
S.1 Supplementary Information

S.1.1 Dependencies of GeneSPIDER

We here list and discuss external packages that GeneSPIDER depend on. Except for the foremost dependency MATLAB 16 , these
packages are freely available online for academic use. No dependency is currently a hard dependency, meaning that except for specific
functionality, most of GeneSPIDER can be used without these packages.

• git for easily keeping up to date with the GeneSPIDER toolbox.

• Glmnet9 is used within wrapper functions, such as Methods.Glmnet, Methods.Bolasso.

• JSONlab for exporting to storage format .json or .ubj.

• xml4mat is necessary for exporting data to the xml storage format.

• CVX for disciplined convex programming in some of our in-house inference methods.

• RInorm18 for robust network inference using the algorithm by Nordron AB.

• ARACNe2 for the ARACNe wrapper. Configuration files needs to be set as per instructions for ARACNe default or per users specific
use cases. The PATH to the ARACNe home directory needs to be set before MATLAB is started.

S.1.2 Installation instructions

To fetch the GeneSPIDER repository run the command:

git clone git@bitbucket.org:sonnhammergrni/genespider.git ~/src/genespider

or download it from https://bitbucket.org/sonnhammergrni/genespider to ~/src/genespider. Change to the direc-
tory where you downloaded the repository by cd ~/src/genespider. Next, to fetch the complete GeneSPIDER package run the
following:

git submodule init

git submodule update

GeneSPIDER will be available after adding the path ~/src/genespider to your MATLAB path with the command:

addpath(’~/src/genespider’)

To develop and keep track of changes for each submodule separately, you need to check out the master branch from each submodule
with the command git checkout master. Each toolbox is expecting to be treated as a MATLAB toolbox i.e. that a + prepended on
each directory and the parent directory is added to the MATLAB path.

S.1.3 Notation used for steady-state data

Assuming that data is recorded during steady-state, the system (1) simplifies to a linear mapping

Y =−Ǎ−1
(P−F)+E. (S2)

Here Y , [y1, . . . ,yM] is the measured steady-state response matrix after applying the perturbations P , [p1, . . . , pM] in M experiments
and Ǎ is the interaction matrix.

An alternative representation that is commonly used in regression problems is obtained by taking the transpose of the variables and
“true” network model. We obtain the matrix form of the standard linear data model used in errors-in-variables regression problems by
introducing the notation used for regressors Φ , [φ 1, . . . ,φ j, . . . ,φ N] = Y T , regressands Ξ , [ξ 1, . . . ,ξ i, . . . ,ξ N] = −PT , regressor errors
ϒ , [υ1, . . . ,υ j, . . .υN] = ET , and regressand errors Π , [ε1, . . . ,ε i, . . .εN] =−FT .

Φ = Φ̌+ϒ, Ξ = Ξ̌+Π (S3a)

Φ̌ǍT
= Ξ̌ Φ,Ξ ∈ RM×N . (S3b)

Journal Name, [year], [vol.],1–13 | 1

Electronic Supplementary Material (ESI) for Molecular BioSystems.
This journal is © The Royal Society of Chemistry 2017

https://git-scm.com/
https://web.stanford.edu/~hastie/glmnet_matlab/
http://www.mathworks.com/matlabcentral/fileexchange/33381-jsonlab--a-toolbox-to-encode-decode-json-files-in-matlab-octave
https://www.mathworks.com/matlabcentral/fileexchange/6268-xml4mat-v2-0
http://cvxr.com/cvx/
https://bitbucket.org/nordron/nordron-rni
http://www.nordron.com
http://califano.c2b2.columbia.edu/ARACNe/
https://bitbucket.org/sonnhammergrni/genespider

S.1.4 Toolboxes
S.1.4.1 Data structure toolbox

This toolbox provides the two main data type classes for networks and experimental data: Network and Dataset. This division
reflects the fact that one network is commonly used to generate many different in silico datasets and that experimental data collected
from an unknown network need to be stored without any network. Table S.1 lists all classes and functions available within this toolbox.

Storing and loading data and networks is an important part of network inference work, and we have therefore opted to include
multiple storage formats for the data types. These include MATLAB’s native format .mat files, which make it easy to save and load
data, Extensible Markup Language (XML), specifically MATLAB markup language (mbml)2 as .xml files, and JavaScript Object Notation
(JSON), which offers a wide range of possibilities for sharing and importing data in MATLAB and other languages. JSON comes with
both the standard .json format, but also as a binary version, Universal Binary JSON .ubj. Despite its name, the export2Cytoscape
function also imports networks.Three normalisation methods are available for a dataset object, standard normalization x̂i =

xi−µi
σi

, min

max range normalisation x̂i =
xi−min(xi)

max(xi)−min(xi)
, and unit length normalisation x̂i =

xi
||xi|| . Here x̂i is the normalised variable or sample of xi.

µ is the mean of sample i and σ the standard deviation, ||.|| is the 2 norm and min and max are the minimum and maximum operators.
Noise estimates needs to be redone after normalisation to be used to estimate new data properties.

Table S.1 Contents of the datastruct toolbox.

