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Abstract

Motivation: Inference of gene regulatory networks (GRNs) from perturbation data can give detailed

mechanistic insights of a biological system. Many inference methods exist, but the resulting GRN

is generally sensitive to the choice of method-specific parameters. Even though the inferred GRN is

optimal given the parameters, many links may be wrong or missing if the data is not informative.

To make GRN inference reliable, a method is needed to estimate the support of each predicted link

as the method parameters are varied.

Results: To achieve this we have developed a method called nested bootstrapping, which applies a

bootstrapping protocol to GRN inference, and by repeated bootstrap runs assesses the stability of

the estimated support values. To translate bootstrap support values to false discovery rates we run

the same pipeline with shuffled data as input. This provides a general method to control the false

discovery rate of GRN inference that can be applied to any setting of inference parameters, noise

level, or data properties. We evaluated nested bootstrapping on a simulated dataset spanning a

range of such properties, using the LASSO, Least Squares, RNI, GENIE3 and CLR inference meth-

ods. An improved inference accuracy was observed in almost all situations. Nested bootstrapping

was incorporated into the GeneSPIDER package, which was also used for generating the simulated

networks and data, as well as running and analyzing the inferences.

Availability and implementation: https://bitbucket.org/sonnhammergrni/genespider/src/NB/%2B

Methods/NestBoot.m

Contact: erik.sonnhammer@scilifelab.se

1 Introduction

A living cell responds to signals or changes in the environment

according to the system encoded in its gene regulatory network

(GRN). Understanding the GRN therefore offers valuable insights

into how a cell functions. GRNs can be inferred based on measuring

gene expression responses to system perturbations and applying

mathematical modeling to find the GRN that best agrees with the

data (Tegnér and Björkegren, 2007). Many GRN inference methods

exist that solve this problem. However, the solution usually depends

on algorithmic parameters, such as an arbitrarily set regularization

parameter which is needed to produce a sparse GRN (Tibshirani,

1996). Furthermore, as each method makes its own set of assump-

tions and finds the optimum in different ways, they will often yield

different and inconsistent solutions. GRN inference accuracy has

been shown to decrease with less informative data (Tjärnberg et al.,

2015, 2017). Unfortunately, experimental datasets are generally
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very noisy and therefore uninformative, hence there is a great need

to improve GRN inference accuracy, especially in uninformative

data. One approach to solve this dilemma is to assess reproducibility

of inferred links using repeated resampling of the data, i.e.

bootstrapping.

Several recent GRN inference methodologies take this approach.

Stability selection employs randomized parameterization of LASSO

(Tibshirani, 1996) combined with the irrepresentable condition

(Zhao and Yu, 2006). In conjunction with a stability criterion,

which chooses links with subsampled frequencies above an expected

upper false positive boundary, more reliable GRN inference was

demonstrated (Meinshausen and Bühlmann, 2010). Random

LASSO (Wang et al., 2011) improves link selection by averaging

across bootstrapped distributions of randomly selected subsets of

the data. TIGRESS combines stability selection with iterative LARS

estimation (Haury et al., 2012). Although these methods address the

reproducibility of results, they do not consider the number of false

links expected to be included in an inferred network. A method that

attempts to estimate this is BINCO which uses a U-shaped link fre-

quency distribution to differentiate between true and false links (Li

et al., 2013). Unfortunately, very often the inferred network does

not produce the U-shaped frequency histogram necessary for

BINCO (Tjärnberg et al., 2017), hence there is a need for a more

general method.

We here present a new bootstrapping-based framework for infer-

ring reproducible GRN links with controlled false discovery rate

(FDR), that is generally applicable to any dataset and any GRN in-

ference algorithm. By nesting multiple bootstrap we also get an esti-

mate of how stable the bootstrap support values are. FDR values are

derived from the distribution of support values for false links pro-

duced when shuffling the original data. A consensus GRN is formed

from links exceeding the FDR cutoff in all runs of bootstraps. We

call the method nested bootstrapping in analogy to similar

approaches in other fields (Hinkley and Shi, 1989).

