters.

The Elastic net14 is a method based on LASSO which
combines the L1 penalty from LASSO and the L2 penalty from
ridge regression. The influences of the penalties are then
weighted by a parameter a such that,

Âregð~zÞ ¼ argmin
A

C þ ~z ajjAjjL1
þ ð1� aÞjjAjjL2

2
� �

; (5)

where C = JAY + PJL2

2.

Bolasso15 is a bootstrap approach to LASSO inference, where
the statistical properties of bootstrapping are combined with the
LASSO, see algorithm 1. We use a constant number of bootstraps,
nBS = 100, for each data set, as the statistical confidence should
increase with nBS. This is well above the minimum number of

bootstraps needed,15
ffiffiffiffi
N
p

, with N being the number of variables.
We extend the bootstrap algorithm by requiring that the boot-
strapped data set has the same rank as the original data. In
practice this means putting a rank requirement on the P matrix
so that it has full row rank. This improves the performance,
because it ensures that all genes are perturbed in at least one
experiment, which is a necessary condition for correct inference.32

Bolasso was not applied to the 10 gene data sets because the data
matrix becomes rank deficient if a sample that is left out during
the bootstrap procedure contains the only perturbation of a gene.
This is often the case in the 10 gene data, and the consequence is
that links cannot achieve 100% bootstrap support if they can only
be inferred when that unique experiment is sampled. For the same
reason, Bolasso was not applied to the data reported by Lorenz
et al.2 as it only consists of one set of single gene perturbations,
leading to a rank deficient data matrix as soon as one of the
experiments is excluded during the bootstrap procedure.

Algorithm 1 Plain bootstrap LASSO algorithm. B is the inferred
model and A the logical intersection of inferred models. aij is a
link from j to i. nBS is the number of bootstraps.

procedure BOOTSTRAP LASSO(data,nBS)
aij = 1 8 i and j A A
for 1:nBS do

dataBS = DRAW WITH REPLACEMENT(data)
B = LASSO(dataBS,z)
A = A 4 LOGICAL(B)

end for
A = {aij A A}

end procedure
function DRAW WITH REPLACEMENT(data)

Draw samples with replacement
s.t. |dataBS| = |data|
return dataBS

end function

Least-Squares Cut-Off (LSCO) is a simple inference algorithm
based on ordinary least squares (OLS) followed by the removal of
all weak links, i.e. small nonzero parameters,

âij9
aolsij if aolsij

��� ��� � ~z

0 otherwise

8<
: with Aols9� PY y: (6)

The cutoff is used like a sparsity parameter and is varied over a
range; for each data set the value producing the network with
structure closest to the true network was picked.26

Robust Network Inference (RNI) is achieved by implicitly
checking all network models that cannot be rejected based on
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the assumed data model and the desired significance level and
only including the links that are present in all of these
models.32 This gives the intersection of all non-rejectable
models. In practice, the network model is obtained by calculating
Nordling’s confidence score and only including links with a value
above one. Nordling’s confidence score for the existence of the
link aij is defined as

g(aij) 9 sN(W(w)), (7a)

with each element

cklðwÞ9
cklffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

w�2ða;NMÞlkl
p (7b)

and W 9 [f1,. . .,fj�1,fj+1,. . .,fN,ni], (7c)

assuming that the data have been generated by the data model
(3), with tj and ei drawn from a normal distribution with zero
mean and a diagonal covariance matrix.32 Here sN denotes the
Nth singular value, and w�2(a,NM) the inverse of the chi-square
cumulative distribution with NM degrees of freedom, such that
P[w2(NM) 4 w�2(a,NM)] = a.33 A confidence score above one
implies that the link can be proven to exist at the desired
significance level a, in this article set to 0.01. RNI obtains a
network model that under the assumptions above only contains
true positives.32 False positives are thus avoided at the expense
of accepting false negatives. RNI was done using code provided
by Nordron AB (www.nordron.com), which owns all rights.