Class or function Description
Dataset Stores a data set consisting of a perturbation (P) and response (Y) matrix
Network Stores a network matrix (A)
RSS Calculation of the residual sum of squares for responses and perturba-

tions
cutSym Removes links in a symmetric matrix with a probability to be in or out

degree
expectedSNRv Calculation of the expected SNRφ N (µ,λ)

export2Cytoscape Exports a network to a tsv file that can be loaded in Cytoscape, as well as
imports network files

optimalRandomP Generates perturbations that counteract signal attenuation based on SVD
of Y

randomNet Creates a random network with N nodes and specific sparseness with no
self loops

scalefree Create a scale-free network with N nodes and specific sparseness
smallworld Generate a small-world network
stabalize Weights a static network structure
simts Simple simulation of a time-series response of the linear ODE model
weightP Adjusts elements of P to bring the singular values of Y close to one

S.1.4.1.1 The Network class is a container for networks, in this case a linear model, represented by a matrix A. All methods are
listed in Table S.2. Note that some native MATLAB functionality is provided for this data type, such as svd, logical, sign, and
size operations, and that also a method fetch for getting networks from the online repository at https://bitbucket.org/
sonnhammergrni/gs-networks is provided. The Network class is capable of handling sparse matrices.

Table S.2 Methods in the Network class.

Method Description
fetch Get GeneSPIDER networks from the online repository
load Loads a dataset/network back in to a datastruct
save Saves a datastruct object to file, as a .mat, .json, .ubj, or .xml file.
populate Populates the Network object with matching fields of an input struct
nnz Returns the number of non zero entries in the network
size Returns the size of the network
sign Returns the signed structure of the network
logical Returns the logical structure of the network
svd Returns the singular values of A. To get the singular vectors use

svd(net.A)
view Makes a rough graphical network plot using biograph

S.1.4.1.2 The Dataset class is a container for data sets, i.e. perturbation and response data from experiments. It provides a number
of functionalities related to data handling, listed in Table S.3.

2 | 1–13Journal Name, [year], [vol.],

https://bitbucket.org/sonnhammergrni/gs-networks
https://bitbucket.org/sonnhammergrni/gs-networks

Table S.3 Methods in the Dataset class.

Method Description
bootstrap
eta
gaussian
include
populate
response
save
load
fetch
scaleSNR
std
true_response
w_eta
without
std_normalize
range_scaling
unit_length_scaling

Bootstraps a new data set from the old data set
Calculates the sample-wise linear dependence η of Y and P
Generates Gaussian noise matrices E and F with variance λ
Returns samples that can be include in LOOCO based on the η limit
Populates the Dataset object with matching fields of an input struct
Returns the noisy steady-state response of the network
Saves a datastruct object to file, as a .mat, .json, .ubj, or .xml file
Loads a dataset file back in to a datastruct
Loads a dataset from the on-line repository via URL or name
Scales the noise variance to achieve the desired SNR
Returns the standard deviation of all data points
Returns the noise-free steady-state response of the network
Calculates SVD based sample-wise linear dependence η of Y and P
Creates a Dataset without sample i
Creates a Dataset with standard normalised expression values
Creates a Dataset with min max scaling
Creates a Dataset with unit length scaling

S.1.4.2 Analysis toolbox

Provides fundamental, as well as complex functions for analysing data and models. These are listed in Table S.4.

Table S.4 Contents of the analyse toolbox.

Class or function Description
Model Calculates properties related to the supplied Network
CompareModels Calculates similarity measures of weighted network adjacency matrices
Data Calculates data properties of the supplied Dataset

S.1.4.2.1 The Model class is aimed at analysing models/networks. It provide measures to quantify the properties of the network.
The methods are listed in Table S.5. Specification of how to treat links (directed or undirected) in measures that depend on the link
type is supported.

Table S.5 Methods of Model class.

Method Description
alpha Returns the significance level (default 0.01)
analyse_model Batch calculation of almost all the measures below (used internally)
calc_proximity_ratio Calculates the proximity ratio or "small-worldness" tendency of the net-

work
clustering_coefficient Calculates the clustering coefficient
cond Calculates the condition number of the network A
degree_distribution Calculates the degree distribution
graphconncomp Finds the strongly connected components of the graph
identifier Returns the name of the network
median_path_length Calculates the mean and median path length
time_constant Calculates the smallest time constant of the system based on A
tol Sets a tolerance value for computations if it is needed
type Returns the type of the graph, i.e. ’directed’ or ’undirected’

S.1.4.2.2 The Data class is included for analysis and quantification of data properties. The methods are listed in Table S.6. All
measures are calculated and reported at an adjustable significance level, with default value α = 0.01.

S.1.4.2.3 The CompareModels class can be used to compare networks to each other. A number of different measures are computed
and reported, see Table S.7 - S.11. If the supplied golden standard network is not square, then CompareModels will calculate the
similarity of off-diagonal elements, by assuming that the diagonal has been removed and truncated along the second dimension. Table
S.12 is a reference for the methods that can be used with the CompareModels class. They add additional measures AUROC and AUPR
(using "trapz" matlab function16) and methods to save, store and transfer results to other environments.

Journal Name, [year], [vol.],1–13 | 3

Table S.6 Methods of Data class.