We present accuracy benchmarks of nested bootstrapping

applied to five GRN inference methods and compare to their native

performance using in silico datasets covering many data property

combinations (Tjärnberg et al., 2015, 2017), and to three biological

datasets that contain a gold standard network for accuracy measure-

ment. The experimental design for the in silico datasets is

perturbation-induced, steady-state measurements (Ideker et al.,

1999). We also evaluated the benchmark performance of GENIE3

(Huynh-Thu et al., 2010), a top performing bootstrap-based infer-

ence method (Greenfield et al., 2010).

2 Materials and methods

2.1 NestBoot algorithm
Applying any method within a nested loop, the inner bootstrap iter-

ation Q samples individual experiments with replacement (Efron

and Tibshirani, 1994) and infers a network, which process is iter-

ated per run R in a procedure generally referred to as Nested

Bootstrapping (Hinkley and Shi, 1989); we distinguish this algorith-

mic implementation as NestBoot, for its expressed purpose of limit-

ing false links via parallel shuffled data inference. Link frequencies

among individual networks inferred during R runs are collected to

estimate stability. A version of this pipeline is run in parallel along

data shuffled experiment-wise (Fig. 1). Comparison of link frequen-

cies between this shuffled null and the measured data dictates the

bootstrap support guaranteed for the desired False Discovery Rate

(FDR) cutoff level. Links which are present in R bootstrap runs

above this cutoff are then extracted as a final consensus network.

The implementation of Nested Bootstrapping, the NestBoot al-

gorithm (Fig. 1), requires the data ½P;Y� and proceeds as follows

across any measured and shuffled datasets for any individual spars-

ity level:

The utility of this procedure comes from the link persistence

across bootstrap runs, comparing shuffled to measured data. A final

consensus network includes links that in each run exceed a boot-

strap support cutoff B selected by a user-defined FDR (Eq. 1), as

follows

#linksshuffledði; jÞ > B

#linksmeasuredði; jÞ > B
� desiredFDR; (1)

where the area under the population frequency curves operates over

measured and shuffled bootstrapped data. Constraining consensus

networks’ links is entirely dependent on a valid null to estimate false

links. This second dataset comprises our null model requiring data

properties be maintained and thus is compiled by shuffling the meas-

ured dataset experiment-wise, [Yðb;sÞ�. The data shuffling process

allows for control of dataset properties while completely obfuscat-

ing underlying relationships, presenting a proper null hypothesis ne-

cessary for validation. Comparison between measured and shuffled

bootstrap frequency support allows estimation of false links as part

of a shared inferred link distribution. This process enables us to

achieve the aforementioned limitation of FDR when inferring GRN,

garnering reliability as well as gathering an additional level of confi-

dence in the included links previously unavailable. In this way we

are able to determine an ideal threshold of link inclusion, as illus-

trated by the support of both parallel process (Fig. 2). The ratio be-

tween these two frequency-support curves reflects the number of

bootstraps where links were present and thus allows restriction of

false link inclusion. This threshold ensures a minimal, acceptable

amount of false links with minimal links missing (Fig. 6). Note that

each bootstrapped dataset is checked for full rank experimental in-

dependence so not to perform inference using less informative data-

sets. Furthermore, since we require this level of bootstrap support in

every run, the FDR level is defined very conservatively.

A known gold standard can then be used to measure true and

false links and thereby estimate any metric of accuracy. We measure

benchmark accuracy as an unbiased ratio in terms of all four link

Algorithm 1 Nested Bootstrap with FDR Cut-Off for Single

Sparsity. Q and R are the number of inner and outer boot-

strap runs, respectively. N is the number of genes.