3.2 Networks

To assess the performance of the inference methods we gene-
rated a number of networks by varying model properties that
have been considered important in the literature.29,34–36 The
sparsity of the networks was set to 0.25 for N = 10 based on
reported sparsities. For instance, the data for the ten gene
network of the Snf1 signalling pathway in S. cerevisiae2 can be
explained well with networks having a sparsity in the range
0.22 to 0.28 and 29 transcriptional regulatory influences have
been reported for it in the literature. For N = 45 we generated
networks with a sparsity around 0.07. Sparsity is defined as the
fraction of links present in the network, denoted L, relative to

the total number of possible links, N2, i.e. s9
L

N2
. The inter-

ampatteness degree for a linear system is defined as the
condition number of the system matrix G = A�1.29 It is thus

kðGÞ9kðAÞ9s1ðAÞ
sNðAÞ

, where s1(A) and sN(A) are the largest and

smallest singular values of the network matrix A, respectively,
for each network. We picked a small value between k A [0.5,1]�
N, and a large value k A [9,11]�N, with 10 networks for each
level. The latter is within the range reported for real networks
based on data for a ten gene network of the Snf1 signalling
pathway in S. cerevisiae 253, and a nine gene subnetwork of the
SOS pathway in E. coli 54.1,2,29 We generated the networks
randomly, while making sure the networks have full rank,

and weighted the model parameters to ensure stability,37 and
that we achieved the desired k(A).

Tables 1 and 2 gives an overview of the N = 10 and N = 45
network properties respectively. For a complete list of the
networks and properties see Tables S3 and S4 (ESI†).

3.3 Data sets

Data sets were created according to the linear dynamical model
in (2). Given the true network Ǎ we calculate an initial P,
generated with the given perturbation design. Our noiseless
expression data are then Y̌ = �Ǎ�1 P. We included 2N samples
for N = 10 and 4N samples for N = 45, because published data
sets typically contain one to three replicates of N experiments.1–3

We followed three different perturbation approaches two for
N = 10: Naive Random Double Perturbation (NRDP) and Sparse
Balanced Excitation Design (SBED), and one for N = 45: triple
Single Sets and a Single Double set (SSSD).

NRDP was constructed by perturbing two randomly chosen
genes for each sample while making sure that P had full rank
and that each gene was perturbed at least once. By perturbing
genes more than once we make sure that each sample has some
dependency on the remaining data set, a requirement for using
the sample in leave one out cross-optimisation of z.26 This
design yields data sets where the condition number of Y is
close to the interampatteness degree of the network. We there-
fore generate data sets with similar conditions to those
reported in the literature, 5, 154, and 215, respectively, in
Gardner et al.,1 Alter et al.34 and Lorenz et al.2

The objective of the SBED is to excite all directions of the
gene space uniformly, i.e. spread out the response equally in
the gene space, and obtain a well conditioned Y matrix.29 We do
this approximately by minimising k(Y) and the number of
perturbed genes. To achieve uniform excitation is simpler for
a dense perturbation matrix P as the different signal directions
in Y can be more easily tuned. However as the possibility to
perturb a majority of the genes at once is unrealistic, we keep P
as sparse as possible, i.e. we do a trade-off between a sparse
perturbation design and uniform excitation in all directions of
the gene space.

Table 1 Network properties, for N = 10 networks

Network properties Low k(A) High k(A)

# Genes, N 10 10
# Networks 10 10
Structure Random Random
Interampatteness degree, k(A) 6.9–10 91.6–108
Sparsity 0.25 0.25

Table 2 Network properties, for N = 45 networks

Network properties Low k(A) High k(A)

# Genes, N 45 45
# Networks 10 10
Structure Random Random
Interampatteness degree, k(A) 25.4–41.3 411.5–492.8
Sparsity E0.07 E0.07
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The SSSD perturbation design is constructed by using triple
replicates where a single gene is perturbed for each sample with
one extra set of double perturbation where two random genes
are perturbed for each sample. This setup simulates a plausible
experimental design approach that naively tries to maximise
the information in the data set while utilising the fact that there
needs to be a dependence between samples to do some form of
cross validation.

