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GeneSPIDER – gene regulatory network inference
benchmarking with controlled network and data
properties†

Andreas Tjärnberg, ‡abc Daniel C. Morgan, ‡ab Matthew Studham,ab

Torbjörn E. M. Nordling §*ad and Erik L. L. Sonnhammer§*ab

A key question in network inference, that has not been properly answered, is what accuracy can be expected

for a given biological dataset and inference method. We present GeneSPIDER – a Matlab package for tuning,

running, and evaluating inference algorithms that allows independent control of network and data properties

to enable data-driven benchmarking. GeneSPIDER is uniquely suited to address this question by first

extracting salient properties from the experimental data and then generating simulated networks and data

that closely match these properties. It enables data-driven algorithm selection, estimation of inference

accuracy from biological data, and a more multifaceted benchmarking. Included are generic pipelines for the

design of perturbation experiments, bootstrapping, analysis of linear dependence, sample selection, scaling of

SNR, and performance evaluation. With GeneSPIDER we aim to move the goal of network inference

benchmarks from simple performance measurement to a deeper understanding of how the accuracy of an

algorithm is determined by different combinations of network and data properties.

1 Introduction

The goal of gene regulatory network (GRN) inference is to under-
stand how genes influence each other in terms of their expression,
i.e. to unravel the transcriptional regulatory influences.12 A primary
objective in network inference is to obtain a network where each
link corresponds to a true regulatory interaction in the biological
system, i.e. to avoid false positives. A secondary objective is that
each real link becomes inferred, i.e. to avoid false negatives. The
quality of the inferred network model, that is, the number of false
positives and negatives, depends both on the inference method
and the data. Here we focus on dynamic models of regulatory
networks and algorithms that are designed to take these effects
into account.

Benchmarks are a common method to objectively com-
pare performance of different network inference algorithms.

Famous challenges, such as the DREAM challenge,14 are
designed around data sets from multiple ‘‘gold standard’’
biological systems where the known links or the network’s
main properties are assumed true.

In practice, artificial networks and data from simulated
experiments are commonly used due in part to the current lack
of a ‘‘true’’ network of gene regulation for any biological system,
as well as the temporal and monetary ease of generating data
in silico. In particular, the properties of the networks and data are
easier to adapt to the specific needs of a project. Simulations often
meet biological experiments half way by incorporating knowledge
derived from in vivo data to create realistic networks and in silico
datasets.2,11,16,19 For example, a substantial number of transcrip-
tional regulatory interactions are known for Escherichia coli and
Saccharomyces cerevisiae, and can be used when deciding the
structure of the artificial network model.23,25 However, it is
important to distinguish between (i) networks and data that
are intended to mimic real biology as closely as possible, and
(ii) networks and data that are intended to be approximations,
only capturing certain properties of their counterparts.

The network construction process usually involves modelling
networks as a system of ordinary differential equations (ODEs),
with e.g. linear,2 or nonlinear24,29 models. The perturbation,
i.e. system input, used in the experimental design is typically
a single gene knockdown/knockout, or a system wide pertur-
bation, i.e. a perturbation that randomly alters multiple genes
at a time.
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To streamline the creation of new benchmarks of network
inference methods several packages have been published to
facilitate the creation a benchmark data sets and networks.5,10,24,29

A common feature of these benchmarking packages is the focus
on network structure as the main feature controllable by the user.
SynTReN29 utilizes selected dynamic structures and sub-networks
from biological systems, and E. coli and S. cerevisiae. netsim5 takes
a different approach by generating dynamical models, incorpo-
rating structurally random network motifs, which they dub
modular topology models. GeNGe10 uses a nonlinear model
similar to SynTReN and allows for the generation of networks
with specific network motifs. All the above methods utilize
some form of non-linear dynamics to produce gene expressions
from the network structure.

The GRN inference community has organized around challenges,
such as the DREAM challenge, to benchmark network inference
methods by applying them to the same data and comparing their
performance.14 The package GeneNetWeaver24 expands upon ideas
similar to those of the SynTReN and GeNGe packages and is used to
create datasets for these challenges. GeneNetWeaver enables the user
to choose among a variety of in silico standard perturbation designs
when generating networks and time-series data, as well as to define
the number of nodes and in-degree. Its nonlinear dynamical model
and simulated data are based on several types of omics data in order
to mimic a real biological system.