1: procedure

2: for j ¼ ½1::R� do

3: generate shuffled data ½YðsÞ�
4: for i ¼ ½1::Q� do

5: while rankð½Pðb;Þ;Yðb;Þ�Þ < N do

6: Generate bootstrap dataset from measured ½PðbÞ;YðbÞ�&

7: shuffled data ½Pðb;sÞ;Yðb;sÞ�.
8: Infer networks for measured & shuffled data.

9: Collect frequency profiles.

10: Calculate FDR cutoff based on measured & shuffled profiles.

11: Form consensus network using links > cutoff (Fig. 2).
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conditions, true and false, positive and negative, in Matthew’s

Correlation Coefficient (MCC) (Eq. 2) (Matthews, 1975). This rep-

resents an expected level of accuracy when inferring networks from

datasets of various qualities.

MCC ¼ TP � TN � FP � FN
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTPþ FPÞðTPþ FNÞðTN þ FPÞðTN þ FNÞ

p ; (2)

where TP are links predicted correctly as existing, TN are correctly

predicted as not existing, FP are nonexisting links predicted to exist,

and FN are existing links predicted not to exist.

2.2 Benchmark
40 synthetic 10-gene and 45-gene datasets each with SNR levels

ranging from 0.001 to 10 with gold standard networks (Tjärnberg

et al., 2015, 2017) are used. Given a dataset we assume that the

gene expressions are collected at steady state, and are generated by a

GRN A 2 R
N�N approximated by a linear model, where ai;j is an

element of A, mapping the effect of the perturbation P and its noise

F on gene j onto the gene expression of gene i, collected in Y with

measurement noise E. P;F;Y;E 2 R
N�M, where N ¼ number of

measured genes and M ¼ number of samples collected, as follows

Y ¼ �A�1ðPþ FÞ þ E: (3)

Datasets were created in the GeneSPIDER (Tjärnberg et al., 2017)

MATLAB (MATLAB, 2017) environment, where the perturbation

information (P) enables transfer of the core network topology into

the synthetic knockdown datasets (Eq. 3). We additionally repur-

posed three experimentally derived datasets (Arrieta-Ortiz et al.,

2015; Gardner et al., 2003; Lorenz et al., 2009). The inclusion of

their gold standard networks prove invaluable in allowing the direct

calculation of inference accuracy. The Arrieta-Ortiz et al. dataset

characterized more than this, and thus needed to be reduced from

measures of several thousand genes to only those singly perturbed, a

subset composed of some 28 genes and perturbation experiments.

The Arrieta-Ortiz et al. gold standard network likewise accounts for

thousands of genes, thus we select only those measured in the subset

data as the network of comparison. We also felt it pertinent to com-

pare to a method which utilizes bootstrapping for inference, though

with a different aim and carried out in an entirely different manner,

and include GENIE3 (Huynh-Thu et al., 2010) to this end with a

cutoff to produce a range of sparsities. For the same effect, a similar

cutoff was implemented in CLR.

Data properties can greatly affect the performance of any infer-

ence. We therefore implement a conservative estimate of one such

particularly relevant property, the signal to noise for each dataset, to

highlight the use of data properties as aids for choosing inference

method or the tuning of parameters. We express the noise level of

the system as the Signal-to-Noise Ratio (SNR), the smallest singular

value of Y divided by the largest singular value of E (Eq. 4). In cases

of biological data when E is unavailable, a different formulation is

Fig. 1. FDR estimation via NestBoot algorithm for a given sparsity. Data is

sampled at each bootstrap iteration and a bootstrap network is inferred. After

Q iterations, bootstrap support for each link is saved as the frequency at

which it was inferred, keeping direction and sign of the link as separate

events. This process is repeated for R runs, which are later used to evaluate

stability. The distribution of bootstrap support for all runs is compared with

the distribution for shuffled expression data, and this is used to locate the

bootstrap support cutoff at the desired FDR level. Links are then extracted

which are present in each run above this cutoff

Fig. 2. Bootstrap support by overlap and frequency. Illustration for user-

defined FDR cutoff (here 5%) for link inclusion. The blue line depicts link fre-

quency as a function of bootstrap support when using measured data, and

the red line when using shuffled data. The black vertical bar defines a boot-

strap cutoff above which the measured data links are in the blue area and the

shuffled data links are in the red area. In this illustration we set the FDR level