Tables 3 and 4 shows an overview of data set properties. For
a complete list of the data sets and properties see Tables S1, S2
and S5 (ESI†).

We applied noise to each data set with a variance l selected
to give the desired Signal to Noise Ratio (SNR)

SNR9
sNð �UÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

w�2ða;NMÞl
p ; (8)

where sN(Ǔ) is the Nth singular value of Ǔ, and w�2(a,NM) is the
inverse of the chi-square cumulative distribution function as
explained above. We generated 100 different noise realisations
to do Monte Carlo simulations, each from a normal distri-
bution with zero mean and variance l using the randn function
in Matlab version R2012a (www.mathworks.com). For each data
set, the variance of each realisation was then scaled based on
(8) to achieve the desired SNR. For the data sets we used the
significance level a = 0.01. By covering the whole range of SNRs
from completely uninformative to informative enough, we
include the levels seen in real data.

3.4 Performance evaluation

We assessed the accuracy of the estimated networks using the
Matthew Correlation Coefficient (MCC).38 MCC accounts for
both true positives (TP), false positives (FP), true negatives (TN),
and false negatives (FN), providing one number in the range
[�1,1] that captures the structural similarity between two net-
works containing the same labelled nodes. To use it one needs
a golden standard that is taken as the true network that all the
estimates are compared to.

The Fraction of Provably Existing Links (FPEL) is the fraction
of links existing in the true network that can be proven to exist
based on the observed data. They are proven to exist by
rejecting all alternative network models lacking these links at
a desired significance level based on the observed data and true
data model, i.e. when the considered set of network models
contains the true network and the measurement noise is
described by the error model that was used to generate it. FPEL
is calculated as the number of links with Nordling’s confidence
score (7) above one divided by the number of links in the true
network.32 It is the sensitivity of RNI. If all existing links can be
proven to exist, i.e. FPEL = 1, then the data set is said to be
informative enough for network inference. Note that FPEL and
MCC are not directly comparable, since only the latter accounts
for FP and TN. MCC is relative to the number of possible links
N2, while FPEL is relative to the number of links present in the
true network L. Nonetheless, MCC = 1 corresponds to FPEL = 1
for RNI. Only measurement data and an error model are needed
to calculate the number of provably existing links, implying
that it can be used for validation even when no golden standard
or true network exists.

3.5 Analysis of the irrepresentable condition

The network model in (3b) can for each row i of the interaction
matrix A be expressed as Ǔȟi = ňi, yielding a sparse estimation
problem for each row. By introducing U0i

and U0c
i

that contain
regressors corresponding to the zero and nonzero elements of
ȟi, respectively, and bi containing the nonzero elements of ȟi,
the Common part of the Irrepresentable Conditions (CIC), used
by Zhao and Yu16 in theorems ensuring sign consistency of the
LASSO estimator, can be expressed as

~li9 UT
0i
U0c

i
UT

0c
i
U0c

i

� ��1
sign bið Þ

����
����: (9)

If all elements of ~li are smaller than 1, then the Weak
Irrepresentable Condition (WIC) is fulfilled and if all elements
are smaller than 1 minus a positive constant Z, then the Strong
Irrepresentable Condition (SIC) is fulfilled.16 The latter is used
to show that LASSO is strongly sign consistent and the former
that it is general sign consistent; both imply that the probability
that all elements in the LASSO estimate of hi have the correct
sign goes to one when the number of samples M goes to
infinity. A few additional technical conditions are required in
the theorems, but it is logical to expect a high accuracy of the
network estimate produced by LASSO when

m9max
i

max ~li o 1: (10)