Publicly available gene expression datasets typically suffer
from few data points compared to the high number of genes
and possible interactions, large measurement uncertainty both in
the perturbations and responses, i.e. poor signal to noise ratio
(SNR), and redundant nearly collinear variables, i.e. ill-conditioned
data matrices.17 Considering this, previously published bench-
mark packages support surprisingly few perturbation design
alternatives and data properties. Noise is typically added to the
input and/or output as a percentage of the magnitude of the
applied perturbation or measured signal, rather than the SNR.
Due to the ill-conditioning, the former does not typically allow
for control of the later. In a similar ambition as Kurtz et al.,21

we seek to control certain aspects of data generation. However,
no previously published package makes it clear to what extent
the specific model, or the perturbation design, effects the data
generated or the inference being made. None of the previously
published packages facilitate this analysis. Nor do they facili-
tate control of observable data properties, such as the SNR and
ill-conditioning, which as we have demonstrated should be
used to guide the algorithm selection.28

The DREAM challenge, for example, does not define observable
properties that could guide a choice of inference method or give an
estimate of how informative the dataset is. Instead it focuses on
network properties and motifs when trying to evaluate to what
extent a specific inference approach is useful. While this might
reveal hard to infer motifs and network structures, it becomes
meaningless when faced with a dataset since the motifs can not
be observed a priori. Furthermore, the perturbation design is not
connected to the network properties, thus equal perturbation
design could give arbitrarily ‘‘good’’ or ‘‘bad’’ data given a specific
network model. While an algorithm may generally perform well,

it might act to the contrary faced with a specific set of data
properties.

A more recent benchmarking package, NetBenchmark,4

aims to evaluate inference methods by bundling datasets from
Rogers simulator,22 SynTReN and GeneNetWeaver, and benchmarking
across several existing inference algorithms in a unified workbench.
However, the fundamental issues of the methods aggregated are
neither solved nor addressed, simply evaluated in the same way.
Benchmarks should provide guidance on both (i) which inference
method to use for a particular dataset, and (ii) which errors to expect
in the inferred network. Benchmarking should be a data driven
procedure.

Here we present GeneSPIDER, a benchmarking suite designed
specifically to deal with the issues presented above. GeneSPIDER
focuses on key properties influencing inference performance,28

allowing the user to ‘‘tune’’ certain parameters in the context of
the core functionality expected from a benchmarking suite. In the
generation of the dynamical network model, GeneSPIDER focuses
on stability32 and interampatteness.18 By interampatteness we
mean the ratio between the system’s ability to amplify and
attenuate different signals, which for a linear system corresponds
to the condition number of the network matrix. This is strongly
correlated with the difficulty of inferring the correct network,
as attenuated signals typically are hidden in the noise and
essentially determines the accuracy of the inferred network, since
network inference is an inverse problem.17

The observed signal is determined by the applied perturbation
and the attenuation of it by the system. The strength of the
perturbations could and should be scaled to counteract the
intrinsic attenuation of signals. The condition number of
the dataset has been shown to serve as a proxy for the inter-
ampatteness in the context of known perturbations.17,28 The
benefit here is that the condition number of the dataset can be
observed and hence provide information on how difficult it is to
infer a specific network from the available data.

The noise estimate in the direction of the data’s smallest
variation is expected to have the greatest impact on the data
quality, as in any inverse problem. Therefore we provide variation
estimates and apply noise scaled towards the principle directions
of variance in the data (by default the smallest). Since the
variation in the data can be distributed very differently among
the directions from one dataset to the next, this is necessary to
correctly see what effect a certain level of noise can have on the
data. This makes it possible to have two observable properties,
signal to noise ratio and the condition number of the data, as
tune-able parameters not previously incorporated into bench-
marking pipelines, yet informative for property-dependent error
analysis and confidence estimation. This informs the user how
informative the data set is and what performance should be
expected from different methods, as shown previously.27,28

GeneSPIDER improves upon existing packages by providing
a data driven approach to benchmarking focused on indepen-
dently controlling properties of network and data. This is
essential for establishing the relation between properties and
inference accuracy. One of the most important questions in
network inference is what accuracy can be expected for a given
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real dataset. GeneSPIDER is able to address this question by
extracting salient properties from experimental data and then
generate simulated networks and data that closely match
these properties see Fig. 1. In this article we demonstrate the
workflow of Fig. 1, with code examples given in the ESI,† in
order to lower the initial usage threshold, focusing on generating
approximations with tuned properties and avoiding unnecessary
complexity in order to gain insight.