Method Description
alpha Returns the significance level (default 0.01)
analyse_data Batch calculation of almost all the measures below
calc_SNR_Phi_gauss Calculates the SNR as defined in equation (S9)
calc_SNR_Phi_true Calculates the SNR as defined in equation (S8)
calc_SNR_phi_gauss Calculates the SNR as defined in equation (S10b)
calc_SNR_phi_true Calculates the SNR as defined in equation (S6)
irrepresentability Calculates the strong irrepresentable condition
tol Sets a tolerance value for computations if it is needed

Table S.7 System measures

Name Description
abs2norm Absolute induced 2-norm
rel2norm Relative induced 2-norm
maee Max absolute element error
mree Max relative element error
mase Max absolute singular value error
mrse Max relative singular value error
masde Max absolute singular direction error
mrsde Max relative singular direction error
maeve Max absolute eigen value error
mreve Max relative eigen value error
maede Max absolute eigen direction error
mrede Max relative eigen direction error
afronorm Absolute Frobenius norm equivalent to 2-norm of A vec-

torised
rfronorm Relative Frobenius norm
al1norm l1-norm of zero elements
rl1norm Relative l1-norm of zero elements
n0larger # zero elements larger than smallest nonzero element of

A
r0larger # zero elements larger than smallest nonzero element of

A/# zero elements in A

S.1.4.3 Methods toolbox

Provides mainly wrapper functionality for inference methods. These wrapper functions are written in relation to a specific inference
method and accepts as input a standard set of variables: a Dataset object, an optional Network object, and a regularisation penalty
value array. These are handled internally by the wrapper, which output an inferred network or array of inferred networks. The common
interface for each function looks as follows:

zetavec = logspace(-6,0,10);

estA = Methods.method_name(Data,zetavec)

Here Data is the generated data object, and zetavec is a vector of regularisation parameters required by the method. The inferred
networks are returned in estA. The available methods are listed in S.13. An alternative way of running the methods presented in this
paper is also provided, where the regularization parameter range can be estimated by the method wrapper itself

[estA,zetavec,zetaRange] = Methods.method_name(Data,’full’)

Calling the wrapper in this way will return a scaled zetavec ∈ [0,1] where if possible all regularisation steps are included, and the scaling
factors in zetaRange that can be used to rescale the zetavec to its actual range.

Table S.8 Signed topology measures

Name Description
ncs # Correct signs
sst Similarity of signed topology
sst0 Similarity of signed topology of non-zero elements of A

4 | 1–13Journal Name, [year], [vol.],

Table S.9 Correlation measures

Name Description
plc Pearson’s linear correlation coefficient

Table S.10 Graph measures

Name Description
nlinks # Links in estimated network
TP # True Positives
TN # True Negatives
FP # False Positives
FN # False Negatives
sen Sensitivity TP/(TP+FN)
spe Specificity TN/(TN+FP)
comspe Complementary specificity 1-Specificity
pre Precision TP/(TP+FP)
TPTN Number of links that is present and absent in both net-

works (TP+TN)
structsim Structural similarity (TP+TN)/#Nodesˆ2
MCC Matthews correlation coefficient

Our in-house implementations of algorithms include Least Squares with Cut-Off (LSCO) and Total Least Squares with Cut-Off
(TLSCO),

âi j ,

{
a∗lsi j if a∗lsi j ≥ ζ̃

0 otherwise
(S4)

where A∗ls is either the total or ordinary least squares estimate. We have also implemented a bootstrap approach for both the LSCO and
the TLSCO algorithms.

An optimised implementation of the structurally constrained least squares (CLS) is also provided, which minimises the bias introduced
by the regularisation term of e.g. LASSO, by solving

Â = argmin
A

∑diag(∆T R∆) (S5a)

s.t. ∆ = AY +P, (S5b)

R =
(

Âinit Cov[y]ÂT
init +Cov[p]

)−1
, (S5c)

signA = sign Âreg. (S5d)

Here Âreg denotes the network estimate given by the regularisation method, e.g. LASSO, Cov[y] the covariance matrix of the response
in an experiment or an estimate of it, Cov[p] the covariance matrix of the perturbation in an experiment or an estimate of it, and sign
the signum function. The structure of the network is forced to be identical to the estimate given by the regularisation method by the
last constraint in the optimisation problem. Ideally, the network estimate Â should be used instead of Âinit, but then the problem is not
convex. In practice one should therefore solve this problem iteratively, starting with Âinit = Âreg in the first iteration and then Âinit equal

Table S.11 Directed graph measures

Name Description
TR True Regulation
TZ True Zero
FI False Interaction
FR False Regulation
FZ False Zero
dirsen Directed sensitivity
dirspe Directed specificity
dirprec Directed precision
SMCC Signed Matthews correlation coefficient

Journal Name, [year], [vol.],1–13 | 5

Table S.12 Methods in the CompareModels class

Name Description
AUROC Calculate area under ROC curve
ROC Plot ROC curve
AUPR Calculate area under PR curve
PR Plot PR curve
save save the comparison in specified format. Most formats that

MATLAB datasets can be saved in are supported as well as
json format if the jsonlab dependency is met

Table S.13 Method wrappers in GeneSPIDER. Each method can be called with a simple unified structure:
Methods.<function>(<data>,<parameters>).

function reference note
Glmnet Friedman et al. 9 LASSO/elastic net/ridge regression
NIR Di Bernardo et al. 6 Exhaustive subset regression
Bolasso Bach 3 Bootstrap utilising Glmnet
ccd Abenius and U 1 Cyclic coordinate descent
Glasso Friedman et al. 8 Graphical lasso
LARS Sjöstrand 21 Least angular regression
RNI Nordling 18 Robust network inference
julius Julius et al. 13 LASSO based convex programming
lsco Tjärnberg et al. 23 Least squares cut-off
fcls Tjärnberg et al. 23 Fast constrained least squares
ARACNe ? Algorithm for the Reconstruction of Accurate Cellular Networks

to the estimate from the last iteration Â until the estimate has converged with desired precision. This method is based on the method
presented in13, where the covariance is assumed to be identical in all experiments.