If all columns in U0i
are orthogonal to all columns in U0c

i
,

then ~li = 0 and SIC are fulfilled. Assume for a moment that
U0i

= f1 and U0c
i

= f2, then ~li = |fT
1f2Jf2J

�2|. Now if f1 = af2,
i.e. f1 is parallel to f2, then ~li = |a| is greater or equal to one
unless a is smaller than one, i.e. unless f1 is shorter than f2.
Hence the projection of any regressor corresponding to a zero
element that is not orthogonal to the regressors corresponding
to a nonzero element onto them must always be shorter than all

Table 3 Data set properties

Data set property

Perturbation design SBED NRDP
Samples, M 2N 2N
# Data sets 20 20
Condition number, k(Y) 1.3–2.0 9.5–181.3
Max # perturbations per sample 2–6 2
Min # perturbations per sample 1–3 2

Table 4 Data set properties

Data set property

Perturbation design SSSD SSSD
Samples, M 4N 4N
# Data sets 10 10
Condition number, k(Y) 25.7–41.3 412.8–504.51
Max # perturbations per sample 2 2
Min # perturbations per sample 1 1
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of them to fulfill SIC. This would always hold if all regressors
corresponding to a zero were shorter than all regressors corre-
sponding to a nonzero element. This makes it interesting to
calculate the minimum ratio between the shortest regressor
corresponding to a nonzero element and the longest corre-
sponding to a zero over all rows

rmin9min
i

minfk2U0c
i

jjfkjj
maxfl2U0i

jjfl jj

 !
: (11)

4 Results and discussion

We first present a comparison of the accuracy of the network
models yielded by LASSO, Elastic Net, LSCO, and RNI as a
function of the SNR for two different groups of data sets from
10 gene networks. One set generated by SBED in which the
condition number of the response matrix, Y, is low and another
generated by NRDP in which it is high. Similarly, we also
compare the accuracy of the network models yielded by LASSO,
Elastic Net, Bolasso, LSCO, and RNI for data sets from 45 gene
networks. We used the network inference methods LASSO,
Elastic Net and Bolasso as representatives of commonly used
algorithms. In addition, we used LSCO and the recently
proposed method RNI, which, under the assumptions used to
generate our data sets, find all links that can be proven to exist.
We then use the irrepresentable conditions to analyse why and
when LASSO fails based on these two groups of data sets.
Finally, using the in vivo data collected by Lorenz et al.,2 we
demonstrate how our simulated results can be used to estimate
the performance of the methods when they are applied to
biological data.

4.1 Vulnerability analysis of GRN inference methods

The most striking result on the data set with high response
matrix condition number is that all the L1 regularisation
methods fail to recover the true network model even when
the SNR is so high that the data are informative enough for
network inference and all existing links can be proven to exist
(Fig. 1 and 3). This unexpected failure of L1 regularisation
constitutes an important pitfall in network inference, since
many inference methods use L1 penalties and gene expression
data sets often have a high condition number.29 Actually the
condition numbers of the 20 response matrices with N = 10 are
in the range 9 to 181, which is modest compared to the
condition number of recorded response matrices used for
inference of GRNs, e.g. the ten gene network of the Snf1
signalling pathway in S. cerevisiae (215)2 and the nine gene
sub-network of the SOS pathway in E. coli (154).1 Even when the
data are so informative that all existing links can be proven to
exist using RNI, LASSO in the best case only obtained an MCC
of 0.84, while LSCO in all cases for N = 10 recovers the true
network. In the N = 45 case Bolasso outperforms LASSO and
Elastic Net but fails to recover all links correctly even for the
data sets that are informative enough. It is worth noting that
Bolasso requires approximately 100 times more computations

than LASSO. In LSCO the sum of squared residuals is mini-
mised before any weak link is removed so it will provide good
estimates for informative data. We therefore recommend all
users of L1 regularisation to check the condition number of the
response matrix in order to avoid this pitfall. If it is high, then
LSCO and RNI can yield better network estimates.