2 Methods and
GeneSPIDER capabilities

The functions in the following sections cover the five typical
phases in benchmarking of inference methods based on in
silico experiments: generation of network models (phase A),
design of perturbation experiments (phase B), simulations of
the designed experiments on the generated systems (phase C),
inference of network models from the simulated datasets using
the methods of interest (phase D), and analysis of the perfor-
mance of the methods (phase E).

2.1 Model formalism and notation

A linear dynamical system described by ordinary differential
equations (ODEs),

d

dt
�xiðtÞ ¼

XN

j¼1
�aij �xjðtÞ þ piðtÞ � fiðtÞ

yiðtÞ ¼ �xiðtÞ þ eiðtÞ;

(1)

is used to approximate the local behaviour of a biological system
in the current version of GeneSPIDER. This approximation is
commonly used to describe GRNs, see e.g. Gardner et al.,8 Yuan
et al.31 In GRNs the state vector x̌(t) = [x̌1(t), x̌2(t),. . .,x̌N(t)]T

represents actual mRNA expression changes relative to the initial
state of the system in N genes. The vector p(t) = [p1(t),
p2(t),. . .,pN(t)]T represents the applied perturbation, which, in
general, is corrupted by the noise f (t). The perturbations could
be e.g. gene siRNA knock-downs or gene over-expressions using
a plasmid with an extra copy of the gene. The response vector
y(t) = [y1(t), y2(t),. . .,yN(t)]T represents the measured expression
changes, which is the ‘‘true’’ expression corrupted by the noise e(t).
Our network is the interaction matrix with parameters ǎij, which
represent the influence of an expression change of gene j on gene i.
A positive value of ǎij represents an activation, while a negative
value represents an inhibition. The value of the ǎij parameter gives
the relative strength of the interaction. Here 3 is used to mark
‘‘true’’ variables that are not corrupted by noise or measure-
ment errors.

2.2 Network generation

Network generation (phase A) is done in four steps: (i) generation
of a network graph with desired topology, (ii) assignment of
random weights to the links, (iii) stabilization of the system,
and (iv) tuning of the IAA degree of the system corresponding to
the network.

GeneSPIDER includes three algorithms for directed and
undirected network topology generation (step i): random, scale-
free, and small-world; auto-regulation/degradation self-loops are
supported for directed networks. The desired number of links
is set by providing a sparsity parameter to the algorithm. The
sparsity is defined as s = L/N2, where L is the number of links in
the network and N2 the number of possible links in a directed
graph. The algorithm generating random graphs, where each link
has the same probability pl to exist, is based upon the assumption
that every graph, G(N,L), is equally probable.6 The algorithm
generating scale-free graphs,3 where each node added to the
network is attached to previous nodes with a probability pl

Fig. 1 Schematic workflow of network and data generation followed by analysis in GeneSPIDER. (i) Import or generate networks with a range of
properties; stabilize and modify the interampatteness degree. (ii) Generate expression data with specific SNR, perturbation design, and condition number.
(iii) Analyze GRN inference benchmark results in relation to the network and data properties. (iv) Draw conclusions about which methods to use under
what conditions. The figure also shows an alternative path where GeneSPIDER extracts properties from experimental data in order to generate simulated
networks and data. Such a benchmark provides information about the expected accuracy for a given real dataset.
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proportional to the number of edges each of the previous nodes
has, is based upon the preferential attachment principle.1

This algorithm produces a network with bidirectional links
only. However, directed biological networks rarely have bidirec-
tional links, so we at random eliminate one of the links in each
symmetric link pair with probability premove, implying that we
keep both with probability 1 � premove. When eliminating a link
we eliminated the outgoing link aji with probability poutgoing.

The algorithm generating small-world graphs,30 where
nodes are serially connected with the l closest neighbours in
a ring lattice, is based on the implementation suggested by
Prettejohn et al.20 Each node is then considered to randomly be
disconnected from a neighbour and reconnected to another
node in the ring lattice. Graphs that are partly scale-free can be
generated by seeding the preferential attachment algorithm
with e.g. a small-world network so that a small-world-scale-free
(SW-SF) network is generated.