S.1.4.4 gsUtilities toolbox

Provides miscellaneous helper functions listed in S.14.

Table S.14 Contents of the gsUtilities toolbox.

Class or function Description
export2gnuplot Export of vectors and variables to a gnuplot friendly tsv format
optionParser Parses input options into a struct
rmdiag Removes diagonal elements and shifts the upper triangular elements -1

along the second dimension
sic Calculates the strong irrepresentable condition
standardize Standardises and normalises a given matrix

S.1.5 Definitions of data properties

We here define several data properties provided by GeneSPIDER.

S.1.5.1 Signal to Noise Ratio

The signal to noise ratio (SNR) can be defined in many different ways and we have implemented several of them in order to evaluate
them. In general the SNR should be the ratio of the signal and uncertainty of the gene of interest18

SNR(φ j),

∥∥∥φ j

∥∥∥
rUφ j

(S6)

where the radius of uncertainty set Uφ j
is

rUφ j
, sup

φ̃ j∈U α
φ j

∥∥∥φ̃ j−φ j

∥∥∥ (S7)

6 | 1–13Journal Name, [year], [vol.],

From (S2) we can derive an expression of the SNR considering only output noise

SNRΦ true ,
σ(Y)
σ(E)

=
σ(Φ)

σ(ϒ)
. (S8)

Here σ represent the largest singular value and σ represent the smallest non-zero singular value. Note that the noise matrix E is
only available for in silico data. We therefore also define a corresponding measure based on assumption of the noise being normally
distributed with variance λ

SNRΦ N (µ,λ) ,
σ(Φ)√

χ−2(α,NM)λ
. (S9)

Here N (µ,λ) indicates that the noise is assumed to follow a normal distribution with mean µ, variance λ(i) and χ−2(α,NM) is the
inverse chi-square distribution with NM degrees of freedom at significance level α. We also define SNRs for individual genes:

SNRφ N (µ,λ) ,argmin
i

‖φ i‖√
χ−2(α,N)λi

(S10a)

SNRφ true ,argmin
i

‖φ i‖
‖υ i‖

(S10b)

〈SNR〉φ N (µ,λ) ,meani
‖φ i‖√

χ−2(α,N)λi
(S10c)

〈SNR〉φ true ,meani
‖φ i‖
‖υ i‖

. (S10d)

S.1.5.2 Sample-wise linear dependence

An experiment can only be predicted through a model based upon data reflective of the underlying system properties, e.g. a closely
related experiment. This implies that it is essential to filter the experiments before using any leave-one-out cross-validation or cross-
optimisation strategy23. If an experiment is linearly dependent on other experiments then the latter contain information about the
former, and thus one should estimate the linear independence of the samples, ηyk

and ηpk
,

ηyk
, ||Y T

t 6=kyk||1 ηpk
, ||PT

t 6=k pk||1. (S11)

Only samples fulfilling

V ,
{

k|ηyk
≥ σN(Y) and ηpk

≥ σN(P)
}

(S12)

should be included.

S.1.6 Generating example data as used in results section

GeneSPIDER provides four MATLAB toolboxes: datastruct, analyse, Methods, and gsUtilities. Each toolbox is aimed at a spe-
cific function and their usage is exemplified here. The data used in the examples below can be downloaded from the online repository at
https://bitbucket.org/sonnhammergrni/gs-networks. The network is Nordling-D20100302-random-N10-L25-ID1446937
and dataset is Nordling-ID1446937-D20150825-E15-SNR3291-IDY15968. Note that if the code below is used to generate a new net-
work and dataset, then they will differ from the presented ones due to the use of random number generators to create the network and
noise matrices.

S.1.6.1 Network generation

We start by generating a stable random network with 10 nodes and sparsity 0.25. The following code snippet demonstrate how to create
a datastruct.Network object with the above specifications.

N = 10; S=0.25;

A = datastruct.randomNet(N,S)-eye(N);

A = datastruct.stabalize(A,’iaa’,’high’);

Net = datastruct.Network(A,’random’);

setname(Net,struct(’creator’,’Nordling’));

Net.description = [’This is a sparse network with 10 nodes,’...

’10 negative self-loops and 15 randomly chosen’...

Journal Name, [year], [vol.],1–13 | 7

https://bitbucket.org/sonnhammergrni/gs-networks
https://bitbucket.org/sonnhammergrni/gs-networks/raw/ec384db2750b5ef229d1c613e3dd04a5e3b634e2/random/N10/Nordling-D20100302-random-N10-L25-ID1446937.json
https://bitbucket.org/sonnhammergrni/gs-datasets/raw/a9d9b00aaa5fa6f4059ba03fd0cb5ec8eb80f3f0/N10/Nordling-ID1446937-D20150825-E15-SNR3291-IDY15968.json

’links generated by Nordling 2010-03-02.’...

’The coefficients are chosen such that they form one’...

’strong component and a stable dynamical system with’...