for inferred links by finding the cutoff that makes the red area 5% of the total

area under the measured data. The overlap is the intersection of links in the

bootstrap runs divided by their union. This indicates what level of overlap is

expected by chance, and what level is observed in the measured data (Color

version of this figure is available at Bioinformatics online.)
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used, assuming normally distributed noise (Tjärnberg et al., 2017,

Eq. S9)

SNRY true¢
ðYÞ
�rðEÞ : (4)

The case study here carries 100 outer R runs, each to form a con-

sensus from 1000 inner Q bootstrap iterations (Fig. 1). The inner

iterations are checked for consistency among outer runs, informing

accuracy of the inference, allowing estimation of link persistence.

In the attempt to reverse engineer networks of similar character-

istics found throughout biological systems we build upon a founda-

tional investigation of criterion for inferring networks of optimal

sparsity (Tjärnberg et al., 2013). We rely upon the long held notion

that such elements rely upon specific regulators and thus are not

near fully connected, but instead are sparse. We rely on inference

methods incorporated into the GeneSPIDER (Tjärnberg et al.,

2017) MATLAB (MATLAB, 2017) package specifically capable of

returning such networks, namely LASSO (Friedman et al., 2009;

Tjärnberg et al., 2015, Eq. 4), Least Squares Cut Off (LSCO),

Robust Network Inference Cut Off (RNICO) (Tjärnberg et al.,

2017), GENIE3 (Huynh-Thu et al., 2010) and Context Likelihood

of Relatedness (CLR) (Faith et al., 2007). The three regression meth-

ods utilize known perturbation design (P) to map expression to net-

work topologies, whereas GENIE3 and CLR have no such

requirement. We utilize sparsity parameters native to the inference

methods to retain only relevant interactions in the final network

model. Among the sparsities possible to infer through these meth-

ods, we seek to estimate what has been found to be biologically rele-

vant networks, resolving to around 3 links per node, or 10%

connectivity (Tjärnberg et al., 2013).

3 Results

To evaluate the NestBoot method we benchmarked its effect on five

GRN inference methods, using a benchmark of simulated data with

a range of properties, as well as three biological datasets. 40 10-gene

and 45-gene datasets were created using the GeneSPIDER

MATLAB package (Tjärnberg et al., 2017). Each initial dataset was

scaled to five SNR levels, logarithmically spaced from 0.001 to 10,

resulting in 200 datasets. The datasets’ gold standard networks are

of random topologies with condition numbers 5–105.

Synthetic datasets offer the advantage of precisely measuring ac-

curacy and the effect of properties such as SNR and condition num-

ber. Using biological data here is difficult because the true network

is not known and the data properties cannot be varied. However, we

found three datasets where the authors have proposed a true net-

work and used that as a proxy.

We utilized five established methods of inference to reverse-

engineer GRNs from these datasets, and it is around these that we

built the nested bootstrapping enhancement. The methods are

LASSO via the Glmnet implementation, based on L1-regularized

distance minimization, LSCO, the implementation of least squares

with a cutoff to yield sparse networks, RNICO (Tjärnberg et al.,

2017), a derivative of Robust Network Inference (RNI)(Nordling,

2013) with a variable cutoff to yield multiple sparsities, GENIE3

and Context Likelihood of Relatedness (CLR). For each dataset, the

methods were run at 30 different sparsity penalty settings to cover a

wide range of sparsities.