After the topological layout, a weight is assigned to each link
present by assigning weights drawn from a iid normal distribu-
tion with mean zero and standard deviation one (step ii). This is
done in order to convert the graph into a dynamical system.
The weight ǎij of each link that is present determines the effect
that node j has on node i.

Since a stable system guarantees that all quantities remain
finite, a stable network model is typically desired. The weighted
network may therefore need to be stabilized (step iii) and have
its condition number tuned, i.e. tuning of the interampatteness
(IAA) degree.18 IAA is a generic property of biochemical networks,
akin to the data property collinearity. When assigning random
weights to each link there is no guarantee that the resulting
system is stable. Stability is guaranteed if all eigenvalues of the
interaction matrix are negative. Data generation for benchmarking
of inference algorithms should be restricted to stable systems,
because, while the local linearisation of a globally stable nonlinear
system can be unstable,13 it is not possible to infer an unstable
linear system in practice; even the smallest amount of process
noise will move the system away from the unstable steady-state.
Note that every isolated system must be globally stable, or risk
some state variable (mRNA abundance) becoming infinite and
violating mass-conservation laws. We assure stability by employing
a method that forces all eigenvalues of our interaction matrix to be
negative,32 enabling the creation of a stable linear dynamic system
from most unstable network graphs. However, this does not work
for all graphs because the algorithm is based on making the
diagonal dominating and negative, whereupon addition of
a few links typically solves the problem. The algorithm forces
the eigenvalues to be negative by incorporation of a convex
optimization protocol.9 While convexity guarantees that the
algorithm for each initial network returns only one final network,
two different initial networks may yield the same final network.
Desired network properties can be arrived upon by iterating
over the substantially reduced space of stable linear dynamical
systems.

The IAA degree tuning (step iv) is enabled by the user defining
limits on the eigenvalues of the network in the convex optimization.
This sets an upper bound on the inverse condition number,

which can be infeasible or arbitrarily conservative. In practice,
one therefore needs to generate a network ensemble with
different random topological weights and select those of con-
dition number (IAA degree) within the desired interval. Note
that links are removed if their strength falls below a user
defined threshold. This ensures that we keep link strengths
within a reasonable range to avoid trivial links as well as
possible numerical issues when working with the network in
subsequent steps. However, this can result in a slight deviation
from the desired sparsity.

2.3 Data generation

The purpose of the experiment design (phase B) is to generate a
perturbation matrix P, containing either a sequence of pertur-
bations in a time-series experiment or a sequence of steady-state
experiments. Only a small number of genes should be perturbed
in each perturbation, so that it may be practically implemented
in vivo or in vitro given current technical limitations. Publicly
available real gene expression datasets have either been generated
by perturbing one gene at a time (single gene perturbation),
two genes at a time (double gene perturbations), or by a system
perturbation, such as a change in environmental factors or
introduction of a drug, which is thought to affect several genes
at once but typically is quantitatively unknown. These perturba-
tions are trivial to generate in MATLAB using e.g. the function for
generation of diagonal random matrices diag(randn(N,M)) or
sparse random matrices sprandn(N,M).

We also provide a method to generate a pseudo-optimal
perturbation design that counteracts intrinsic signal attenuation
based on an inversion of the ‘‘true’’ system. Small elements in the
designed perturbation matrix P are removed to make it sparse,
while keeping the condition number of the response matrix k(Y)
close to 1. This implies that the response matrix will be close to an
identity matrix, with equal signal strength in N linearly indepen-
dent directions. Note that while this method cannot be used for
biological experiments (because the ‘‘true’’ system is unknown), it
can be used to generate informative datasets for benchmarking.

The experiments are simulated (phase C) either by calculating
the steady-state response, as in eqn (S2) (ESI†), or the time-series
response, as in eqn (1). The system dynamics are simulated with
a time step t = tN/10, where tN is the smallest time constant of
the system given by the eigenvalues of the network matrix.
We typically first simulate noise-free measurements and then
add noise drawn from the desired distribution, typically a
standardized normal distribution with zero mean and variance
one. This enables us to tune the SNR by scaling the noise matrix,
which for normally distributed noise corresponds to scaling of
the standard deviation, such that the desired SNR is obtained.

2.4 GRN inference methods

A core piece of any inference pipeline is the inference method
itself, which takes data and algorithm parameters as input and
yields one or several network estimates as output (phase D).
In GeneSPIDER we have created wrappers with a common entry
format for a number of published and in-house inference methods
to simplify their use, see Table S13 (ESI†). Wrappers make it easy
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to incorporate future inference algorithms and provide the same
benchmark capabilities in our standardised environment.