’time constants in the range 0.089 to 12 and an’...

’interampatteness level of 145 that is in-between’...

’the estimated level of an E. coli (Gardner et al. 2003 Science)’...

’and Yeast (Lorenz et al. 2009 PNAS) gene regulatory network.’...

’The coefficients of the network have not been tuned to explain’...

’any of the data sets in the mentioned articles.’];

datastruct.stabalize takes the random network and the desired IAA as input parameters and stabilises the network by making
the real part of all eigenvalues negative while adjusting the IAA level. The setname method is used to specify the fields of the Network
object. The name is automatically generated based on the network properties to ensure that each one is unique.

The displayed output of the Network object is in this case:

Net =

10x10 Network array with properties:

network: ’Nordling-D20100302-random-N10-L25-ID1446937’

A: [10x10 double]

G: [10x10 double]

names: {’G1’ ’G2’ ’G3’ ’G4’ ’G5’ ’G6’ ’G7’ ’G8’ ’G9’ ’G10’}

desc: ’This is a sparse network with 10 nodes, 10 negative

self-loop and 15 randomly chosen links generated by

Nordling 2010-03-02. The coefficients are chosen such

that they forms one strong component and a stable

dynamical system with time constants in the range 0.089

to 12 and an interampatteness level of 145 that is in

between the estimated level of an

E. coli (Gardner et al. 2003 Science) and

Yeast (Lorenz et al. 2009 PNAS) gene regulatory network.

The coefficients of the network have not been tuned to

explain any of the data sets in the mentioned articles.’

The displayed output shows the non-hidden properties of the Network object. network is the name of the object, which contains the
name of the creator Nordling, the date of creation D, the type of network random, the number of nodes, and the number of edges
L. A is the network matrix. G is the static gain matrix (inverse of A), which is precomputed to save time when used in an inference
algorithm. names contains the name assigned to each node, which are generated automatically if they are not specified. desc is a
description of the network. The Network class can handle sparse matrices.

For the example in this article, we generated 10 networks of each size, N ∈ {10,50,100}, each of the four classes, random, small-world,
scale-free and small-world-scale-free, and each of two IAA levels, κ ∈ {low,high}, giving a total of 240 networks. The IAA degree of
each network is shown in Figure S.1. The degree distributions for each network topology class and size are shown in Figure S.2.

S.1.6.2 Data generation

We now use the generated network to simulate perturbation experiments to obtain an expression dataset. The following code snippet
simulates N single gene perturbation experiments where each gene is perturbed one by one followed by N/2 experiments in which
genes are perturbed randomly.

SNR = 7;

P = double([eye(N),full(logical(sprandn(N,round(N/2),0.2)))]);

Y = Net.G*P;

s = svd(Y);

stdE = s(N)/(SNR*sqrt(chi2inv(1-analyse.Data.alpha,prod(size(P)))));

E = stdE*randn(size(P));

F = zeros(size(P));

We have created a perturbation matrix P and a corresponding response matrix Y. The standard deviation has been selected such that
the SNR became 7 when it was used to generate the noise matrix E. We didn’t use the input noise matrix F here, but it needs to be
specified, so it was set to zero. With this information, we build a data struct, which we later use to populate the Dataset object.

8 | 1–13Journal Name, [year], [vol.],

100

101

102

103

104

IA
A

R
a
n
d
o
m

S
m

a
ll-

w
o
rl

d
S
ca

le
-f

re
e

S
m

a
ll-

w
o
rl

d
S
ca

le
-f

re
e

N=10 N=50 N=100

R
a
n
d
o
m

S
m

a
ll-

w
o
rl

d
S
ca

le
-f

re
e

S
m

a
ll-

w
o
rl

d
S
ca

le
-f

re
e

N=10 N=50 N=100

R
a
n
d
o
m

S
m

a
ll-

w
o
rl

d
S
ca

le
-f

re
e

S
m

a
ll-

w
o
rl

d
S
ca

le
-f

re
e

N=10 N=50 N=100

100

101

102

103

104

0 5 10 15 20

IA
A

Data set

R
a
n
d
o
m

S
m

a
ll-

w
o
rl

d
S
ca

le
-f

re
e

S
m

a
ll-

w
o
rl

d
S
ca

le
-f

re
e

N=10 N=50 N=100

R
a
n
d
o
m

S
m

a
ll-

w
o
rl

d
S
ca

le
-f

re
e

S
m

a
ll-

w
o
rl

d
S
ca

le
-f

re
e

N=10 N=50 N=100

R
a
n
d
o
m

S
m

a
ll-

w
o
rl

d
S
ca

le
-f

re
e

S
m

a
ll-

w
o
rl

d
S
ca

le
-f

re
e

N=10 N=50 N=100

100

101

102

103

104

IA
A

R
a
n
d
o
m

S
m

a
ll-

w
o
rl

d
S
ca

le
-f

re
e

S
m

a
ll-

w
o
rl

d
S
ca

le
-f

re
e

N=10 N=50 N=100

R
a
n
d
o
m

S
m

a
ll-

w
o
rl

d
S
ca

le
-f

re
e

S
m

a
ll-

w
o
rl

d
S
ca

le
-f

re
e

N=10 N=50 N=100

100

101

102

103

104

0 5 10 15 20

IA
A

Data set

R
a
n
d
o
m

S
m

a
ll-

w
o
rl

d
S
ca

le
-f

re
e

S
m

a
ll-

w
o
rl

d
S
ca

le
-f

re
e

N=10 N=50 N=100

0 5 10 15 20

Data set

R
a
n
d
o
m

S
m

a
ll-

w
o
rl

d
S
ca

le
-f

re
e

S
m

a
ll-

w
o
rl

d
S
ca

le
-f

re
e

N=10 N=50 N=100

Fig. S.1 Interampatteness degrees for the networks in the benchmark suite. Each point represents a
network, with its IAA degree on the y-axis and its number in order of increasing IAA on the x-axis. The
numbering is the same as in Figure 2.