Networks were inferred by each method in its native configur-

ation as well as with nested bootstrapping. We measured perform-

ance in terms of median MCC, calculated across all initiated

Fig. 3. GRN accuracies under native and NestBoot-enhanced inference on 10-

gene synthetic data. The distribution of scores across all datasets is pre-

sented in grey where native inference configuration is used and in blue where

NestBoot-enhanced inference is enabled for methods LASSO, LSCO, RNICO,

GENIE3 and CLR. Accuracy was measured as median MCC across a range of

sparsities for each of the 200 datasets of 10 genes. The box displays the me-

dian and interquartile range, and whiskers bound points maximally extending

1.5 times this range. Beyond this, outlier points are shown

Controlling FDR in GRN inference 1029

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article-abstract/35/6/1026/5086392 by Karolinska Institutet, Erik Sonnham
m

er on 24 April 2019



sparsities, in order to present a global picture of the accuracies

across variably sparse inferred networks. This is intended mainly as

a relative accuracy measurement. As we use the same sparsity levels

for one method under native and NestBoot-enhanced configura-

tions, these are directly comparable, but the accuracies of different

methods may be affected by different choices of sparsity levels. The

median will normally be substantially lower than the maximum

MCC value across all sparsities, but it is also a more realistic meas-

ure for a biological setting where the true GRN is unknown and

hence no maximum MCC can be calculated. It would not be appro-

priate to use e.g. AUROC or AUPR measurements that require a full

range of false positives and negatives, because NestBoot with its

control of FDR only outputs a narrow range of false positives.

NestBoot improved the accuracy in nearly every case (Figs 3 and

4).The improvement tends to be greater for higher SNR levels. For

the 10-gene datasets, the effect of NestBoot increased with SNR for

LASSO and LSCO but was almost constant for the other methods.

The greatest improvement was seen for LSCO at SNR10, where

NestBoot boosted the accuracy from 0.24 to 0.56. For the 45-gene

datasets there is a trend towards lower accuracies at low SNR but

higher accuracies at high SNR, compared to the 10-gene datasets.

Here NestBoot gave the greatest improvement with the LASSO

method, boosting the accuracy from 0.19 to 0.80 at SNR 1.

NestBoot gave greater improvement for 10-gene datasets than for

45-gene networks at SNR 0.001. However, in the 10-gene networks

the overall trend of increasing accuracy with increasing SNR does

not start until SNR 1, while 45-gene networks see significant im-

provement already at SNR 0.01 for LASSO and LSCO.

We are interested in improving performance when inferring net-

works using experimental datasets. To this end we gathered three

biological datasets for which a ‘true network’ has been published.

Even though this may not be the completely true network we here

use it as a proxy for benchmarking GRN inference. Applied to real

data we again see general accuracy improvement by NestBoot

(Fig. 5). This benchmark contains data with typical properties of ex-

perimentally collected data, i.e. with high noise. The measured SNR

levels for these datasets range from 0.004 to 0.01 (see Fig. 5). As

demonstrated above, such levels will return low accuracies, but this

can be improved substantially wrapping nested bootstrapping around

the method, in particular LASSO and LSCO. All methods showed

improvement under NestBoot across the biological datasets. The

greatest increase in accuracy is seen for the Arrieta-Ortiz data with

RNICO, which improved the median MCC from near zero to 0.2.

We note that the performance of both native and NestBoot

modes of CLR and GENIE3 are essentially independent of SNR,

Fig. 4. GRN accuracies under native and NestBoot-enhanced inference on 45-

gene synthetic data. The distribution of scores across all datasets is pre-

sented in grey where native inference configuration is used and in blue where

NestBoot-enhanced inference is enabled for methods LASSO, LSCO, RNICO,

GENIE3 and CLR. The accuracy was measured as median MCC across a range

of sparsities for each of the 200 datasets of 45 genes. For a description of the

plot see Figure 3

Fig. 5. Experimental NestBoot performance at 5% FDR cutoff. Comparison of

native methods to those enhanced with NestBoot on three biological data-

sets. The measured SNR levels of the three datasets are shown below
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with the exception of GENIE3 on 45 genes, while the other methods

reach far higher accuracies at high SNR. We attribute this to the fact

that CLR and GENIE3 do not attempt to solve the inverse problem

stated in Eq. 3 but instead use mutual information and tree ensemble

building, respectively, without consideration for the experimental

design.