We here introduce a modified version of the Robust Network
Inference algorithm (RNI)17 by applying a range of cut-offs
to the confidence scores, and call this version RNI cut-off
(RNICO). This way different network estimates ranging from
empty to full are obtained by gradually lowering the confidence
cut-off independent of how informative the data is, while native
RNI for uninformative data produce an empty network. The
significance level a = 0.01 was used in RNICO to scale Nordling’s
confidence score such that every link with a value above one exists
in the true network for 99 out of every 100 links fulfilling this
criterion.

2.5 Evaluation of inferred networks

Measures of network similarity are needed to assess the per-
formance of any given inference method (phase E), and we have
decided to implement many such measures to accommodate
researchers’ preference. GeneSPIDER currently provides a
function for comparison of networks that includes 18 system
measures, 3 signed topological measures, 1 correlation measure,
12 graph measures, and 9 directed graph measures, see Section
S1.4.2.3 (ESI†). The GeneSPIDER toolbox includes many standard
measures of performance, including MCC and AUROC, with
which to compare available inference pipelines and tune such
for specific dataset properties.

2.6 Quantification of network and system properties

To investigate if a relation exists between a network property
and the performance of an inference algorithm, the network
property first needs to be objectively quantified and a measure
of it implemented. GeneSPIDER contains functionality for the
calculation of basic graph properties, such as number of nodes
and links, basic topology measures reported in Prettejohn
et al.20 such as the clustering coefficient, the degree distribu-
tion, the average path length, and advanced measures such
as the number of strong components. We calculate these
measures for each network structure based on the network
type, either directed or undirected. We have also implemented
functions for calculation of system properties, such as the time
constant and IAA degree.

2.7 Quantification of data properties

For the expression data we have tried to quantify the informa-
tiveness and difficulty to infer the correct network in terms of
signal to noise ratio, similarity between experiments, and the
condition number. GeneSPIDER contains several different
SNR calculations; see definitions in Section S1.5.1 (ESI†). The
condition number is calculated with the function cond.

3 A case study using the benchmark
suite

To demonstrate the application of GeneSPIDER we generated a
benchmark suite of 200 networks and 600 expression datasets

that includes networks of four different topologies with varied
IAA degrees and sizes. Based on these we simulated data each
with three SNR variants, and analyzed the performance of four
GRN inference methods in relation to the properties of the
networks and expression data. The four methods tested in
this benchmark are ARACNe,15 least squares cut-off (LSCO),27

RNICO, and the Glmnet implementation of LASSO.7,26 Fig. 1,
gives an overview of the GeneSPIDER workflow and some
parameters of networks and data that are possible to vary.

3.1 Network generation

We generated 10 networks of sizes N A {10, 50, 100} for each of
the four classes: random, small-world, scale-free and small-
world-scale-free, and for each of two IAA levels, k A {low, high}.
In total 200 networks were generated. Scale-free and small-
world-scale-free are missing for N = 10 because this is to small
for scale-free like properties to be relevant. The small-world
networks only have high IAA degree because of limitations
in the IAA adjustment method compounded by the fact that
cascades, which are present in small-world networks due to the
initial ring lattice, in general increases the IAA degree.18 The
two IAA degree levels were: IAA degree of 9N to 11N (high) and
IAA degree of 0.5N to N (low). We scaled the IAA degree with the
network size because the condition number of a random matrix
with normally distributed entries tends to grow with the matrix
size. The IAA degree of each network is shown in Fig. S1 (ESI†).

IAA can be difficult to tune for certain network structures
and sparsity levels, so we allowed some flexibility relative to the
specified sparsity. In particular, networks with a low IAA degree
are difficult to find for very sparse networks, since they tend to
contain cascade and feedback loops that in general increase
the IAA degree. We therefore implemented a larger sparsity
coefficient for these sparse networks, i.e. the addition of one or
two links to the network, with secondary link addition if the
algorithm had trouble stabilizing the network at the desired IAA
degree. Performance analysis of the network inference methods
was carried out on multiple 10-gene random networks.

The sparsity coefficient was set for each network generation
method, scaled by the size of the network to maintain a
relatively low mean degree per node, so all networks can be
considered truly sparse. The sparsity ranges of the different
network topology classes and sizes in this benchmark are
shown in Table 1. The degree distributions for each network
topology class and size are shown in Fig. S2 (ESI†).