10-4

10-3

10-2

10-1

100

Fr
e
q
u
e
n
cy

R
a
n
d
o
m

S
m

a
ll-

w
o
rl

d
S
ca

le
-f

re
e

S
m

a
ll-

w
o
rl

d
S
ca

le
-f

re
e

N=10 N=50 N=100

R
a
n
d
o
m

S
m

a
ll-

w
o
rl

d
S
ca

le
-f

re
e

S
m

a
ll-

w
o
rl

d
S
ca

le
-f

re
e

N=10 N=50 N=100

R
a
n
d
o
m

S
m

a
ll-

w
o
rl

d
S
ca

le
-f

re
e

S
m

a
ll-

w
o
rl

d
S
ca

le
-f

re
e

N=10 N=50 N=100

10-4

10-3

10-2

10-1

100

100 101 102

Fr
e
q
u
e
n
cy

Node out-degree

R
a
n
d
o
m

S
m

a
ll-

w
o
rl

d
S
ca

le
-f

re
e

S
m

a
ll-

w
o
rl

d
S
ca

le
-f

re
e

N=10 N=50 N=100

R
a
n
d
o
m

S
m

a
ll-

w
o
rl

d
S
ca

le
-f

re
e

S
m

a
ll-

w
o
rl

d
S
ca

le
-f

re
e

N=10 N=50 N=100

R
a
n
d
o
m

S
m

a
ll-

w
o
rl

d
S
ca

le
-f

re
e

S
m

a
ll-

w
o
rl

d
S
ca

le
-f

re
e

N=10 N=50 N=100

10-4

10-3

10-2

10-1

100

Fr
e
q
u
e
n
cy

R
a
n
d
o
m

S
m

a
ll-

w
o
rl

d
S
ca

le
-f

re
e

S
m

a
ll-

w
o
rl

d
S
ca

le
-f

re
e

N=10 N=50 N=100

R
a
n
d
o
m

S
m

a
ll-

w
o
rl

d
S
ca

le
-f

re
e

S
m

a
ll-

w
o
rl

d
S
ca

le
-f

re
e

N=10 N=50 N=100

10-4

10-3

10-2

10-1

100

100 101 102

Fr
e
q
u
e
n
cy

Node out-degree

R
a
n
d
o
m

S
m

a
ll-

w
o
rl

d
S
ca

le
-f

re
e

S
m

a
ll-

w
o
rl

d
S
ca

le
-f

re
e

N=10 N=50 N=100

100 101 102

Node out-degree

R
a
n
d
o
m

S
m

a
ll-

w
o
rl

d
S
ca

le
-f

re
e

S
m

a
ll-

w
o
rl

d
S
ca

le
-f

re
e

N=10 N=50 N=100

Fig. S.2 Out-degree distributions for the networks in the benchmark suite. Each distribution is based on
20 individual networks. The y-axis shows the degree frequency, and the x-axis shows the degree.

Journal Name, [year], [vol.],1–13 | 9

D(1).network = Net.network;

D(1).E = E;

D(1).F = F;

D(1).Y = Y+D.E;

D(1).P = P;

D(1).lambda = [stdE^2,0];

D(1).cvY = D.lambda(1)*eye(N);

D(1).cvP = zeros(N);

D(1).sdY = stdE*ones(size(D.P));

D(1).sdP = zeros(size(D.P));

The two easiest ways to populate the Dataset object with generated data is to either initialise it with the data and/or network or to
use the function populate. To initialise the datastruct.Dataset object with data we do the following:

Data = datastruct.Dataset(D,Net);

setname(Data,struct(’creator’,’Nordling’));

data.description = [’This data set contains 15 simulated experiments with additive’...

’white Gaussian noise with variance 0.00028 added to the response’...

’in order to make the SNR 7 and the data partly informative for’...

’network inference. The singular values of the response matrix’...

’are in the range 0.77 to 1.2.’];

The displayed output of the Dataset object is in this case:

Data =

Dataset with properties:

dataset: ’Nordling-ID1446937-D20150825-E15-SNR3291-IDY15968’

network: ’Nordling-D20100302-random-N10-L25-ID1446937’

P: [10x15 double]

F: [10x15 double]

cvP: [10x10 double]

sdP: [10x15 double]

Y: [10x15 double]

E: [10x15 double]

cvY: [10x10 double]

sdY: [10x15 double]

lambda: [0.00028399 0]

SNR_L: 3.2912

names: {’G01’ ’G02’ ’G03’ ’G04’ ’G05’ ’G06’ ’G07’ ’G08’ ’G09’ ’G10’}

description: ’This data set contains 15 simulated experiments with additive

white Gaussian noise with variance 0.00028 added to the response

in order to make the SNR 7 and the data partly informative for

network inference. The singular values of the response matrix

are in the range 0.77 to 1.2.’