It is important to note that in each case, for each noise
realisation, we selected the z value that yielded the LASSO
estimate that was closest to the true network, i.e. highest
MCC for the 100 noise realisations for each noise level, and
similarly for Elastic Net, Bolasso, and LSCO. The former was
done to avoid the influence of the rule used to select the
regularisation coefficient z, which typically has a strong influ-
ence on the accuracy of the network estimate and is difficult to
select correctly.26 Our network estimates are thus in general
unrealistically accurate and require knowledge of the true
network which is only available for simulated data, yet they
are still far from correct. The latter was done to decrease the
impact of random effects of the noise realisations in favour of
data properties by doing Monte Carlo simulations. For this
reason we also used the same 100 noise realisations for all data
sets and all SNRs. We varied the network and data properties
within ranges deemed reasonable and relevant for network
inference based on previous studies. In the literature a single
gene is typically perturbed in each experiment, but we here
used NRDP, i.e. perturbed two genes in each experiment,
selected at random while ensuring that each gene is perturbed
and that the perturbations constitute a linearly independent
set. We also analysed data sets generated by the typical single
gene design and observed the same failure of LASSO (data not
shown). A total of 2N (N = 10) or 4N (N = 45) simulated
perturbation experiments were used in all data sets, which are

Fig. 1 GRN inference accuracy versus the signal to noise ratio using,
Elastic Net, LSCO, and RNI on NRDP data sets with N = 10 and high
condition number k(Y). Elastic Net fail even when all existing links can be
proven to exist, corresponding to MCC = 1 for RNI. Boxes are grouped
according to five SNR values. Box edges signify q1 = 25th and q3 = 75th
percentile, whiskers encapsulate the most extreme data points not
considered outliers. Outliers are considered points which are 4q3 +
w(q3 � q1) or oq1 � w(q3 � q1) where w = 1.5 and marked with +.
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comparable to the 3N experiments performed in vivo by Lorenz
et al.2 and Gardner et al.,1 respectively.

For the 20 SBED data sets with a response matrix having
a low condition number, LASSO, Elastic Net, and LSCO
performed equally well and recovered the true network in all
cases when the data sets were informative enough for network
inference, see Fig. 2. The SBED was in these cases used to
balance the excitation of all directions in the space spanned by
the 10 genes of the network, so that all singular values of the
response matrix were of similar magnitude, while perturbing
as few genes as possible in each experiment. These response

matrices therefore have condition numbers in the range 1.3 to
2.0, which we have not yet seen for any published gene expres-
sion data set. It is worth remembering that we selected the
optimal z value for each data set and noise realisation for both
LASSO, Elastic Net, and LSCO, so the performance is in general
unrealistically good. For SNR 0.1, a weak indication of LASSO
and Elastic Net outperforming LSCO is present but we cannot
say that one method in practice is preferable over the other
because the accuracy is sensitive to the selection of the value of
the regularisation coefficient z.26 The same networks and noise
realisations as described above were used.

For the 10 SSSD data sets with a response matrix having a
low condition number Bolasso and LSCO performed equally
well and recovered the true network in all cases when the data
sets were informative enough for network inference, see Fig. 4,
while LASSO and Elastic Net performed worse. This is probably
due to the condition number of the response matrix being
significantly larger than for the 10 gene case in Fig. 2. It is now
in the range 26 to 41. We also observe that Elastic Net performs
worse than all other methods for the 45 gene case, but have not
investigated why. The same networks and noise realisations as
described above were used.

For low SNRs, RNI seems to be partly outperformed by all
other methods because of a large number of false negatives,
which are a consequence of ensuring that only true positives
are included in the network model under the mild assumptions
that are fulfilled here, and partly because the optimal regulari-
sation coefficient z is selected based on knowledge of the true
network. RNI partly performs better than LASSO and Elastic Net
from SNR 1 and better than Bolasso from SNR 100 for the data
sets with a higher condition number because the SNR is
defined based on the weakest singular value and the total
excitation hence in general is higher. RNI is mainly included
in this study because it gives FPEL and thereby can be seen as a
lower bound on the performance that should be required from
every other inference method. No other inference method that

Fig. 2 GRN inference accuracy versus signal to noise ratio using, Elastic
Net, LSCO, and RNI on SBED data sets with N = 10 and low condition
number k(Y). For an SNR of 10, Elastic Net, and LSCO can infer the true
network structure for some of the data sets even though all existing links
cannot be proven to exist (RNI has a MCC o 1). For an SNR 4 10 the
median of all methods inference accuracy is approaching 1 and is above
90% for all data sets. For a description of the plot see Fig. 1.