3.2 Data generation

Data was generated at three signal-to-noise levels for each
network in Section 3.1. The common gene-by-gene steady-state
perturbation paradigm was repeated three times, i.e. P = [I, I, I],
giving a total of M = 3�N samples of simulated expression changes
in each gene in the response matrix Y. Independent, normally
distributed noise with zero mean and variance l was added to
each expression change. Only one noise realization was generated
per network size to avoid consideration of differences in noise
when comparing the inference result within each group. The
variance of the noise was scaled according to equation (S9) (ESI†)
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to give exactly SNR A {0.01, 1, 100}, with significance level a = 0.01
in all cases.

The dependence of the condition number, k(Y), on SNR is shown
in Fig. 2. Compared to Fig. S1 (ESI†), it is clear that for SNR Z1, k(Y)
closely follows IAA degree as it should since P = [I, I, I]. For SNR o1
the noise in some cases has a strong effect on k(Y) as expected.

3.3 Inference method performance analysis

A measure of similarity between the inferred network and the
‘‘true’’ network used to generate the data is needed to evaluate
the performance of inference methods. We here used area
under the receiver operating characteristic (AUROC). The receiver
operating characteristic (ROC) depicts the true-positive rate
(TPR), i.e. sensitivity or recall, against the false-positive rate
(FPR), i.e. fall-out, as a function of the regularisation parameter
for LSCO and Glmnet or the confidence score for RNICO and
ARACNe, see the example in Fig. 3.

By inferring networks for 100 different values of the regulari-
sation parameter or each confidence score that adds a link
we brought the sparsity of the inferred network from an empty
network to a full network. An AUROC of one corresponds to
inference of the true network for some regularisation para-
meter or confidence score with inclusion of all existing links
first and then all non-existing ones, while zero corresponds to
inclusion of all non-existing links first and then all existing
ones such that all networks that can be inferred have the least
resemblance to the true network. To compare the four inference
methods across the networks and data sets in the benchmark
suite, we summarize their AUROC values as bars plots in Fig. 4.
As ARACNe is unable to predict self-loops, we also made a separate
benchmark that ignores self-loops entirely (Fig. S3, ESI†).

Some major trends can be observed:
� LSCO and RNICO always give the most accurate networks in

cases of SNR 100. The AUROC is almost one and the correct network
can in most cases be inferred. RNICO is the preferred method
because it can be used to prove the existence of links and provides
reliable confidence scores under mild assumptions. To obtain an
accurate network using LSCO the correct z value must be selected,
while RNICO for a large range of z values will provide accurate
networks (ESI,† figures, MCC panels). However, the correct cut-
off to use in RNICO is to set Nordling’s confidence score to one,
since all links with confidence above one can be proven to exist.
� Glmnet and ARACNe always fail to infer the correct network

for SNR 100, even when LSCO and RNICO succeed, and provide
network estimates that are inferior to LSCO and RNICO. This
surprising property of Glmnet was previously observed in ref. 28.
� ARACNe cannot infer self-loops by design, i.e. diagonal

elements of the interaction matrix. It should therefore be compared
to its own null model. Even though it can perform better than

Table 1 Properties of networks in this benchmark. Self-loops are
included. SW-SF stands for small-world and scale-free

Network class N Sparsity Links Avg. degree

Random 10 0.25 25 2.5
50 0.062–0.064 155–160 3.1–3.2

100 0.038–0.04 380–400 3.8–4.0

Small-world 10 0.19–0.3 19–30 1.9–3.0
50 0.096–0.1 240–250 4.8–5.0

100 0.048–0.068 480–680 4.8–6.8

Scale-free 50 0.092–0.096 230–240 4.6–4.8
100 0.079–0.084 790–840 7.9–8.4

SW-SF 50 0.086–0.13 215–325 4.3–6.5
100 0.075–0.092 753–920 7.53–9.2

Fig. 2 Condition numbers of the response matrices in this benchmark. Three different SNRs were used: 100, 1, and 0.01. The y-axis shows the condition
number k(Y), and the x-axis shows the number in order of increasing IAA.
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random, i.e. its null model, in most cases its performance is very
poor. ARACNe is clearly outperformed by the other methods in all
cases with SNR = 1 and 100. For SNR = 0.01 it performs similarly to
the other methods when not counting self-loops (Fig. S3, ESI†), but
generally close to 0.5 which is the accuracy of random inferences.
� Glmnet, LSCO, and RNICO have similar AUROC values

when SNR = 1, but a good network estimate is given for a
narrow range of z values for Glmnet and LSCO, while RNICO
yields good estimates for a broad range of values (ESI,† figures,
MCC panels). It is hence easier to obtain a good estimate using
RNICO. None of the links can typically be proven to exist using
RNICO in this case and the threshold for the confidence score
must be selected far below one to get good network estimates.
� Glmnet is the best method for SNR = 0.01 and N = 100.