Note that while we attempt to gather networks of similar final

sparsities across methods, the sparsity is by necessity set differently.

RNICO derives sparsity using c probability cutoffs, CLR, LSCO and

GENIE3 using a post-inference cutoff procedure, and LASSO using

an L1 penalty. The comparison may therefore not be entirely free

from such biases between methods that use different sparsity lad-

ders, but the effect should be small.

In the implemented release of NestBoot the user can modify the

FDR cutoff to trade false positives for false negatives. Note that the

method is conservative as it demands a link to pass the bootstrap

support cutoff of the set FDR in all bootstrap runs. Therefore, the

overall false discovery rate in the configuration of 100 runs is con-

siderably lower than the set FDR (see Fig. 6).

4 Discussion and conclusions

We have presented NestBoot, a bootstrap-based approach for GRN

inference that is designed to improve the reliability of inferred net-

works. This is particularly advantageous when applying it to data

that is biologically meaningful yet does not follow the U-shaped fre-

quency distribution required by e.g. BINCO, which is often the case.

NestBoot is able to control the rate of false positive links independ-

ent of regularization parameter choice, which reliably yields inferred

networks of biologically realistic sparsity. We analyzed three bio-

logical datasets with gold standard GRNs and show that NestBoot

improves the GRN inference accuracy when using it with any of the

inference methods LASSO, LSCO, RNICO, GENIE3 and CLR.

NestBoot was also shown to substantially improve GRN inference

accuracy on synthetic datasets containing a varied assortment of

data properties.

The improvement is clearly visible when looking at the median

MCC (Figs 3, 4 and 5). Links in networks inferred by NestBoot can

be relied upon to a high degree as we see the percentage of false posi-

tives increases minimally up to FDR 0.5 (Fig. 6). We therefore be-

lieve that modest median MCC values are due to false negatives in

the NestBoot estimates, while without NestBoot it is more likely to

be due to false positives.

Native GENIE3 uses a tree ensemble approach drawing on rela-

tionships between input gene expression patterns to predict those of

target genes, building trees based on bootstrapped samples to return

one inferred network with ranked link strengths, whereas NestBoot

infers an entire network for each bootstrap. Another distinguishing

feature of GENIE3 is its design for data with multifactorial (i.e. un-

known) perturbations, whereas the regression methods take into ac-

count which gene was perturbed explicitly via the perturbation

design matrix (P). CLR applies normal distribution statistics to mu-

tual information scores in order to identify network links. These

may be reasons why GENIE3 and CLR are unable to capitalize on

the more informative data at high SNR.

Most biologically derived datasets contain high noise with SNR

typically below 0.01. We have previously demonstrated poor per-

formance of inference methods when operating over such sufficient-

ly uninformative datasets (Tjärnberg et al., 2017), and indeed most

native methods yielded a median MCC close to zero for SNR 0.001

and 0.01, especially for the 45-gene datasets. Nested bootstrapping

was able to improve the accuracy at low SNR in some cases, but

generally works better for high SNR data. There is thus clearly a

great need to improve accuracy at ‘biologically relevant’ SNR levels.

The NestBoot algorithm is implemented in MATLAB, as part of

the GeneSPIDER package, and as such provides functionality

around any inference method incorporated. On 45 genes and 180

samples, Nestboot required roughly 1 core hour utilizing the fastest

method tested, LSCO, on a Intel(R) Core(TM) i7-6700 CPU @

3.40GHz, corresponding to 8 min when run as 8 parallel jobs.

Taking advantage of this platform, the user can not only infer net-

works, but benchmark methods and estimate their performance on

datasets with desired properties.
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