It is important to be able to connect a dataset to a specific network if the data was generated in silico, hence the network name is
reported in the Data object.

S.1.6.3 Analysis

The analysis toolbox provides tools to analyse data, networks, and benchmark results.
First we demonstrate how to load the correct network and dataset from the online repository:

v = version(’-release’);

if str2num(v(1:end-1)) >= 2015

disp(’Fetching example data online’)

Net = datastruct.Network.fetch(’Nordling-D20100302-random-N10-L25-ID1446937.json’)

Data = datastruct.Dataset.fetch(’Nordling-ID1446937-D20150825-E15-SNR3291-IDY15968.json’)

10 | 1–13Journal Name, [year], [vol.],

else

disp(’Older versions of MATLAB does not support fetching datasets online.’)

end

S.1.6.3.1 Network analysis: To analyse the network we input it to the analyse.Model module:

net_prop = analyse.Model(Net);

disp(net_prop)

It produces the output:

net_prop =

Model with properties:

network: ’Nordling-D20100302-random-N10-L25-ID1446937’

interampatteness: 144.6937

NetworkComponents: 1

AvgPathLength: 2.8778

tauG: 0.085032

CC: 0.1

DD: 1.5

Six measures are calculated. The interampatteness degree, interampatteness, is the number reported by cond(A) in MAT-
LAB. NetworkComponents is the number of strongly connected components, as reported by the MATLAB function graphconncomp.
AvgPathLength is the average path length of the graph of the network in question, as reported by graphallshortestpaths in
MATLAB. tauG is the time constant of the system. CC is the average Clustering coefficient, which can be interpreted as the neighbour-
hood sparsity of each node in the network, not considering the node itself. DD is the average degree distribution of the model. The
property analyse.Model.type can be set to directed (default) or undirected depending on the network and the properties one
wishes to calculate. This is a persistent property, so the value will remain the default one until it is changed.

Individual properties can also be calculated, e.g. all clustering coefficients can be calculated by

disp([’Clustering coefficients of the network ’,Net.network])

CCs = analyse.Model.clustering_coefficient(Net)

S.1.6.3.2 Data analysis: To analyse the data we input the Dataset object to the analyse.Data module:

data_prop = analyse.Data(Data);

disp(data_prop)

It will result in the following output:

data_prop =

Data with properties:

dataset: ’Nordling-ID1446937-D20150825-E15-SNR3291-IDY15968’

SNR_Phi_true: 7

SNR_Phi_gauss: 3.2912

SNR_phi_true: 10.991

SNR_phi_gauss: 10.341

The SNRs reported here correspond the definitions in equations (S9) - (S10b) by default. However, the SNR is calculated for all i with
the following two functions:

disp(’SNR estimate based on actual noise matrix E for each variable’)

SNRe = analyse.Data.calc_SNR_phi_true(Data);

disp(SNRe)

disp(’SNR estimate based on variance estimate each variable’)

SNRl = analyse.Data.calc_SNR_phi_gauss(Data);

disp(SNRl)

Journal Name, [year], [vol.],1–13 | 11

S.1.6.3.3 Performance evaluation: To analyse the performance of an inference method we first need to generate an output. This is
accomplished easily thanks to the wrappers. Each method has an associated wrapper that parses the data of the method itself. To run
the Glmnet LASSO implementation we execute:

[estA,zetavec,zetaRange] = Methods.Glmnet(Data,’full’);

The variable zetavec is the returned regularisation parameters that was used within the algorithm. The option "full" will instruct
the method to try to generate the complete regularization path from full to empty network with the ζ values scaled between 0 and 1.
It should be noted that not all methods can reliably do this. For those cases a zetavec can be specified and supplied to the method.
zetaRange gives the scaling factors used for the parameters.

zetavec = logspace(-6,0,100)

estA = Methods.Glmnet(Data,zetavec);

and the method will use that vector of values to infere the networks.
To analyse the performance of the model, we input the network estimates produced by the algorithm to the model comparison

method:

M = analyse.CompareModels(Net,estA);

The max operation can now be used to find the optimal performance for each calculated measure:

maxM = max(M);

Note that maxM will contain the maximum of all measures calculated in analyse.CompareModels. If one wants to get all measures
when a specific measure is maximised, one should specify that as an input.

max_MCC_M = max(M,’MCC’);

This will return all applicable measures to that point.
The measures currently available are detailed in tables S.7 - S.11. CompareModels will calculate similarity of non-diagonal elements

if the input gold standard model is not square, assuming that the diagonal has been removed and truncated along the second dimension.

S.1.6.4 Benchmark Results (continued)

The disparity between AUROC and MCC performance metrics in Fig. 4 is broken out for comparison into its individual components in
the online supplemental section, where one can see how they vary with varying sparsity. In the AUROC plots, various points have their
density (red) and MCC (black) displayed to allow for verification of the overall performance bar chart of the results section.

References
1 Abenius, T. and U, A. X. (2010). Summary of methods. Control, pages 18–21.
2 Almeida, J. S., Wu, S., and Voit, E. O. (2003). Xml4mat: Inter-conversion between matlab tm structured variables and the markup
language mbml.