In this setting the AUROC values are always below 0.8 however,
thus the inferred networks are quite unreliable.
� In this dataset, changing only the interampatteness gave

no clear trend across all methods and property settings.
� Comparing Fig. 3 with Fig. S3 (ESI†), i.e. benchmarking

with and without considering self-loops, shows that for Glmnet,
LSCO, and RNICO this mainly has an effect for SNR = 0.01,
where the self-loops improve the performance. For N = 50 and
SNR = 0.01, the self-loops alone explain the improvement above
random assignment (AUROC = 0.5). As expected, ARACNe
always scores better when not considering self-loops.

3.4 Benchmark conclusions

The goal of GeneSPIDER is to provide a common environment for
network inference testing and evaluation. We have demonstrated
some of its capabilities by generating a benchmark suite of
networks and datasets, and used it to analyze the performance
of four inference methods.

It is clear from the benchmarking that mutual information
based methods such as ARACNe are generally performing
substantially worse than system-optimising methods. This
highlights the importance of understanding the system as a
whole, which is not achievable by unconnected calculations on
the links. ARACNe is further hampered by the fact that it cannot
predict self-loops, which are important to bring the system to a
stable state, but even if self-loops are ignored its performance is
far below the other methods on the two high-SNR settings.
In general, we observed a larger difference in performance in
the jump from SNR 0.01 to 1 than from 1 to 100, suggesting a
threshold level of noise from which knowledge is recoverable,
after which point the noise decrease is less relevant.

Once an algorithm is decided upon, having been vetted
against methods of varying strengths and weaknesses, the
capability of that choice must be evaluated. Again, our benchmark
allowed us to draw the following conclusions: all methods perform
poorly when the SNR is below one because the data simply is not
informative enough for network inference. For high SNRs RNI
yields networks that are identical or almost identical to the ‘‘true’’
network.

4 Discussion

GeneSPIDER is a package for GRN inference analysis, for
method choice, evaluation and optimization. It allows the user to
control both network and data properties, and contains methods
for exploring and analyzing these properties, as well as those of
the inference method and its performance. This opens up new
possibilities to understand how these properties affect the perfor-
mance of inference algorithms.

Fig. 3 The ROC curve of four inference methods-Glmnet (LASSO), LSCO, RNICO, and ARACNe-on the Random 50 gene, high IAA, SNR 1 dataset
generated by GeneSPIDER. Note that ARACNe cannot infer self-loops and therefore has a different null model.
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GeneSPIDER can create networks with different topological
properties that are typical for biological networks. Given a
network, GeneSPIDER can then simulate expression data that
is as informative as typical biological datasets. However, its
unique strength is varying these properties across a wide range
of values to gain insights about the limitations and expected
performance of a given inference method. After all, biological
data from different sources varies in terms of network and data
properties, and the performance of inference methods depend
on these properties. Therefore, when a network inference
method is applied to a biological dataset, it is important to
make sure that the method has been benchmarked on simu-
lated data with the same properties. This is not standard
practice today, even though it would provide information about
the reliability of the inferred network. GeneSPIDER can also be
used to investigate how network properties such as topology
and IAA affect data properties. The nature of the generated
data also depends on the experimental design employed for
perturbation. Therefore, GeneSPIDER supports a range of different
experimental design schemes. For instance, one can control the
number of experiments and how many genes are perturbed in

each experiment. This can be of great value when designing wet
lab experiments – if a particular design gives optimal results in a
benchmark, then it should be the preferred choice when perform-
ing real experiments.

It has previously been observed that L1 methods such as Glmnet
perform considerably better at low than at high IAA.28 Such a trend
was not clearly observable in this benchmark, probably because the
low IAA setting here was not as low as in the previous study.