Fig. 3 GRN inference accuracy versus signal to noise ratio for, Elastic Net,
Bolasso, LSCO, and RNI on SSSD data sets with N = 45 and high condition
number k(Y). All L1 regularised methods fail even when all existing links can
be proven to exist, corresponding to MCC = 1 for RNI. For a description of
the plot see Fig. 1.

Fig. 4 GRN inference accuracy versus signal to noise ratio for, Elastic Net,
Bolasso, LSCO, and RNI on SSSD data sets with N = 45 and low condition
number k(Y). For a description of the plot see Fig. 1.
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we are aware of can be used to prove that a link must exist in order
to explain the observed data when accounting for the error model
of the noise. The ability to prove the existence of links under mild
assumptions is in our opinion so valuable in knowledge genera-
tion that network models generated by other methods only should
be used when the methods outperform RNI.

4.2 When and why does LASSO fail?

The indicators SIC and WIC (Strong and Weak Irrepresentable
Conditions) are fulfilled, i.e. m is below one, only for the data
sets with a low condition number and SNR of one or higher, see
Fig. 5. This suggests that the response matrix, which is the
transpose of the regressor matrix, needs to have a low condition
number for accurate GRN estimation using LASSO. In our
simulations LASSO typically fails due to introduction of several
false positive links, Fig. S2 (ESI†).

Another indicator is rmin, the minimum ratio between the
shortest regressor corresponding to a nonzero element and the
longest corresponding to a zero. All data sets with a low
condition number have a considerably higher rmin than all data
sets with a high condition number, see Fig. 6. The fact that rmin

is below one for all data sets implies that the longest regressor
corresponding to a non-existing link exceeds the length of the
shortest regressor corresponding to an existing link. For the
data sets with a low condition number, the longest regressor
corresponding to a non-existing link is expected to be nearly
orthogonal to all regressors corresponding to existing links,
while in data sets with a high condition number they are not.

Evaluation of the irrepresentable conditions and the ratio
between the shortest regressor corresponding to a nonzero
element and the longest corresponding to a zero requires
knowledge of the true network, so they cannot in practice be
used to evaluate if LASSO will produce an accurate estimate.
The lack of a linear relation between MCC and m or rmin

indicates that neither of the measures captures all aspects that
affect the performance of LASSO, so further studies are needed.
Until a better testable criterion for failure of LASSO is pre-
sented, we recommend all users to check the condition number
of the response matrix as discussed above. The condition
number has the advantage of being a classical tool in linear
algebra that is easy to calculate.

4.3 Analysis of biological data

How well do the tested methods perform on real biological
data? Although we cannot control or vary the conditions of real
data, we can take a data set and examine how well the methods
can use it to infer a reference GRN. Such data e.g. have been
collected by Lorenz et al.2 for the Snf1 signalling pathway
in S. cerevisiae, and they provide two reference GRNs. They
perturbed the ten genes of the Snf1 signalling pathway in
S. cerevisiae by inserting a plasmid containing an extra copy
of each gene one-by-one and recording the resulting expression
change of all ten genes. We calculated the weighted mean
variance based on the reported propagated standard error of
each data point of the response and perturbation matrix to
0.8 and 0.4, respectively. Because the variance of the response is
twice as large as the variance of the perturbations, we calculate
the SNR E 0.01 using (8) with a = 0.05. The closest data point
based on the number of genes N = 10, the estimated degree of
interampatteness 253,32 the condition number k(Y) = 215, and
SNR 0.01 in our simulated data is SNR 0.1 in Fig. 1. Considering
that (i) the estimated degree of interampatteness is roughly
twice that of the most interampatte simulated 10 gene network
(108), (ii) the condition number is larger than the largest
condition number of the simulated data sets (181), (iii) the
number of perturbations is half, and (iv) the SNR is one order
of magnitude lower, the expected MCCs should be well below
0.5. It is worth noting that the expected MCC of RNI is zero,