3 Bach, F. R. (2008). Bolasso: Model consistent lasso estimation through the bootstrap. In Proceedings of the 25th International
Conference on Machine Learning, ICML ’08, pages 33–40, New York, NY, USA. ACM.

4 Banga, J. R. and Balsa-Canto, E. (2008). Parameter estimation and optimal experimental design. Essays In Biochemistry, 45, 195–210.
5 Bonneau, R., Reiss, D. J., Shannon, P., Facciotti, M., Hood, L., Baliga, N. S., and Thorsson, V. (2006). The inferelator: an algorithm
for learning parsimonious regulatory networks from systems-biology data sets de novo. Genome biology, 7(5), R36.

6 Di Bernardo, D., Gardner, T. S., and Collins, J. J. (2004). Robust identification of large genetic networks. Pacific Symposium on
Biocomputing. Pacific Symposium on Biocomputing, 497, 486–497.

7 Franceschini, G. and Macchietto, S. (2008). Model-based design of experiments for parameter precision: State of the art. CHEMICAL
ENGINEERING SCIENCE, 63, 4846–4872.

8 Friedman, J., Hastie, T., and Tibshirani, R. (2008). Sparse inverse covariance estimation with the graphical lasso. Biostatistics
(Oxford, England), 9(3), 432–441.

9 Friedman, J., Hastie, T., and Tibshirani, R. (2010). Regularization paths for generalized linear models via coordinate descent. Journal
of statistical software, 33(1), 1–22.

10 Gardner, T. S., Bernardo, D., Lorenz, D., and Collins, J. J. (2003). Inferring genetic networks and identifying compound mode of
action via expression profiling. Science, 301(7), 102–105.

11 Gustafsson, M. and Hörnquist, M. (2010). Gene expression prediction by soft integration and the elastic net-best performance of
the dream3 gene expression challenge. PloS one, 5(2), e9134.

12 | 1–13Journal Name, [year], [vol.],

12 Gustafsson, M., H?rnquist, M., and Lombardi, A. (2005). Constructing and analyzing a large-scale gene-to-gene regulatory network-
lasso-constrained inference and biological validation. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2(3),
254–261.

13 Julius, a., Zavlanos, M., Boyd, S., and Pappas, G. J. (2009). Genetic network identification using convex programming. IET systems
biology, 3(3), 155–166.

14 Kreutz, C. and Timmer, J. (2009). Systems biology: experimental design. FEBS Journal, 276(4), 923–942.
15 Marbach, D., Costello, J. C., Küffner, R., Vega, N. M., Prill, R. J., Camacho, D. M., Allison, K. R., Kellis, M., Collins, J. J., and
Stolovitzky, G. (2012). Wisdom of crowds for robust gene network inference. Nature Methods, 9(8), 796–804.

16 MATLAB (2014). 8.3.0.532 (r2014a).
17 Michalik, C., Stuckert, M., and Marquardt, W. (2010). Optimal experimental design for discriminating numerous model candidates:
The awdc criterion. Industrial & Engineering Chemistry Research, 49(2), 913–919.

18 Nordling, T. E. M. (2013). Robust inference of gene regulatory networks. Ph.D. thesis, KTH School of Electrical Engineering, Automatic
Control Lab.

19 Nordling, T. E. M. and Jacobsen, E. W. (2009). Interampatteness - a generic property of biochemical networks. IET systems biology,
3(5), 388–403.

20 Schwaab, M., Luiz Monteiro, J., and Carlos Pinto, J. (2008). Sequential experimental design for model discrimination. Chemical
Engineering Science, 63(9), 2408–2419.

21 Sjöstrand, K. (2005). Matlab implementation of LASSO, LARS, the elastic net and SPCA. Version 2.0.
22 Tegner, J., Yeung, M. K. S., Hasty, J., and Collins, J. J. (2003). Reverse engineering gene networks: Integrating genetic perturbations
with dynamical modeling. Proceedings of the National Academy of Sciences, 100(10), 5944–5949.

23 Tjärnberg, A., Nordling, T. E. M., Studham, M., and Sonnhammer, E. L. L. (2013). Optimal sparsity criteria for network inference.
Journal of Computational Biology, 20(5), 398–408.

24 Tjärnberg, A., Nordling, T., Studham, M., Nelander, S., and Sonnhammer, E. (2015). Avoiding pitfalls in l1-regularised inference of
gene networks. Mol. BioSyst., pages 287–296.

25 Zhao, P. and Yu, B. (2006). On model selection consistency of lasso. The Journal of Machine Learning Research, 7, 2541–2563.

Journal Name, [year], [vol.],1–13 | 13

	Introduction
	Methods and GeneSPIDER capabilities
	Model formalism and notation
	Network generation
	Data generation
	GRN inference methods
	Evaluation of inferred networks
	Quantification of network and system properties
	Quantification of data properties

	A case study using the benchmark suite
	Network generation
	Data generation
	Inference method performance analysis
	Benchmark conclusions

	Discussion
	Acknowledgements
	Supplementary Information
	Dependencies of GeneSPIDER
	Installation instructions
	Notation used for steady-state data
	Toolboxes
	Data structure toolbox
	Analysis toolbox
	Methods toolbox
	gsUtilities toolbox

	Definitions of data properties
	Signal to Noise Ratio
	Sample-wise linear dependence

	Generating example data as used in results section
	Network generation
	Data generation
	Analysis
	Benchmark Results (continued)