The GeneSPIDER package is implemented in MATLAB and
provides native storage functionality, as well as export options to
formats more easily acceptable by other programming languages,
including XML and JSON. GeneSPIDER fills a gap between theore-
tical analysis and experimental setup and could be incorporated in
many current GRN inference and benchmarking pipelines.
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Fig. 4 Performance of four inference methods – ARACNe, Glmnet (LASSO), LSCO, and RNICO – on the benchmark suite generated by GeneSPIDER
when considering self-loops. The AUROC of an inference method is shown by coloured bars, which are grouped according to IAA degree of the network
and SNR of the data (x-axis). The highest and lowest IAA networks were selected among the 20 networks in each group. Individual ROC curves, MCC
plots per sparsity, and density plots per sparsity are available for each condition set in ESI† figures including and excluding self-loops.
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6 P. Erdos and A. Rényi, On the evolution of random graphs,
Bull. Inst. Internat. Statist, 1961, 38(4), 343–347.

7 J. Friedman, T. Hastie and R. Tibshirani, Regularization
paths for generalized linear models via coordinate descent,
J. Stat. Softw., 2010, 33(1), 1–22.

8 T. S. Gardner, D. Bernardo, D. Lorenz and J. J. Collins, Inferring
genetic networks and identifying compound mode of action
via expression profiling, Science, 2003, 301(7), 102–105.

9 M. Grant, S. Boyd and Y. Ye, CVX: Matlab software for
disciplined convex programming, 2008.

10 H. Hache, C. Wierling, H. Lehrach and R. Herwig,
Genge: systematic generation of gene regulatory networks,
Bioinformatics, 2009, 25(9), 1205–1207.

11 H. Hache, H. Lehrach and R. Herwig, Reverse engineering
of gene regulatory networks: A comparative study, EURASIP
J. Bioinf. Syst. Biol., 2009, 2009(1), 617281.

12 M. Hecker, S. Lambeck, S. Toepfer, E. van Someren and
R. Guthke, Gene regulatory network inference: data integration
in dynamic models – a review, Bio. Systems, 2009, 96(1), 86–103.

13 H. K. Khalil and J. Grizzle, Nonlinear systems, Prentice hall,
New Jersey, 1996, vol. 3.

14 D. Marbach, J. C. Costello, R. Küffner, N. M. Vega, R. J. Prill,
D. M. Camacho, K. R. Allison, M. Kellis, J. J. Collins and
G. Stolovitzky, Wisdom of crowds for robust gene network
inference, Nat. Methods, 2012, 9(8), 796–804.

15 A. A. Margolin, I. Nemenman, K. Basso, C. Wiggins,
G. Stolovitzky, R. D. Favera and A. Califano, ARACNE:
an algorithm for the reconstruction of gene regulatory net-
works in a mammalian cellular context, BMC Bioinf., 2006,
7(suppl 1), S7.

16 V. Narendra, N. Lytkin, C. Aliferis and A. Statnikov (2011).
A comprehensive assessment of methods for de-novo reverse-
engineering of genome-scale regulatory networks. Genomics,
97(1), 7–18.

17 T. E. M. Nordling, Robust inference of gene regulatory
networks, PhD thesis, KTH School of Electrical Engineering,
Automatic Control Lab, 2013.

18 T. E. M. Nordling and E. W. Jacobsen, Interampatteness – a
generic property of biochemical networks, IET systems biology,
2009, 3(5), 388–403.

19 C. a. Penfold and D. L. Wild, How to infer gene networks
from expression profiles, revisited, Interface Focus, 2011,
1(6), 857–870.

20 B. J. Prettejohn, M. J. Berryman and M. D. McDonnell,
Methods for generating complex networks with selected
structural properties for simulations: A review and tutorial
for neuroscientists, Front. Comput. Neurosci., 2011, 5, 11.

21 Z. D. Kurtz, C. L. Müller, E. R. Miraldi, D. R. Littman,
M. J. Blaser and R. A. Bonneau, Sparse and Compositionally
Robust Inference of Microbial Ecological Networks, PLoS
Comput. Biol., 2015, 11(5), e1004226.

22 S. Rogers and M. Girolami, A Bayesian regression approach
to the inference of regulatory networks from gene expres-
sion data, Bioinformatics, 2005, 21(14), 3131–3137.

23 H. Salgado, M. Peralta-Gil, S. Gama-Castro, A. Santos-Zavaleta,
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