Fig. 5 GRN inference accuracy versus irrepresentable condition. SIC and
WIC are fulfilled only for the data sets with a low condition number (red)
and an SNR of one or higher. The data sets with a high condition number
(blue) all have a m above one. m describes the irrepresentable condition (10).

Fig. 6 GRN inference accuracy versus minimum ratio between the shortest
regressor corresponding to a nonzero element and the longest corre-
sponding to a zero over all rows. A clear separation between data sets
where it can infer the true structure (red) and where it cannot (blue) is seen at
0.5 for the ratio rmin. Colours as in Fig. 5.
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i.e. the data are expected to contain so little information that no
link can be proven to exist.

To avoid the influence of the selection of the regularisation
parameter z we varied it over the whole range from a full to an
empty inferred network, see supplemental, and report the
largest MCC value of each method for each of the networks
reported by Lorenz et al.2–S10, S19, and S9. The first golden
standard S10 is a collection of links that Lorenz et al.2 found
experimental evidence in the literature. To get the second
golden standard S19 they complemented these links with links
that they found in their validation experiments using ChIP and
qPCR. S9 is their final network estimate using NIR39 followed
by t-tests keeping only statistically significant interactions. It is
not a gold standard but we included it for comparison. Note
that a link in these golden standards can mean very different
things; anything from a binding observed in a ChIP experiment
to an influence on the expression of the other gene. The applied
inference methods can only pick up influences that led to
expression changes present in the recorded data. It is therefore
unlikely that any of these golden standards equal the ‘‘true’’
network that would be achieved if more data were collected
until Nordling’s confidence score for each possible link is
either above one or approaches zero. We therefore refrain from
making statements about which method that performs best
based on comparison to these golden standards. The MCC of
LASSO, Elastic Net, LSCO, and RNI is below 0.27 for both
golden standards and hence in agreement with our expectation
based on our simulations, see Table 5. The MCC between S9
and the two golden standards is below 0.28, i.e. of the same
magnitude. The RNI inferred network is empty, indicating that
the data contain so little information that no link can be proven
to exist.

5 Conclusions

We have shown that all the tested L1 regularisation methods –
LASSO, Elastic Net, and Bolasso – typically perform poorly in
GRN inference when using data as ill-conditioned as typical
experimental data. Testing on the in vivo data collected by
Lorenz et al.2 concurs with the expected performance in our
simulations based on the properties of the data. As we use the
regularisation coefficient that gives the most accurate network
for each data set and noise realisation, the here reported
performance of LASSO, Elastic Net, Bolasso, and LSCO is in
general unrealistically good. We can therefore with certainty say
that the L1 regularisation methods fail for ill-conditioned data

matrices even when the data are informative enough for network
inference, while LSCO in these cases does not. However, this
does not necessarily imply that LSCO in practice is always better
and preferable over LASSO, Elastic Net, or Bolasso, because the
accuracy is sensitive to the selection of the value of the regulari-
sation coefficient.26 Nonetheless, LSCO and RNI can yield better
network estimates when the data are ill-conditioned so it is
worth applying them. When the data are informative enough for
network inference then all existing links can be proven to exist
and RNI recovers the correct network structure.32 As can be
expected, we observed that LASSO fails when the SIC and WIC
criteria are not fulfilled.

For both well-conditioned and ill-conditioned data, we
found an SNR, as defined in (8), of 10 to be sufficient for LSCO
and RNI to achieve maximum accuracies close to one. For data
with an SNR below one the accuracy of all methods was in
general low. This puts high demands on the quality of experi-
mental data to be useful for GRN inference.
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